组成原理的基本概念及知识点

合集下载

计算机组成原理知识点总结

计算机组成原理知识点总结

计算机组成原理知识点总结第一章一、数字计算机的五大部件(硬件)及各自主要功能(P6)计算机硬件组成:存储器、运算器、控制器、输入设备、输出设备。

1、存储器(主存)主要功能:保存原始数据和解题步骤。

包括:内存储器(CPU 直接访问),外存储器。

2、运算器主要功能:进行算术、逻辑运算。

3、控制器主要功能:从内存中取出解题步骤(程序)分析,执行操作。

包括:计算程序和指令(指令由操作码和地址码组成)。

4、输入设备主要功能:把人们所熟悉的某种信息形式变换为机器内部所能接收和识别的二进制信息形式。

5、输出设备主要功能:把计算机处理的结果变换为人或其他机器所能接收和识别的信息形式。

注:1、冯诺依曼结构:存储程序并按地址顺序执行。

2、中央处理器(CPU):运算器和处理器的结合。

3、指令流:取指周期中从内存读出的信息流,流向控制器。

数据流:在执行器周期中从内存读出的信息流,由内存流向运算器。

二、数字计算机的软件及各自主要功能(P11)1、系统软件:包括服务性程序、语言程序、操作程序、数据库管理系统。

2、应用程序:用户利用计算机来解决某些问题而设计。

三、计算机的性能指标。

1、吞吐量:表征一台计算机在某一时间间隔内能够处理的信息量,用bps度量。

2、响应时间:表征从输入有效到系统产生响应之间的时间度量,用时间单位来度量。

3、利用率:在给定的时间间隔内,系统被实际使用的时间所在的比率,用百分比表示。

4、处理机字长:常称机器字长,指处理机运算中一次能够完成二进制运算的位数,如32位机、64位机。

5、总线宽度:一般指CPU从运算器与存储器之间进行互连的内部总线一次操作可传输的二进制位数。

6、存储器容量:存储器中所有存储单元(通常是字节)的总数目,通常用KB、MB、GB、TB来表示。

7、存储器带宽:单位时间内从存储器读出的二进制数信息量,一般用B/s(字节/秒)表示。

8、主频/时钟周期:CPU的工作节拍受主时钟控制,按照规定在某个时间段做什么(从什么时候开始、多长时间完成),主时钟不断产生固定频率的时钟信号。

计算机组成原理知识点

计算机组成原理知识点

计算机组成原理知识点1. 冯·诺依曼体系结构:计算机由运算器、控制器、存储器、输入设备和输出设备五大部分组成。

2. 运算器:计算机的核心部分,负责执行各种算术运算和逻辑运算。

3. 控制器:负责控制指令的执行次序和操作,包括指令的获取、解码和执行。

4. 存储器:用于存储计算机程序和数据,包括主存储器(RAM)和辅助存储器(硬盘、固态硬盘等)。

5. 输入设备:用于将外部数据或指令输入到计算机,包括键盘、鼠标、扫描仪等。

6. 输出设备:用于将计算机处理后的结果输出到外部,包括显示屏、打印机、音响等。

7. 指令集:计算机能够执行的全部指令的集合。

8. 指令的执行过程:指令的获取、解码、操作和存储四个步骤。

9. 计算机的时钟:用于统一各个部件的工作节奏。

10. 运算器的设计:包括算术逻辑单元(ALU)和寄存器的设计。

11. 控制器的设计:包括指令寄存器、程序计数器和指令译码器的设计。

12. 存储器的分类:根据访问方式可以分为随机存储器(RAM)和只读存储器(ROM)。

13. 存储器的层级结构:由高速缓存、主存储器和辅助存储器组成,速度逐级递减,容量逐级递增。

14. 输入输出控制方式:包括程序控制方式、中断方式和直接存储器访问方式。

15. 总线的作用:用于数据和控制信息在计算机各个部件之间传输。

16. 总线的分类:根据传输数据的方式可以分为数据总线、地址总线和控制总线。

17. 中央处理器(CPU)的功能:包括指令的获取、解析、运算和存储。

18. 中央处理器的核心部分:由运算器和控制器组成。

19. 中央处理器的指令周期:包括取指周期、执行周期和存储周期。

20. 中央处理器的性能指标:包括时钟频率、主频和执行速度。

21. 程序和指令:程序是指一系列有序的指令集合,指令是计算机能够识别和执行的最小指令单元。

22. 计算机的存储方式:包括字节顺序、地址分配和寻址方式。

23. 输入输出设备的原理:包括数据传输、数据缓冲和数据控制。

24王道计算机组成原理pdf

24王道计算机组成原理pdf

24王道计算机组成原理pdf 24王道计算机组成原理pdf,这是一本经典的计算机教材,涵盖了计算机组成原理的重要知识点。

本文将从硬件和软件两个方面介绍计算机组成原理的基本概念和相关内容。

1、计算机组成原理的概述 计算机组成原理是研究计算机硬件系统和软件系统如何结合实现计算机功能的一门学科。

它包括计算机硬件的组成结构以及与之相关的软件系统的组成原理。

2、计算机硬件系统的组成结构 计算机硬件系统由中央处理器(CPU)、主存储器、输入输出设备(I/O)和总线等组成。

其中,CPU是计算机的核心,负责执行程序和进行数据处理。

主存储器用于存储程序和数据。

输入输出设备用于与外部设备进行信息交换。

总线是这些硬件组件之间传输数据和信号的通道。

3、计算机硬件系统的功能模块 计算机硬件系统包括运算器、控制器、存储器和输入输出设备等功能模块。

运算器负责进行算术和逻辑运算,控制器负责控制计算机的运行,存储器用于存储数据和指令,输入输出设备用于与外部设备进行数据传输。

4、计算机软件系统的组成原理 计算机软件系统由系统软件和应用软件两部分组成。

系统软件是指计算机操作系统和系统工具软件,它们管理和控制计算机的硬件资源,提供基础的运行环境。

应用软件是指在计算机上运行的各种具体应用程序,如办公软件、娱乐软件等。

5、计算机指令的执行过程 计算机指令的执行过程包括取指令、译码、执行和访存等阶段。

取指令阶段是从主存储器中读取指令,并将其送入控制器。

译码阶段是将指令中的操作码转换为控制信号,控制器根据控制信号控制硬件模块的工作。

执行阶段是根据指令进行计算、逻辑运算等操作。

访存阶段是从主存储器中读取数据或向主存储器中写入数据。

6、计算机的层次结构 计算机的层次结构分为硬件层次和软件层次。

硬件层次包括门电路、组合逻辑电路、顺序逻辑电路、微程序控制器和指令系统等。

软件层次包括机器语言、汇编语言、高级语言、操作系统和系统工具等。

7、计算机性能的评价指标 计算机性能的评价指标包括执行时间、吞吐量和响应时间等。

计算机组成原理知识点汇总

计算机组成原理知识点汇总

计算机组成原理知识点汇总x《计算机组成原理知识点汇总》一、算术逻辑单元1、算术逻辑单元(ALU)的功能算术逻辑单元(ALU)是一个对存储在寄存器中的数据进行算术和逻辑操作的硬件单元,它执行CPU中算术逻辑操作的所有活动。

主要有:加减乘除运算以及位操作(AND,OR,NOT)等。

2、算术逻辑单元的组成算术逻辑单元(ALU)由控制单元(CU)、累加器(Accumulator)、比较器(comparator)、移位器(Shift)、全加器(Full-Adder)、多位加法器(Multiple Adders)、多位乘法器(Multiple Multipliers)、掩码器(Mask)、屏蔽器(Shifter)等组成。

3、算术逻辑单元的运算过程(1)算术运算:它包括加减乘除运算,算术运算主要是把操作数从输入总线传到累加器中,进行算术运算以后,将结果存放在累加器中,然后传输到输出总线上。

(2)位操作:它包括AND,OR,NOT,异或等,位操作是把操作数从输入总线传到屏蔽器中,通过屏蔽器进行位操作,将结果存放在累加器中,同样传输到输出总线上。

(3)比较:算术逻辑单元还可以进行比较运算,以及移位,比较运算是把两个操作数从输入总线传到比较器中,比较两个操作数的大小,将结果存放在标志位中,寄存器中存放比较结果。

二、指令周期1、指令周期的概念指令周期是指中央处理器(CPU)执行指令所需要完成的时间,也就是说,指令从被CPU读取到完成执行的时间段称为指令周期。

它也可以简单的理解为一条指令完成执行的时间。

2、指令周期的分类指令周期可以分为主周期和子周期两种,主周期是指一条指令完成执行所需的最少时间,而子周期是指每一步执行完成的时间。

3、指令周期的作用指令周期是指系统的处理速度,它是用来评价计算机的运行速度的重要指标。

在进行计算机系统设计时,可以根据指令周期调整处理器的结构,以提高计算机的处理速度。

计算机组成原理(考研期末)知识点总结

计算机组成原理(考研期末)知识点总结

计算机组成原理(考研期末)知识点总结(一)存储系统1.存储器的基本概念●分类●作用(层次):CACHE 主存辅存●存储介质:磁半导体光●存取方式●随机存取:RAM ROM●串行访问●顺序存取:磁带●直接存取:磁盘●信息可保存性--易失性破坏性读出非●性能指标●存储容量字●单位成本每位成本●存储速度(数据传输率主存带宽)●层次化结构●Cache-主存层次:硬件实现,解决速度不匹配问题●主存-辅存层次:硬件+操作系统实现,解决容量问题,逐渐形成虚拟存储系统2.半导体存储器●存储器芯片的基本结构●译码驱动电路(译码器:扩充容量)●存储矩阵●读写电路●地址线,数据线,片选线,读写控制线●半导体存储器RAM(易失性存储器)●SRAM:触发器存储信息,速度快成本高集成度低,用于高速缓存●DRAM:电容存储信息,需要刷新,速度慢成本低,集成度高,用于主存SDRAM●DRAM的刷新:集中刷新,分散刷新,●异步刷新●不需要CPU控制●行为单位,仅需要行地址●存储器中所有芯片同时刷新●RAM的读写周期●ROM(非易失性存储器)●特点:结构简单,位密度比RAM高,非易失性,可靠性高●类型:MROM,PROM,EPPROM,FLASH MEMORY,SSD3.存储器与CPU的协同工作(提高存储系统的工作速度)●主存与CPU的连接●字扩展●位扩展●线选法●译码片选法●译码器的使用●分析地址空间●字位同时扩展●选择存储器芯片●与CPU进行连接●双口RAM和多模块存储器●多模块存储器●单体多字●多体并行●低位交叉编址●高位交叉编址●双端口RAM●高速缓冲存储器●CACHE局部性原理和性能分析●局部性原理●空间局部性●时间局部性●性能分析●命中率和失效率●CACHE----主存体系的平均访问时间●CACHE工作原理●地址映射方式●全相联●直接相联●组相联●替换算法●RAND随机●FIFO先入先出●LRU最近最少使用●LFU最不经常使用●写策略●命中●全写法●写回法●不命中●写分配法●非写分配法●虚拟存储器(主存和辅存共同构成)(增加存储系统的容量)●基本概念:虚地址(逻辑地址)映射到实地址(物理地址)●解决问题:进程并发问题和内存不够用问题●类型●页式●段式●段页式●虚实地址转换(提高速度)●快表TLB●慢表Page(二)指令系统1.指令格式●操作码和地址码组成一条指令●操作码●定长操作码和扩展操作码●操作码类型2.指令寻址方式●指令寻址(通过PC)●顺序寻址●跳跃寻址●数据寻址●隐含寻址●立即寻址:给寄存器赋初值●直接寻址●间接寻址:扩大寻址范围,便于编制程序●寄存器寻址:指令执行速度更快●寄存器间接寻址●偏移寻址(各寄存器内容+形式地址):基址寻址,变址寻址(处理数组,编制循环程序),相对寻址●堆栈寻址3.CISC和RISC●CISC复杂指令系统计算机(用微程序控制器)●更多更复杂,一般为微程序控制,用于计算机系统●RISC精简指令系统计算机(用硬布线控制器)●指令数目少,字长固定,寻址方式少,寄存器数量多,一般为组合逻辑控制,用于手机(三)中央处理器1.CPU的功能和基本结构●CPU的功能:指令控制,操作控制,时间控制,数据加工,中断处理●运算器●功能:对数据进行加工●基本结构:●算术逻辑单元ALU●暂存寄存器●通用寄存器组●累加寄存器ACC●程序状态字寄存器PSW●移位器,计数器●控制器●功能:取指令,分析指令,执行指令●控制器的基本结构●程序计数器PC●指令寄存器IR●指令译码器,时序系统,微操作信号发生器●存储器地址寄存器MAR●存储器数据寄存器MDR●数据通路的基本结构●专用通路●内部总线2.指令执行过程●指令周期●构成:机器周期、CPU周期——CPU时钟周期、节拍●类型:取指周期,间址周期,执行周期,中短周期●标志触发器FE,IND,EX,INT:区别工作周期●数据流●取指周期:根据PC取出指令代码存放在IR●间址周期:根据IR中指令地址码取出操作数的有效地址●执行周期:根据指令字的操作码和操作数进行相应操作●中断周期:保存断点,送中断向量,处理中断请求●执行方案●单指令周期:串行,指令相同执行时间●多指令周期:串行,指令不同执行时间●流水线方案:隔一段时间启动一条指令,多条指令处于不同阶段,同事并行处理3.数据通路的功能和基本结构(连接路径)●CPU内部总线●单总线●多总线●专用数据通路:多路选择器和三态门●了解各阶段微操作序列和控制信号4.控制器的功能和工作原理●控制器的结构和功能●计算机硬件系统连接关系●控制器的功能:取指令,分析指令,执行指令●控制器的输入和输出●硬布线控制器●硬布线控制单元图:组合逻辑电路+触发器●设计步骤(了解)●分析每个阶段的微操作序列●选择CPU的控制方式●安排微操作序列●电路设计●微程序控制器●基本结构●微地址形成部件●微地址寄存器CMAR●控制存储器CM●微指令寄存器CMDR●微指令的格式●水平型:并行操作●字段直接编码方式●直接编码方式●字段间接编码方式●垂直型:类似机器指令●微指令的地址形成方式●下地址字段指出:断定方式●根据机器指令的操作码形成●基本概念●微命令和微操作●微指令和微周期●主存储器和控制存储器●程序和微程序●寄存器:MAR和CMAR,IR和CMDR●硬布线和微程序的比较(微操作控制信号的实现形式)5.指令流水线●指令流水线的概念●指令执行过程划分为不同阶段,占用不同的资源,就能使多条指令同时执行●表示方法●指令流程图:分析影响流水线的因素●时空图:分析性能●性能指标●吞吐率TP●加速比S●效率E●影响流水线的因素●结构相关(资源冲突)●数据相关(数据冲突)●控制相关(控制冲突)●流水线的分类●按使用级别:部件功能级,处理机级,处理机间●按完成功能:单功能,多功能●按连接方式:动态,静态●按有无反馈信号:线性,非线性●多发技术●超标量流水线技术●超流水线技术●超长指令字技术(四)总线1.总线概念和分类●定义:一组能为多个部件分时共享的公共信息传送线路●分类●按数据传输格式●串行,并行●按功能●片内总线●系统总线●数据总线,地址总线,控制总线●通信总线●按时序控制方式●同步,异步●总线结构●单总线结构——系统总线●双总线结构(通道)●主存总线●IO总线●三总线结构●主存总线●IO总线●DMA总线2.总线的性能指标●总线传输周期(总线周期)●总线带宽●总线宽度(位宽)●总线复用:一种信号线传输不同信息3.总线仲裁●集中仲裁方式●链式查询方式●计数器定时查询方式●独立请求方式●分布仲裁方式4.总线操作和定时●总线传输的四个阶段●申请分配阶段●传输请求●总线仲裁●寻址阶段●传输阶段●结束阶段●定时●同步定时方式(同步通信)●异步定时方式(异步通信)●不互锁●半互锁●全互锁●半同步通信●分离式通信5.总线标准(五)IO系统1.IO系统基本概念●演变过程●早期:分散连接,CUP与IO串行,程序查询方式●接口模块和DMA阶段:总线连接,cpu与io并行,中断方式及DMA方式●具有IO通信结构的阶段●具有IO处理机的阶段●IO系统的基本组成●IO软件——IO指令和通道指令●IO硬件——外设,设备控制器和接口,IO总线等●IO方式简介●程序查询方式:IO与CPU串行,CPU有“踏步等待”现象(由程序控制)●程序中断方式:IO准备数据时CPU继续工作,在指令执行结束时响应中断(由程序控制)●DMA方式:主存与IO交换信息时由DMA控制器控制,在存取周期结束时响应DMA请求(由硬件控制)●通道方式:通过IO指令启动通道,通道程序放在主存中(由硬件控制)2.外部设备●输入设备——键盘,鼠标●输出设备●显示器●分类●阴极射线管(CRT)●液晶(LCD)●发光二极管(LED)●参数●屏幕大小,分辨率,灰度级,刷新频率●显示存储器(VRAM)●容量=分辨率*灰度级位数●带宽=容量*帧频●打印机●外存储器●磁盘存储器●组成●存储区域:磁头,柱面,扇区●硬盘存储器:磁盘驱动器,磁盘控制器,盘片●工作过程:寻址,读盘,写盘对应的控制字,串行读写●性能指标●容量●记录密度●平均存取时间●数据传输率●磁盘阵列RAID——利用磁盘廉价的特点提高存储性能,可靠性和安全性●光盘存储器●固态硬盘SSD——采用FLASH Memory记录数据3.IO接口●主要功能●设备选址功能:地址译码和设备选择●传送命令●传送数据:实现数据缓冲和格式转换●反应IO设备的工作状态●基本结构●设备选择电路,命令寄存器和命令译码器,数据缓冲寄存器DBR,设备状态标记,控制逻辑电路●内部接口和外部接口●编址●统一编址——与存储器共用地址,用访存命令访问IO设备●独立编址:单独使用一套地址,有专门的IO指令●分类●数据传送方式:并行接口,串行接口●主机访问IO设备的控制方式●程序查询接口●中断接口●DMA接口●功能选择的灵活性●可编程接口●不可编程接口4.IO方式●程序查询方式:CPU与IO串行工作,鼠标,键盘●程序中断方式●中断系统●中断的基本概念●工作流程●中断请求●分类●中断请求标记触发器INTR●中断响应●中断响应的条件●中断判优●软件:查询程序●硬件:排队器●优先级的设置●中断处理●中断隐指令●关中断●保存断点PC●引出中断服务程序●中断服务程序●单重中断与多重中断●中断服务程序的具体步骤●中断屏蔽技术●屏蔽字●程序执行轨迹●程序中断方式●工作流程●CPU占用情况●中断响应(隐指令)●中断服务程序●DMA方式●DMA控制器●组成●主存地址计数器:存放要交换数据的主存地址●传送长度计数器:记录传送数据的长度●数据缓冲寄存器:暂存每次传送的数据●DMA请求触发器:设备准备好数据后将其置位●控制/状态逻辑:由控制和时序电路及状态标志组成●中断机构:数据传送完毕后触发中断机构,提出中断请求●主要功能●传送前:接受外设的DMA请求,向CPU发出总线请求,接管总线控制权●传送时:管理总线,控制数据传送,确定主存单元地址及长度,能自动修改对应参数●传送后: 向CPU报告DMA操作的结束●传送过程●预处理:CPU完成寄存器初值设置等准备工作●数据传送:CPU继续执行主程序,DMA控制器完成数据传送●后处理:CPU执行中断服务程序做DMA结束处理。

计算机组成原理知识点总结

计算机组成原理知识点总结

计算机组成原理知识点总结计算机组成原理是计算机科学与技术的基础课程之一,涉及到计算机系统的硬件和软件组成,以及它们之间的交互关系。

以下是一些计算机组成原理的重要知识点总结:1. 计算机的分类:计算机可以根据规模、用途和结构等方面进行分类。

常见的分类有超级计算机、服务器、工作站、个人电脑、嵌入式系统等。

2. 计算机的基本组成:计算机由硬件和软件两部分组成。

硬件包括中央处理器(CPU)、内存、输入输出设备和存储设备等。

软件包括系统软件和应用软件。

3. 冯·诺依曼体系结构:冯·诺依曼体系结构是现代计算机体系结构的基础,它包含了存储器、算术逻辑单元(ALU)、控制单元和输入输出单元。

4. 存储器层次结构:计算机的存储器层次结构从高速缓存到主存再到辅助存储器,层层递进,速度和容量逐渐增大,成本逐渐减小。

5. 数据表示和运算:计算机使用二进制表示数据,并且可以进行不同进制间的转换。

在计算过程中,计算机使用算术逻辑运算对数据进行操作。

6. 指令集体系结构:指令集体系结构是计算机硬件和软件的接口,定义了计算机的指令集和指令执行方式。

常见的指令集体系结构有精简指令集(RISC)和复杂指令集(CISC)。

7. CPU的工作原理:CPU执行计算机指令的过程包括取指令、译码指令、执行指令和写回结果等步骤。

这些步骤是由控制单元和算术逻辑单元(ALU)完成的。

8. 输入输出系统:计算机通过输入输出设备与外部环境进行交互。

输入输出系统包括输入输出控制器、输入输出接口和输入输出设备等。

9. 总线:计算机内部各个硬件部件之间通过总线进行通信和数据传输。

总线包括数据总线、地址总线和控制总线。

10. 中断和异常:中断是计算机在执行过程中响应外部事件的一种机制,可以中断当前的执行流程。

异常是由于程序错误或硬件错误而引起的计算机响应机制。

以上是计算机组成原理的一些重要知识点总结,它们构成了计算机系统的基础,对于理解计算机的工作原理和设计原则非常重要。

计算机组成原理知识点总结

计算机组成原理知识点总结

计算机组成原理知识点总结1.计算机系统结构:计算机系统由硬件和软件两个部分组成。

硬件包括中央处理器(CPU)、内存、存储、输入输出设备等;软件包括系统软件和应用软件。

计算机的基本组成包括控制器、运算器、存储器和输入输出设备。

2.布尔代数和逻辑运算:布尔代数是一种逻辑运算的数学体系,计算机的工作原理是基于逻辑运算的。

布尔代数的基本运算有与、或、非、与非等。

逻辑电路是基于这些布尔运算的组合与设计电路,并且逻辑门是构成逻辑电路的基本元件,包括与门、或门和非门等。

3. 数据表示和编码方式:计算机内部使用二进制表示和存储数据。

十进制数可以转换为二进制数,通过位于和非显示十进制数。

计算机采用不同的编码方式来表示字符和数据,例如ASCII码、Unicode等。

4.计算机中的算术运算:计算机进行算术运算包括加法、减法、乘法和除法等。

算术运算是通过逻辑运算和位操作实现的,例如加法器、乘法器和除法器。

5.存储器层次结构:存储器是计算机中用于存储和访问数据的设备。

存储器层次结构包括寄存器、高速缓存、主存储器和辅助存储器等。

存储器的访问速度和容量呈反比,存储器层次结构的设计目标是在速度和容量之间找到一个平衡点。

6.输入输出设备:计算机通过输入输出设备与外部世界交互,包括键盘、鼠标、显示器、打印机等。

输入输出设备通过中断机制和设备控制器实现与CPU的数据交换。

7.中央处理器:中央处理器是计算机的核心,执行指令并控制计算机的运行和运算。

中央处理器由控制器和运算器组成,控制器负责解释和执行指令,运算器负责算术和逻辑运算。

8.指令的执行过程:计算机按照程序顺序依次执行指令,指令的执行过程包括取指令、解码、执行和访存。

指令集架构是计算机硬件和软件交互的接口。

9.总线和IO结构:总线是计算机内部各个部件之间传输数据和信号的通道,包括地址总线、数据总线和控制总线。

IO结构包括存储器映射IO和端口映射IO两种方式。

10.中断和异常处理:计算机中断是指暂停当前程序的执行,转而执行其他程序或处理异常情况。

计算机组成原理讲义

计算机组成原理讲义

计算机组成原理讲义计算机组成原理是一门研究计算机硬件和软件协同工作的学科。

它研究计算机系统的组成、结构、工作原理和设计方法,涉及到计算机的各个层次、各个组成部分和各种操作。

计算机组成原理作为计算机科学和计算机工程的基础课程,对于理解计算机的工作原理和提高计算机系统设计和性能优化具有重要意义。

首先,计算机组成原理涵盖了计算机的硬件组成。

计算机的硬件部分主要包括中央处理器(CPU)、存储器、输入输出设备和总线等。

中央处理器是计算机的核心部件,又被称为计算机的大脑。

它包括算术逻辑单元(ALU)和控制单元(CU),负责执行指令、算术运算和逻辑运算等。

存储器用于存储数据和指令,分为主存储器(RAM)和辅助存储器(硬盘、固态硬盘等)。

输入输出设备用于与计算机交互,包括键盘、鼠标、显示器、打印机等。

总线用于连接计算机的各个组成部分,包括数据总线、地址总线和控制总线等。

了解计算机硬件组成,对于设计和优化计算机系统具有重要意义。

其次,计算机组成原理涉及计算机的工作原理。

计算机的工作原理主要包括数据的表示和存储、指令的执行和流水线技术等。

数据的表示和存储是计算机进行数据处理的基础。

计算机使用二进制表示数据,将数据存储在内存中。

指令的执行是计算机进行计算和逻辑操作的基本单元。

计算机通过解码和执行指令,对数据进行处理。

流水线技术是提高计算机执行效率的一种重要方法。

通过将指令执行分解成多个阶段,可以提高指令的吞吐量。

计算机组成原理对于理解计算机工作原理和提高计算机系统性能具有重要意义。

最后,计算机组成原理涉及计算机的设计方法。

计算机的设计方法包括指令系统的设计、组合逻辑电路的设计和微程序设计等。

指令系统的设计是计算机体系结构的基础,决定了计算机的功能和性能。

组合逻辑电路设计是实现计算机各个功能模块的基础,包括加法器、乘法器、寄存器和控制电路等。

微程序设计是实现指令的执行和控制的基础,将指令分解成微指令并存储在控制存储器中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组成原理的基本概念及知识点
1.软件通常分为系统软件和应用软件两大类。

2.计算机硬件由运算器、控制器存储器、输入设备和输出设备五大部件组成。

3.8086CPU芯片的结构特点是将运算部件与总线接口部件分开,目的是减少总线的空闲时间,提高指令执行速度。

3.根据目前常用的存储介质可以将存储器分为磁表面存储器、半导体存储器和光存储器三种。

4.典型的接口通常具有如下六种功能:控制、缓冲器、状态、转换、整理、程序中断。

5.计算机经历了从器件角度划分的四代发展历程,但从系统结构来看,至今为止绝大多数计算机仍是冯?诺依曼式计算机。

6. 中断方式指:CPU在接到随机产生的中断请求信号后,暂停原程序,转去执行相应的中断处理程序,以处理该随机事件,处理完毕后返回并继续执行原程序;主要应用于处理复杂随机事件、控制中低速I/O。

如打印机控制,故障处理。

7. 总线的分类方法主要有以下几种
A、按传送格式分为:串行总线、并行总线;
B、按时序控制方式分为:同步总线(含同步扩展总线),异步总线;
C、按功能分为:系统总线,CPU内部总线、各种局部总线。

8. 存储系统的三级组成
A、主存:存放需要CPU运行的程序和数据,速度较快,容量较大;
B、Cache:存放当前访问频繁的内容,即主存某些页的内容复制。

速度最快,容量较小;
C、外存:存放需联机保存但暂不执行的程序和数据。

容量很大而速度较慢。

9. 中断接口的基本组成及作用
A、地址译码。

选取接口中有关寄存器,也就是选择了I/O设备;
B、命令字/状态字寄存器。

供CPU输出控制命令,调回接口与设备的状态信息;
C、数据缓存。

提供数据缓冲,实现速度匹配;
D、控制逻辑。

如中断控制逻辑、与设备特性相关的控制逻辑等。

10. 将有关数据加以分类、统计、分析,以取得有利用价值的信息,我们称其为数据处理。

11. 目前的计算机,从原理上讲指令和数据都以二进制形式存放。

12. 计算机问世至今,不管怎样更新,依然保有“存储程序”的概念。

最早提出这种概念的是冯?诺依曼。

13. 完整的计算机系统应包括运算器、存储器、控制器。

14. 根据传送信息的种类不同,系统总线分为:数据总线,地址总线,控制总线。

15. 根据逻辑部件的连接不同,单机系统中采用的总线结构基本有三种类型,它们是片内总线,系统总线,通信总线。

16. 计算机系统采用“面向总线”的形式的优点是:
A、简化了硬件的设计
B、简化了系统结构
C、系统扩充性好
D、系统更新性能好
17. 计算机硬件系统的基本组成
运算器:完成算术、逻辑运算;存放运算的中间结果。

存储器:存放数据和程序。

控制器:控制、指挥程序和数据的输入、运行;处理运算结果。

输入设备:将信息输入到计算机中,供计算机处理。

输出设备:将计算机中的信息转换为人们能够接受的信息形式。

18. 计算机软件系统的组成:
系统软件:主要用来管理整个计算机系统,监视服务,使系统资源得到合理调度,确保高效运行。

应用软件:根据用户的各种需要编制的各种程序。

19. 存储器是计算机系统中的记忆设备,它主要用来存放数据。

20. 存储周期是指存储器进行连续读和写操作所允许的最短时间间隔。

21. 终端显示器主要有三大类,分别是阴极射线管(CRT),液晶显示器(LCD),等离子显示器(PD)。

22. 目前使用的打印机,从输出方式可分为激光打印机和喷墨打印机,从印字原理来分,可分为击打式打印机和非击打式打印机两类。

23. 人们通常把显示器称为软拷贝设备,而把打印机称为硬拷贝设备。

24. 接口的功能有选址功能、传送命令功能、传送数据功能、反映I/O设备工作状态的功能
25. 为了实现CPU对主存储器的读写访问,他们之间的连线按功能划分应当包括地址总线、数据总线、读写控制线。

26. 从计算机系统结构的发展和演变看,早期的计算机是以运算器为中心的系统结构,而近代的计算机是以主存储器为中心的系统结构。

27. 当前设计高性能计算机的重要技术途径是采用并行处理技术。

28. 最适合多个任务并行执行的体系结构是分布存储多计算机结构。

29. 为使虚存系统有效的发挥其预期的作用,所运行的程序应具有的特性是该程序应具有较好的局部性。

30. 设置中断排队判优逻辑的目的是使同时提出的请求中的优先级别最高者,得到及时响应。

31. 在CPU的状态寄存器中,常设置以下状态位:零标志位(Z),负标志位(N),溢出标志位(V)和进位或借位标志位(C)。

32. 在同步控制方式中,有固定的周期、节拍划分,有严格的时钟同步。

33.在微程序控制中,一个节拍中所需要的一组微命令,被编成一条微指令。

34.有静态RAM与动态RAM可供选择,在构成大容量主存时,一般就选择动态RAM。

35.通道程序在内存中的首地址由通道地址字给出。

36.在不改变中断响应次序的条件下,通过改写中断屏蔽字可以改变中断处理次序。

37.系统总线是用来连接系统内部各大部件,如CPU、M、I/O的总线。

38.如果说变址寻址方式主要是面向用户的,那么基址寻址一般是面向系统的。

39.并行接口与I/O设备之间同时传送的位数,大多是8位。

40.在现有的外存储器中,启示密度最高的是光盘存储器。

41.运算器的功能一般包含:算术运算、逻辑运算、移位等。

42.在寄存器寻址方式中,指定寄存器中存放着操作数。

43.机器周期、节拍电位和工作脉冲,构成三级时序系统。

44.在虚拟存储器中,常将存储空间按程序模块大小划分为若干段(或:常将存储空间划分为若干大小相同的页)。

45.对I/O数据传送的控制方式,可分为:程序直接控制方式,程序中断方式,DMA方式,通道控制方式。

46.在计算机系统中,除CPU和主存之外的其它部件和设备,常被称为外围设备。

47.单总线结构系统是指:各大功能部件之间用一组总线连接。

48.写入硬盘时,若一个文件的长度超过一个磁道的容量,则继续写入同一柱面的相邻面的磁道中。

49.存储总线是连接CPU和主存储器之间的专用总线,速度高。

50. I/O总线是连接主机(CPU、M)与I/O设备之间的总线,可扩展性好。

51. 重叠方式是指:当一条指令的操作尚未完成之前,就开始预取与执行下一条指令。

52. 静态存储器以双稳态触发器为存储信息的物理单元,依靠内部交叉反馈保存信息。

速度较快,不需动态刷新,但集成度稍低,功耗大。

动态存储器依靠电容上暂存电荷来存储信息,电容上有电荷为1,无电荷为0。

集成度高,功耗小,速度悄慢,需定时刷新。

53.以DMA方式实现传送的几个阶段:
A、DMA传送前的预置阶段(DMA初始化);
B、数据传送阶段(DMA传送);
C、传送后的结束处理。

相关文档
最新文档