数学讲义条件充分性判断秒杀技巧
条件充分性判断终极解题技巧

经典资料,WORD文档,可编辑修改
经典考试资料,答案附后,看后必过,WORD文档,可修改
条件充分性判断终极解题技巧
条件充分性判断题目,共十道,包含A、B、C、D、E五个选项,根据历年真题总结,其中选择A、B两选项的题目一般为4道,最多5道;选择C选项的题目一般3道;D项2道左右,E项1道不超过两道;根据以上总结,基础不好的考友可根据以下技巧先将选择A、B、C 项的题目做出来,其余根据技巧不能确定的题目就空着,最后统一选择D即可;基础较好的考友,可继续了解掌握选择D、E项的技巧;
一、选A或B选项只有一个条件充分,另一个不充分
考试中10道题里最多5道,一般是4道,如果两条件复杂程度有明显差异时,可以使用以下技巧快速解答;
1、印刷的长度明显不同时,选复杂的选项简言之,哪个长选那个
例题:直线L的方程为3x-y-20=0.
(1)过点5,-2且与直线3x-y-2=0平行的直线方程是L;
(2)平行四边形ABCD的一条对角线固定在A3,-1,C2,-3两点,D点在直线3x-y+1=0上移动,则B点轨迹所在的方程为L;
解析:算都不算,直接选B;
2、印刷长度相当时;包含考点相对较难、公式相对复杂、方法较难、运算量大的项更充分;。
条件充分性判断题型的几种解法

条件二:举反例:n=7满足条件二,但此时结论不成立
➢ 练一练:
设a,b,c为实数,则能确定a,b,c中的最大值。
(1)已知a,b,c的平均值
(2)已知a,b,c中的最小值
答案:E
做题思路:举反例即可,条件一和条件二单独都不充分,联合也不充分
再由 ≤ + 2可知 ≤ 6
➢ 练一练:
例: 直线 y ax b 过第二象限。
(1)
a 1, b 1
(2)
a 1, b 1
答案:A
做题思路:条件 1 = − + 1,画出函数图像可知经过一二四象限
条件 2 = − 1,画出函数图像可知经过一三四象限
例:
x 3x 4 0
2
(1) x 1
(2) x 2
➢ 条件充分性判断题型介绍:
例:
x 3x 4 0
2
(1) x 1
(2) x 2
条件充分性判断的题目意思:
1、题干是我们想要证明的结论。
2、判断条件(1)是否充分?
3、判断条件(2)是否充分?
4、如果两个条件都不充分,则两个条件联合是否充分?
➢ 练一练:
例:p=mq+1为质数
(1)m为正整数,q为质数
(2)m、q均为质数
答案:E
做题思路:只要能举出一个反例,就不充分。m=3,q=3,这既是条件一的反例,也
是条件二的反例
➢ 练一练:
n
例:
是一个整数
14
3n
(1)n是一个整数,且
也是个整数。
14
2017数学-讲义-条件充分性判断秒杀技巧

2017数学-讲义-条件充分性判断秒杀技巧充分性判断题目(03.01才开始有这种题型,为MBA的特色题型)一、充分性命题定义对两个命题A和B而言,若由命题A成立,肯定可以推出命题B成立,即BA ,则称命题A是命题B成立的充分条件。
当条件给定的参数范围落入题干成立范围内,即判断该条件是充分(子集充分)。
二、解题说明与各选项含义本类题要求判断所给出的条件能否充分支持题干中陈述的结论,即只要分析条件是否充分即可,而不必考虑条件是否必要。
(A)条件(1)充分,但条件(2)不充分(B)条件(2)充分,但条件(1)不充分(C)条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分(D)条件(1)充分,条件(2)也充分(E)条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分例1.(2008-01-19)申请驾驶执照时,必须参加理论考试和路考,且两种考试均通过。
若在同一批学员中有%70的人通过了理论考试,%80的人通过了路考,则最后领到驾驶执照的人有%60。
(1)%10的人两种考试都没有通过(2)%20的人仅通过了路考条件:(1)%10的人两种考试都没有通过(2)%20的人仅通过了路考题干:申请驾驶执照时,必须参加理论考试和路考,且两种考试均通过。
若在同一批学员中有%70的人通过了理论考试,%80的人通过了路考,则最后领到驾驶执照的人有%60。
题干中陈述的结论:则最后领到驾驶执照的人有%60三、阅读题目的方法亚里士多德在逻辑学上最重要的工作就是三段论的学说。
一个三段论就是一个包括有大前提、小前提和结论三个部分的论证。
三段论有许多不同的种类,其中每一种经院学者都给起了一个名字。
最为人所熟知的就是称为“Barbara”的那一种: 凡人都有死(大前提)。
苏格拉底是人(小前提)。
所以:苏格拉底有死(结论)。
例2.若x 和y 是整数,那么1xy +能被3整除。
(1)当x 被3除时,其余数为1 (2)当y 被9除时,其余数为8 这里:如果整除(结论)能被(小前提)除时,其余数为被是整数(大前提)和 3 1 1 3 +⇒⎭⎬⎫xy x y x这样,称条件(1)充分。
高考数学答题技巧:判断充分与必要条件的方法

高考数学答题技巧:判断充分与必要条件的方法
高考数学答题技巧:判断充分与必要条件的方法判断充分与必要条件的方法
一、定义法
可以简单的记为箭头所指为必要,箭尾所指为充分。
在解答此类题目时,利用定义直接推导,一定要抓住命题的条件和结论的四种关系的定义。
例1 已知p:-2
分析条件p确定了m,n的范围,结论q则明确了方程的根的特点,且m,n作为系数,因此理应联想到根与系数的关系,然后再进一步化简。
解设x1,x2是方程x2+mx+n=0的两个小于1的正根,即0 而对于满足条件p的m=-1,n=,方程x2-x+=0并无实根,所以pq.
综上,可知p是q的必要但不充分条件。
点评解决条件判断问题时,务必分清谁是条件,谁是结论,然后既要尝试由条件能否推出结论,也要尝试由结论能否推出条件,这样才能明确做出充分性与必要性的判断。
二、集合法
如果将命题p,q分别看作两个集合A与B,用集合意识解释条件,则有:①若A?哿B,则x∈A是x∈B的充分条件,x∈B 是x∈A的必要条件;②若A?芴B,则x∈A是x∈B的充分不必要条件,x∈B是x∈A的必要不充分条件;③若A=B,。
条件充分性判断黄金原则

条件充分性判断是只有在管理类联考中才有的题型,所以刚刚接触的同学不是很适应,也不知道该如何解题,不要担心,深圳华章为您总结了一些总体解题思路以及一些黄金法则。
总体解题思路:1.条件能否直接推出题干结论(自下而上);2.条件是否是题干结论的子集(自上而下,适合于题干比较复杂的情况);3.找特殊值证伪(排除,只要有一个使得结论不成立,即不充分)。
当条件是给出某一个数时,可先考虑思路1;当条件给出某一个区间时,可以考虑思路2,也可从区间里取一个特殊值代入题干,看是否成立;而思路3又是一种比较快捷的解题技巧,可以结合使用。
条件充分性判断八大类型及黄金准则1.两个条件不可联合型当两条件不可联合时,由于A、B、D的选项可能要远远高于E,所以在做题时可以先选择一个比较容易的条件下手,如果能成立,再去验证另一个条件;如果不成立,另一个条件充分的可能性特别大。
这个方法告诉我们,当两个条件可以联合时,一般不考虑A、B、D。
当两个条件有交集时,且联合后交集范围又很小,一般倾向于选C.当两个条件有交集时,且联合后交集范围为闭区间,可以先把区间端点的值代入验证,若都成立,一般选C,若有一个不成立,就选E。
2.两条件包含型当两条件具备包含关系时,一般要倾向于选择范围小的条件成立。
做题时要先选择范围较大的条件先做,常用技巧为选择大范围包含,而小范围却不包含的值进行验证。
3.两条件矛盾型两条件矛盾时,一般考虑选择A或B。
4.两条件等价型当两条件为等价命题时,一般考虑选D。
5.两条件差异性很小(互为相反数)当两条件为互为相反数时,选D的可能性要高于A、B。
6.两条件分别在两端点之外的区间选D的可能性较大。
7.两条件为“红花绿叶”型其中一个条件使得题干有意义(绿叶),另一个条件是定量描述(红花),一般选择C、E。
8.两条件有相同描述文字,且很像联合充分时,E的可能性比较大。
补充说明:根据以上技巧,一般两条件包含两种类型:不可联合与可联合型。
充分条件和必要条件的口诀

充分条件和必要条件的口诀充分条件和必要条件是数学推理中常用的概念,用于描述一个事物是否可能发生或具有某种性质。
下面我将介绍一些口诀,帮助大家记忆和理解充分条件和必要条件。
1、充分不必要,必要不充分,充要匹配才符合要求。
这是最基本的区分充分条件和必要条件的口诀。
它告诉我们,在数学中,充分条件并不一定是必要条件,而必要条件也不一定是充分条件。
只有当它们同时成立时,我们才能得出正确的结论。
2、必要条件反面,充分条件否定,结论相反,此法最准。
这个口诀告诉我们,如果我们要推导某个结论,我们可以尝试反过来考虑。
如果我们能够证明它的必要条件不成立,或者证明它的充分条件不成立,则可以推出结论的反面。
这种方法在推导问题中常常会用到。
3、充分条件加强,必要条件减弱,结论不变,这样来求。
这个口诀告诉我们,如果我们想证明一个结论,但是我们的必要条件或充分条件太过宽松或不够严格,我们可以尝试加强充分条件或减弱必要条件,来保证结论的正确性。
4、做充分条件要从定性,做必要条件要从定量。
这个口诀告诉我们,在证明充分条件时,我们需要从事物的特征、属性、本质等方面入手,进行分析和推导;在证明必要条件时,我们需要从统计数据、具体情况等方面入手,进行定量分析和推导。
5、充分条件从始到终,必要条件从终到始。
这个口诀告诉我们,在证明充分条件时,我们需要从前面的条件入手,一步步推导到最终结果;在证明必要条件时,我们需要从最终结果入手,一步步推导到前面的条件。
6、充要条件一一对应,一定要掌握。
这个口诀告诉我们,在充要条件的推导中,必须确保充分条件和必要条件之间的对应关系是正确的。
只有这样,我们才能正确地得出结论。
7、充要条件离不开,缺一不可行。
这个口诀告诉我们,在推导充要条件时,必须同时考虑充分条件和必要条件,而不能只考虑其中任意一个部分。
8、充要条件五要素,掌握重在挖。
这个口诀告诉我们,在掌握充要条件的基础上,我们还需要关注条件之间的细微差别和联系,包括何时才需要进行反向推导、何时才需要加强或减弱条件等等。
高考数学复习点拨 判断充分、必要、充要条件的常用策略

判断充分、必要、充要条件的常用策略充分条件、必要条件与充要条件是高中的基础知识,在高考中往往以本节知识为工具考查其它方面的知识.本文主要谈一下判断充分条件、必要条件与充要条件的常用策略,供大家参考.策略1:定义法判断充分条件、必要条件与充要条件的最根本方法是根据定义,运用“⇒”号:如果q p ⇒,则p 是q 的充分条件,q 是p 的必要条件.例1 ⎪⎩⎪⎨⎧>>+44xy y x 是⎪⎩⎪⎨⎧>>22y x 的什么条件,请说明理由. 解:当2>x ,2>y 时,有4>+y x ,4>xy ,所以⎪⎩⎪⎨⎧>>⇒⎪⎩⎪⎨⎧>>+2244y x xy y x ;反之不一定成立,例如当21<=x ,5=y 时,有46>=+y x ,45>=xy ,即 ⎪⎩⎪⎨⎧>>22y x ⎪⎩⎪⎨⎧>>+44xy y x .所以⎪⎩⎪⎨⎧>>+44xy y x 是⎪⎩⎪⎨⎧>>22y x 的充分不必要条件.策略2:递推法命题在推导的过程当中具有传递性,即:若q p ⇒,r q ⇒,则r p ⇒.例2 如果A 是B 的必要不充分条件,B 是C 的充要条件,D 是C 的充分不必要条件,那么A 是D 的_________条件.解:依题意,有D C B A ⇐⇔⇐,由命题的传递性可知D A ⇐,但A D .于是A 是D 的充分不必要条件.例3 设甲、乙、丙、丁是四个命题,甲是乙的充分但不必要条件,丙是乙的充要条件,丙是丁的必要但不充分条件,那么丁是甲的__________条件.解,依题意,有丁丙乙甲⇐⇔⇒.由命题的传递性可知甲 乙且乙 甲,于是丁是甲的既不充分也不必要条件.策略3:等价转化法在判断命题p 与q 的关系的时候,若命题q 的形式比较复杂,则可把命题q 等价转化⇒⇒⇒⇒⇐ ⇒⇒⇒为比较简单的命题r ,进而通过判断命题p 与r 的关系得到命题p 与q 的关系.例4 设50:<<x p ,5|2:|<-x q ,那么p 是q 的________条件.解:73:5|2:|<<-⇔<-x r x q ,显然r p ⇒,但r p ,所以q p ⇒,但 q p ,所以p 是q 的充分但不必要条件.例5 0)2(22=-+y x 是0)2(=-y x 的________条件.解:2且0:0)2(22==⇔=-+y x p y x ,2或0:0)2(==⇔=-y x q y x ,显然q p ⇒但q p ,所以0)2(22=-+y x 是0)2(=-y x 的充分但不必要条件.策略4:逆否命题法由于原命题⇔逆否命题,逆命题⇔否命题.所以判断p 能否推出q ,等价于判断q ┐能否推出p ┐. 例6 已知条件2:≠+y x p ,条件1不都是,:-y x q ,则p 是q 的_____条件.解:因为2:≠+y x p ,1或1:-≠-≠y x q ,所以2:┐=+y x p ,1且1:┐-=-=y x q .因为q p ┐┐⇒但q ┐ p ┐,所以p 是q 的充分不必要条件. ⇒⇒⇒⇒。
高二数学推断充分与必要条件的方法

高二数学推断充分与必要条件的方法高二数学推断充分与必要条件的方法充分与必要条件考查同学的规律力气且经常与其他的题结合在一起考查,那么我们该如何推断充分与必要条件。
我为你供应推断充分与必要条件的常用方法,希望对大家有关怀。
推断充分与必要条件的方法一、定义法对于“?圯”,可以简洁的记为箭头所指为必要,箭尾所指为充分。
在解答此类题目时,利用定义直接推导,确定要抓住命题的条件和结论的四种关系的定义。
例1已知p:-2分析条件p确定了m,n的范围,结论q则明确了方程的根的特点,且m,n作为系数,因此理应联想到根与系数的关系,然后再进一步化简。
解设x1,x2是方程x2+mx+n=0的两个小于1的正根,即0而对于满足条件p的m=-1,n=,方程x2-x+=0并无实根,所以pq。
综上,可知p是q的必要但不充分条件。
点评解决条件推断问题时,务必分清谁是条件,谁是结论,然后既要尝试由条件能否推出结论,也要尝试由结论能否推出条件,这样才能明确做出充分性与必要性的推断。
二、集合法假如将命题p,q分别看作两个集合A与B,用集合意识解释条件,则有:①若A?哿B,则x∈A是x∈B的充分条件,x∈B是x∈A的必要条件;②若A?芴B,则x∈A是x∈B的充分不必要条件,x∈B是x∈A的必要不充分条件;③若A=B,则x∈A和x∈B互为充要条件;④若A?芫B且A?芸B,则x∈A和x∈B互为既不充分也不必要条件。
例2设x,y∈R,则x2+y22是|x|+|y|≤的()条件,是|x|+|y|2的()条件。
A。
充要条件B。
既非充分也非必要条件C。
必要不充分条件?摇D。
充分不必要条件解如右图所示,平面区域P={(x,y)|x2+y22}表示圆内部分(不含边界);平面区域Q={(x,y)||x|+|y|≤}表示小正方形内部分(含边界);平面区域M={(x,y)||x|+|y|2}表示大正方形内部分(不含边界)。
由于(,0)?埸P,但(,0)∈Q,则P?芸Q。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对两个命题A 和B 而言,若由命题A 成立,肯定可以推出命题B 成立,即B A ,则称命题A 是命题B 成立的充分条件。
当条件给定的参数范围落入题干成立范围内,即判断该条件是充分(子集充分)。
二、解题说明与各选项含义本类题要求判断所给出的条件能否充分支持题干中陈述的结论,即只要分析条件是否充分即可,而不必考虑条件是否必要。
(A ) 条件(1)充分,但条件(2)不充分(B ) 条件(2)充分,但条件(1)不充分(C ) 条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分 (D ) 条件(1)充分,条件(2)也充分(E ) 条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分 例1.(2008-01-19)申请驾驶执照时,必须参加理论考试和路考,且两种考试均通过。
若在同一批学员中有%70的人通过了理论考试,%80的人通过了路考,则最后领到驾驶执照的人有%60。
(1)%10的人两种考试都没有通过 (2)%20的人仅通过了路考 条件:(1)%10的人两种考试都没有通过 (2)%20的人仅通过了路考 题干:申请驾驶执照时,必须参加理论考试和路考,且两种考试均通过。
若在同一批学员中有%70的人通过了理论考试,%80的人通过了路考,则最后领到驾驶执照的人有%60。
题干中陈述的结论:则最后领到驾驶执照的人有%60三、阅读题目的方法亚里士多德在逻辑学上最重要的工作就是三段论的学说。
一个三段论就是一个包括 有大前提、小前提和结论三个部分的论证。
三段论有许多不同的种类,其中每一种经院 学者都给起了一个名字。
最为人所熟知的就是称为“Barbara ”的那一种: 凡人都有死(大前提)。
苏格拉底是人(小前提)。
所以:苏格拉底有死(结论)。
例2.若x 和y 是整数,那么1xy +能被3整除。
(1)当x 被3除时,其余数为1 (2)当y 被9除时,其余数为8 这里:如果整除(结论)能被(小前提)除时,其余数为被是整数(大前提)和 3 1 1 3 +⇒⎭⎬⎫xy x y x 这样,称条件(1)充分。
如果整除(结论)能被(小前提)除时,其余数为被是整数(大前提)和 3 1 8 9 +⇒⎭⎬⎫xy y y x 这样,称条件(2)充分。
如果整除(结论)能被(小前提)除时,其余数为被(小前提)除时,其余数为被是整数(大前提)和 3 1 8 9 1 3+⇒⎪⎭⎪⎬⎫xy y x y x 这样,称条件(1)和条件(2)联合起来充分。
四、解题步骤示意图(1)当条件(1)成立,备选A ,D 。
(2)当条件(1)不成立,备选B ,C ,E 。
(3)当条件(2)成立,备选B ,D 。
(4)当条件(2)不成立,备选A ,C ,E 。
(5)只有在条件(1)和(2)皆不成立时才考虑联合,备选C ,E 。
(1)11<<-m (2)1->m 例4.11<<-m(1)2<m (2)11<<-m 例5.11<<-m(1)1->m (2)1<m 例6.11<<-m(1)01<<-m (2)10<≤m 例7.11<<-m(1)1>m (2)1-<m 例8.11<<-m(1)11<<-m (2)11≤<-m 例9.11<<-m (1)01<<-m (2)2121≤<-m 例10.11<<-m(1)0>m (2)0<m 例11.11<<-m(1)211≤≤-m (2)121≤≤m例12.11<<-m(1)211<≤-m (2)121≤≤m例13.6,5,4,3,2=m(1)4,3,2=m (2)7,6,5=m 例14.6,5,4,3,2=m(1)4,3,2,1=m (2)6,5,4,3,2=m 例15.6,5,4,3,2=m(1)4,3,2,1=m (2)7,6,5,4=m 例16.6,5,4,3,2=m(1)3,2,1=m (2)7,6,5=m例17.三角形ABC ∆是等腰直角三角形(1)三角形ABC ∆是等腰三角形或直角三角形 (2)三角形ABC ∆是等腰三角形且是直角三角形 例18.33<<-m(1)13-<<-m 或31<<m (2)11<<-m 例19.33<<-m(1)14-<<-m 或31<<m (2)11<<-m(1)04<<-m 或40<<m (2)1-<m 或1>m 例21.1±=m(1)1+=m (2)1-=m 例22.1±≠m(1)1+≠m (2)1-≠m一、“鱼和熊掌,二者不可得兼,舍鱼而取熊掌者也”【原型题】:公路AB 上有10个车站,每两站之间都有往返车票,则公路AB 上各站之间共有( 90 )种不同的车票。
(2008-01-25) 【改编题】:公路AB 上各站之间共有90种不同的车票。
(1)公路AB 上有10个车站,每两站之间都有往返车票 还有一个条件怎么办(2)公路AB 上有10个车站,每两站之间都有往返车票改成“公路AB 上有9个车站,每两站之间都有往返车票” 因此有:公路AB 上各站之间共有90种不同的车票。
(2008-01-25) (1)公路AB 上有10个车站,每两站之间都有往返车票 (2)公路AB 上有9个车站,每两站之间都有往返车票1.不等式s x x <-+-42无解。
(2003-01-03)(1)2≤s (2)2>s2.某城区2001年绿地面积较上年增加了%20,人口却负增长,结果人均绿地面积比上年增长了%21。
(2003-10-01)(1)2001年人口较上年下降了26.8‰ (2)2001年人口较上年下降了10‰ 3.数列{}n a 的前k 项和k a a a +++ 21与随后k 项和k k k a a a 221+++++ 之比与k 无关。
(2003-10-04)(1)),2,1(12 =-=n n a n (2)),2,1(2 ==n n a n4.4⎪⎭⎫ ⎝⎛+x a x 的展开式中,常数项为6。
(2003-10-05)(1)1=a (2)2=a5.ac bc b a b a c +<+<+。
(2004-10-14) (1)b a c <<<0 (2)c b a <<<06.方程022=++ax x 与022=--a x x 有一公共实数解。
(2006-01-15) (1)3=a(2)2-=a7.a c b c a b =--+-。
(2006-10-15) (1)实数c b a ,,在数轴上的位置为(2)实数c b a ,,在数轴上的位置为8.m 是一个整数。
(2007-10-16) (1)若qp m =,其中p 与q 为非零整数,且2m 是一个整数 (2)若q p m =,其中p 与q 为非零整数,且342+m 是一个整数9.从含有2件次品,)2(2>-n n 件正品的n 件产品中随机抽查2件,其中恰有1件次品的概率为6.0。
(2007-10-22)(1)5=n(2)6=n10.a a -<<-<11。
(2007-10-28)(1)a 为实数,01<+a(2)a 为实数,1<a11.8522S S S =+。
(2008-01-20)(1)等比数列前n 项的和为n S ,且公比243-=q (2)等比数列前n 项的和为n S ,且公比321=q12.公路AB 上各站之间共有90种不同的车票。
(2008-01-25) (1)公路AB 上有10个车站,每两站之间都有往返车票 (2)公路AB 上有9个车站,每两站之间都有往返车票13.14n是一个整数。
(2008-10-23) (1)n 是一个整数,且143n 也是一个整数 (2)n 是一个整数,且7n也是一个整数14.方程0)4()](42[322=-++-+b ac x c a b x 有相等的实根。
(2008-10-29) (1)c b a ,,是等边三角形的三条边 (2)c b a ,,是等腰直角三角形的三条边15.等差数列{}n a 的前18项和21918=S 。
(2009-10-22)(1)613=a ,316=a(2)413=a ,216=a16.甲企业一年的总产值为]1)1[(12-+p pa。
(2010-01-23) (1)甲企业一月份的产值为a ,以后每月产值的增长率为p(2)甲企业一月份的产值为2a,以后每月产值的增长率为p 2 17.12支篮球队进行单循环比赛,完成全部比赛共需11天。
(2010-10-16) (1)每天每队只比赛1场 (2)每天每队比赛2场18.一元二次方程02=++c bx ax 无实根。
(2010-10-21) (1)a ,b ,c 成等比数列,且0≠b(2)a ,b ,c 成等差数列19.直线l 是圆04222=++-y y x x 的一条切线。
(2011-10-20) (1)02:=-y x l(2)02:=-y x l20.直线b ax y +=过第二象限。
(2012-01-18)(1)1-=a ,1=b(2)1=a ,1-=b21.直线L 与直线231x y +=关于x 轴对称。
(2012-10-19) (1):231L x y -=(2):321L x y +=22.已知平面区域(){}221,|9D x y xy =+≤,(){}22200,|()()9D x y x x y y =-+-≤,则1D ,2D 覆盖区域的边界长度为8π。
(2013-01-16)(1)22009x y +=.(2)003x y +=.23.已知二次函数2()f x ax bx c =++,则方程()0f x =有两个不同实根。
(2013-01-19) (1)0a c +=(2)0a b c ++=24.已知圆22:4210A x y x y ++++=。
则圆B 和圆A 相切。
(2013-10-17) (1)圆22:2610B x y x y +--+=.(2)圆22:60B x y x +-=.25.已知曲线l :326x x bx a y +-+=.则0)5)(5(=---+b a b a .(2014-01-16) (1)曲线l 过点1(,)0.(2)曲线l 过点1(-,)0.26.设x 是非零实数,则18133=+xx .(2014-01-19) (1)31=+xx .(2)7122=+xx . 27.不等式01)3(2)3(2<-++-+k x k x k ,对x 的任意数值都成立。