计算机组成原理知识点总结——详细版

合集下载

计算机组成原理知识点总结

计算机组成原理知识点总结

计算机组成原理知识点总结第一章一、数字计算机的五大部件(硬件)及各自主要功能(P6)计算机硬件组成:存储器、运算器、控制器、输入设备、输出设备。

1、存储器(主存)主要功能:保存原始数据和解题步骤。

包括:内存储器(CPU 直接访问),外存储器。

2、运算器主要功能:进行算术、逻辑运算。

3、控制器主要功能:从内存中取出解题步骤(程序)分析,执行操作。

包括:计算程序和指令(指令由操作码和地址码组成)。

4、输入设备主要功能:把人们所熟悉的某种信息形式变换为机器内部所能接收和识别的二进制信息形式。

5、输出设备主要功能:把计算机处理的结果变换为人或其他机器所能接收和识别的信息形式。

注:1、冯诺依曼结构:存储程序并按地址顺序执行。

2、中央处理器(CPU):运算器和处理器的结合。

3、指令流:取指周期中从内存读出的信息流,流向控制器。

数据流:在执行器周期中从内存读出的信息流,由内存流向运算器。

二、数字计算机的软件及各自主要功能(P11)1、系统软件:包括服务性程序、语言程序、操作程序、数据库管理系统。

2、应用程序:用户利用计算机来解决某些问题而设计。

三、计算机的性能指标。

1、吞吐量:表征一台计算机在某一时间间隔内能够处理的信息量,用bps度量。

2、响应时间:表征从输入有效到系统产生响应之间的时间度量,用时间单位来度量。

3、利用率:在给定的时间间隔内,系统被实际使用的时间所在的比率,用百分比表示。

4、处理机字长:常称机器字长,指处理机运算中一次能够完成二进制运算的位数,如32位机、64位机。

5、总线宽度:一般指CPU从运算器与存储器之间进行互连的内部总线一次操作可传输的二进制位数。

6、存储器容量:存储器中所有存储单元(通常是字节)的总数目,通常用KB、MB、GB、TB来表示。

7、存储器带宽:单位时间内从存储器读出的二进制数信息量,一般用B/s(字节/秒)表示。

8、主频/时钟周期:CPU的工作节拍受主时钟控制,按照规定在某个时间段做什么(从什么时候开始、多长时间完成),主时钟不断产生固定频率的时钟信号。

计算机组成原理知识点

计算机组成原理知识点

计算机组成原理知识点1. 冯·诺依曼体系结构:计算机由运算器、控制器、存储器、输入设备和输出设备五大部分组成。

2. 运算器:计算机的核心部分,负责执行各种算术运算和逻辑运算。

3. 控制器:负责控制指令的执行次序和操作,包括指令的获取、解码和执行。

4. 存储器:用于存储计算机程序和数据,包括主存储器(RAM)和辅助存储器(硬盘、固态硬盘等)。

5. 输入设备:用于将外部数据或指令输入到计算机,包括键盘、鼠标、扫描仪等。

6. 输出设备:用于将计算机处理后的结果输出到外部,包括显示屏、打印机、音响等。

7. 指令集:计算机能够执行的全部指令的集合。

8. 指令的执行过程:指令的获取、解码、操作和存储四个步骤。

9. 计算机的时钟:用于统一各个部件的工作节奏。

10. 运算器的设计:包括算术逻辑单元(ALU)和寄存器的设计。

11. 控制器的设计:包括指令寄存器、程序计数器和指令译码器的设计。

12. 存储器的分类:根据访问方式可以分为随机存储器(RAM)和只读存储器(ROM)。

13. 存储器的层级结构:由高速缓存、主存储器和辅助存储器组成,速度逐级递减,容量逐级递增。

14. 输入输出控制方式:包括程序控制方式、中断方式和直接存储器访问方式。

15. 总线的作用:用于数据和控制信息在计算机各个部件之间传输。

16. 总线的分类:根据传输数据的方式可以分为数据总线、地址总线和控制总线。

17. 中央处理器(CPU)的功能:包括指令的获取、解析、运算和存储。

18. 中央处理器的核心部分:由运算器和控制器组成。

19. 中央处理器的指令周期:包括取指周期、执行周期和存储周期。

20. 中央处理器的性能指标:包括时钟频率、主频和执行速度。

21. 程序和指令:程序是指一系列有序的指令集合,指令是计算机能够识别和执行的最小指令单元。

22. 计算机的存储方式:包括字节顺序、地址分配和寻址方式。

23. 输入输出设备的原理:包括数据传输、数据缓冲和数据控制。

计算机组成原理复习知识总结.

计算机组成原理复习知识总结.

第1章计算机系统概论1.1.1 计算机的软硬件概念硬件:构成计算机系统的设备实体--——物质基础软件:各类程序和文件---硬件功能的完善与扩充1.1.2 计算机系统的层次结构虚拟机:通过配置软件扩充机器功能后所形成的一台计算机编译(translation):将编写的源程序中全部语句一次全部翻译成机器语言程序后,再执行机器语言程序解释(interpretation):将源程序的一条语句翻译成机器语言后,立即执行它,然后再翻译执行下一条语句。

即边解释边执行,不生成目标代码。

1.2 计算机的基本组成1.2.1 冯·诺依曼计算机的特点计算机由运算器、控制器、存储器、输入设备、输出设备五大部件组成。

指令和数据均用二进制代码表示。

指令和数据都存放于存储器中,并可按地址访问。

指令由操作码和地址码组成。

指令在存储器内按顺序存放。

机器以运算器为中心。

(1)运算器组成:算术逻辑部件ALU:完成各种运算功能,核心部件为加法器。

寄存器组:存放数据,三个基本寄存器:累加器(ACC)、乘商寄存器(MQ)、操作数寄存器(X)。

(2)主存储器主存(内存)的组成:存储体、各种逻辑部件及控制电路。

存储体→存储单元→存储元件(存储元)存储字:一个存储单元存储的一串二进制代码。

存储字长:一个存储字所含二进制代码的个数。

主存的工作方式:按地址存取MAR(存储器地址寄存器):位数由存储单元的个数决定。

MDR(存储器数据寄存器):其位数与存储字长相等。

(3)控制器取指分析执行控制器的组成:PC(程序计数器)、IR(指令寄存器)CU(控制单元)(4)I/OI/O子系统包括各种外部设备及相应接口1.3 计算机硬件的主要技术指标1.3.1 机器字长机器字长:CPU一次能处理的数据的位数,通常与寄存器的位数有关。

1.3.2 存储容量包括主存和辅存容量。

主存容量:主存中存放二进制代码的总数(bit)存储容量=存储单元个数*存储字长1.3.3 运算速度常用的衡量单位:1)主频(MHz):CPU的时钟频率,即一秒钟内所含的时钟周期数。

(完整版)计算机组成原理重点整理

(完整版)计算机组成原理重点整理

一.冯·诺依曼计算机的特点1945年,数学家冯诺依曼研究EDVAC机时提出了“存储程序”的概念1.计算机由运算器、存储器、控制器、输入设备和输出设备五大部件组成2.指令和数据以同等地位存放于存储器内,并可按地址寻访。

3.指令和数据均用二进制数表示。

4.指令由操作码和地址码组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置。

5.指令在存储器内按顺序存放。

通常,指令是顺序执行的,在特定条件下,可根据运算结果或根据设定的条件改变执行顺序。

6.机器以运算器为中心,输入输出设备与存储器间的数据传送通过运算器完成。

二.计算机硬件框图1.冯诺依曼计算机是以运算器为中心的2.现代计算机转化为以存储器为中心各部件功能:1.运算器用来完成算术运算和逻辑运算,并将运算的中间结果暂存在运算器内。

2.存储器用来存放数据和程序。

3.控制器用来控制、指挥程序和数据的输入、运行以及处理运算结果4.输入设备用来将人们熟悉的信息形式转换为机器能识别的信息形式(鼠标键盘)。

5.输出设备可将机器运算结果转换为人们熟悉的信息形式(打印机显示屏)。

计算机五大子系统在控制器的统一指挥下,有条不紊地自动工作。

由于运算器和控制器在逻辑关系和电路结构上联系十分紧密,尤其在大规模集成电路制作工艺出现后,两大不见往往集成在同一芯片上,合起来统称为中央处理器(CPU)。

把输入设备与输出设备简称为I/O设备。

现代计算机可认为由三大部分组成:CPU、I/O设备及主存储器。

CPU与主存储器合起来又可称为主机,I/O设备又可称为外部设备。

主存储器是存储器子系统中的一类,用来存放程序和数据,可以直接与CPU交换信息。

另一类称为辅助存储器,简称辅存,又称外村。

算术逻辑单元简称算逻部件,用来完成算术逻辑运算。

控制单元用来解实存储器中的指令,并发出各种操作命令来执行指令。

ALU和CU是CPU的核心部件。

I/O设备也受CU控制,用来完成相应的输入输出操作。

计算机组成原理知识点汇总

计算机组成原理知识点汇总

计算机组成原理知识点汇总x《计算机组成原理知识点汇总》一、算术逻辑单元1、算术逻辑单元(ALU)的功能算术逻辑单元(ALU)是一个对存储在寄存器中的数据进行算术和逻辑操作的硬件单元,它执行CPU中算术逻辑操作的所有活动。

主要有:加减乘除运算以及位操作(AND,OR,NOT)等。

2、算术逻辑单元的组成算术逻辑单元(ALU)由控制单元(CU)、累加器(Accumulator)、比较器(comparator)、移位器(Shift)、全加器(Full-Adder)、多位加法器(Multiple Adders)、多位乘法器(Multiple Multipliers)、掩码器(Mask)、屏蔽器(Shifter)等组成。

3、算术逻辑单元的运算过程(1)算术运算:它包括加减乘除运算,算术运算主要是把操作数从输入总线传到累加器中,进行算术运算以后,将结果存放在累加器中,然后传输到输出总线上。

(2)位操作:它包括AND,OR,NOT,异或等,位操作是把操作数从输入总线传到屏蔽器中,通过屏蔽器进行位操作,将结果存放在累加器中,同样传输到输出总线上。

(3)比较:算术逻辑单元还可以进行比较运算,以及移位,比较运算是把两个操作数从输入总线传到比较器中,比较两个操作数的大小,将结果存放在标志位中,寄存器中存放比较结果。

二、指令周期1、指令周期的概念指令周期是指中央处理器(CPU)执行指令所需要完成的时间,也就是说,指令从被CPU读取到完成执行的时间段称为指令周期。

它也可以简单的理解为一条指令完成执行的时间。

2、指令周期的分类指令周期可以分为主周期和子周期两种,主周期是指一条指令完成执行所需的最少时间,而子周期是指每一步执行完成的时间。

3、指令周期的作用指令周期是指系统的处理速度,它是用来评价计算机的运行速度的重要指标。

在进行计算机系统设计时,可以根据指令周期调整处理器的结构,以提高计算机的处理速度。

知识点 - 计算机组成原理

知识点 - 计算机组成原理

知识点 - 计算机组成原理计算机组成原理重要知识点第一章绪论一、冯.诺依曼思想体系――计算机(硬件)由运算器、控制器、存储器、输入输出设备五部分组成,存储程序,按地址访问、顺序执行二、总线的概念。

按传送信息的不同如何划分;按逻辑结构如何划分三、冯.诺依曼结构(普林斯顿结构)与哈弗结构的存储器设计思想四、计算机系统的概念,软件与硬件的关系、计算机系统的层次结构(实际机器与虚拟机器)五、计算机的主要性能指标的含义(机器字长,数据通路宽度,主存容量,运算速度)六、 CPU和主机两个术语的含义,完整的计算机系统的概念,硬件、软件的功能划分七、总线概念和总线分时共享的特点、三态门与总线电路第二章数据的机器层次表示一、真值和机器数的概念数的真值变成机器码时有四种表示方法:原码表示法,反码表示法,补码表示法,移码表示码。

其中移码主要用于表示浮点数的阶码E,以利于比较两个指数的大小和对阶操作二、一个定点数由符号位和数值域两部分组成。

按小数点位置不同,定点数有纯小数和纯整数两种表示方法。

几种定点机器数的数值表示范围。

三、浮点数浮点数的标准表示法:符号位S、阶码E、尾数M三个域组成。

其中阶码E通常用移码表示(其值等于指数的真值e加上一个固定偏移值)。

规格化浮点数(原码,补码表示的规格化浮点数的区别)五、处理字符信息(符号数据即非数值信息),七、常见的BCD码:8421码、2421码、余3码、格雷码(有权码,无权码,特点)八、检错纠错码:奇偶校验(掌握奇偶校验原理及校验位的形成及检测方法),海明码的纠错原理(理解)第三章指令系统一、指令格式:指令的基本格式,指令的地址码结构(3、2、1、0地址指令的区别),非规整型指令的操作码(扩展操作码)二、编址方式(位,字节,字…)三、操作数寻址方式――立即寻址、直接寻址、间接寻址、寄存器寻址、寄存器间接寻址、相对寻址、基址寻址、变址寻址、页面寻址四、指令寻址方式――顺序对寻址方式、跳跃寻址方式五、指令类型及功能六、不同的计算机的I/O指令差别很大,通常有两种方式:独立编址方式 ,统一编址方式第四章数值的机器运算一、为运算器构造的简单性,运算方法中算术运算通常采用补码加减法,原码乘除法或补码乘除法。

计算机组成原理考研知识点非常全汇编

计算机组成原理考研知识点非常全汇编

计算机组成原理考研知识点-非常全汇编一、计算机系统概述1.计算机的基本组成:计算机硬件系统、计算机软件系统、操作系统。

2.计算机的主要性能指标:运算速度、存储容量、输入输出能力、数据传输速率。

3.计算机的应用和发展趋势:人工智能、大数据、云计算、物联网等。

二、运算方法1.数值数据的表示:二进制数、十进制数、十六进制数、非数值数据的表示:字符、图形、音频、视频等。

2.运算方法:二进制数的运算、十进制数的运算、浮点数的运算、逻辑运算。

三、存储系统1.存储器的分类和特点:半导体存储器、磁表面存储器、光存储器。

2.内存储器的组成和编址方式:单元地址、字地址、字节地址、位地址。

3.外存储器的组成和特点:硬盘、U盘、移动硬盘等。

四、指令系统1.指令的组成和格式:指令操作码、指令地址码。

2.指令的分类和功能:算术运算指令、逻辑运算指令、移位指令等。

3.寻址方式:立即寻址、直接寻址、间接寻址等。

五、中央处理器1.CPU的组成和功能:运算器、控制器、寄存器组。

2.CPU的工作原理:指令的读取和执行、指令流水线技术。

3.CPU的性能指标:吞吐量、响应时间、时钟频率等。

六、输入输出系统1.I/O设备的分类和特点:键盘、鼠标、显示器等。

2.I/O接口的分类和功能:数据缓冲区、控制缓冲区、状态缓冲区等。

3.I/O方式:程序控制I/O、中断I/O、直接内存访问。

七、总线与主板1.总线的分类和功能:数据总线、地址总线、控制总线。

2.总线的基本组成和特点:单总线结构、多总线结构。

3.主板的组成和功能:芯片组、BIOS芯片、总线扩展插槽等。

八、并行计算机的组成和工作原理1.并行计算机的分类和特点:多处理器系统、分布式系统。

2.并行计算机的组成和工作原理:并行处理机、并行存储器等。

3.并行计算机的性能指标:并行度、吞吐量、响应时间等。

(完整版)计算机组成原理知识点总结(唐朔飞版)

(完整版)计算机组成原理知识点总结(唐朔飞版)

1、硬件:输入输出设备,控制器,存储器,运算器。

2、计算机技术指标:机器字长、存储容量、运算速度。

3、多总线结构的原理:双总线结构特点是将速度较低的I/O设备从单总线上分离出来,形成主存总线和I/O总线分开的结构。

三总线1由主存总线用于CPU与主存之间的传输,I/O总线供CPU与各类I/O 设备之间传递信息,DMA总线用于高速IO设备与主存之间直接交换信息,任意时刻只能用一种总线,主存总线与DMA总线不能同时对主存进行存取。

三总线2CPU与Cache之间构成局部总线,而且还直接连到系统总线上,cache可通过系统总线与主存传输信息,还有一条扩展总线可以连接IO设备。

四总线由局部总线,系统总线,告诉总线,扩展总线构成。

4、总线判优分为集中式和分布式两种,集中式分为链式查询、计数器定时查询、独立请求方式(排队器)5、总线通信控制的四种方式:同步通信,异步通信,半同步通信,分离式通信。

6、波特率是每秒传输的位数,比特率是每秒传输的有效数据位数(bps)7、存储器技术指标:存储速度,存储容量和位价。

8、存储器分为主存,闪存,辅存和缓存。

9、分层原因:1缓存-主存层解决CPU与主存速度不匹配问题;2主存-辅存层解决系统存储容量的问题。

10、主存的技术指标:存储容量,存储速度(存取时间和存取周期表示)。

11、存储器带宽的计算方法:如存取周期为500ns,每个存取周期可访问16位,则带宽为32M位/秒。

带宽是衡量数据传输率的重要技术指标。

12、动态RAM的刷新方式:集中刷新(是在规定的一个刷新周期内,对全部存储单元集中一段时间逐行进行刷新,此刻必须停止读写操作‘死时间’)分散刷新(指对每行存储单元的刷新分散到每个存取周期内完成。

不存在死时间,整个系统速度降低)异步刷新(前两种方式的结合,即可缩短死时间,又充分利用最大刷新间隔为2ms的特点)。

13、动态RAM集成度远高于静态RAM;动态RAM行列地址按先后顺序输送,减少了芯片引脚,封装尺寸也减少;动态RAM功耗比静态RAM小;动态RAM的价格比静态RAM便宜;由于使用动态元件,因此速度比静态RAM低;动态RAM需要再生,需配置再生电路,也需要消耗一部分功率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机组成原理2009年12月期末考试复习大纲第一章1.计算机软件的分类。

P11 计算机软件一般分为两大类:一类叫系统程序,一类叫应用程序。

2.源程序转换到目标程序的方法。

P12 源程序是用算法语言编写的程序。

目标程序(目的程序)是用机器语言书写的程序。

源程序转换到目标程序的方法一种是通过编译程序把源程序翻译成目的程序,另一种是通过解释程序解释执行。

3.怎样理解软件和硬件的逻辑等价性。

P14 因为任何操作可以有软件来实现,也可以由硬件来实现;任何指令的执行可以由硬件完成,也可以由软件来完成。

对于某一机器功能采用硬件方案还是软件方案,取决于器件价格,速度,可靠性,存储容量等因素。

因此,软件和硬件之间具有逻辑等价性。

第二章1.定点数和浮点数的表示方法。

P16 定点数通常为纯小数或纯整数。

X=XnXn-1 (X1X0)Xn为符号位,0表示正数,1表示负数。

其余位数代表它的量值。

纯小数表示范围0≤|X|≤1-2-n纯整数表示范围0≤|X|≤2n -1浮点数:一个十进制浮点数N=10E.M。

一个任意进制浮点数N=R E.M 其中M称为浮点数的尾数,是一个纯小数。

E称为浮点数的指数,是一个整数。

比例因子的基数R=2对二进制计数的机器是一个常数。

做题时请注意题目的要求是否是采用IEEE754标准来表示的浮点数。

32位浮点数S(31)E(30-23)M(22-0)64位浮点数S(63)E(62-52)M(51-0)S是浮点数的符号位0正1负。

E是阶码,采用移码方法来表示正负指数。

M为尾数。

P18P182.数据的原码、反码和补码之间的转换。

数据零的三种机器码的表示方法。

P21 一个正整数,当用原码、反码、补码表示时,符号位都固定为0,用二进制表示的数位值都相同,既三种表示方法完全一样。

一个负整数,当用原码、反码、补码表示时,符号位都固定为1,用二进制表示的数位值都不相同,表示方法。

1.原码符号位为1不变,整数的每一位二进制数位求反得到反码;2.反码符号位为1不变,反码数值位最低位加1,得到补码。

例:x= (+122)10=(+1111010)2原码、反码、补码均为01111010Y=(-122)10=(-1111010)2原码11111010、反码10000101、补码10000110+0 原码00000000、反码00000000、补码00000000-0 原码10000000、反码11111111、补码100000003.定点数和浮点数的加、减法运算:公式的运用、溢出的判断。

P63 已知x和y,用变形补码计算x+y,同时指出结果是否溢出。

(1)x=11011 y=00011 (2)x=11011 y=-10101 (3)x=-10110 y=-00001已知x和y,用变形补码计算x-y,同时指出结果是否溢出。

(1)x=11011 y=-11111 (2)x=10111 y=11011 (3)x=11011 y=-10011P63 设阶码3位,尾数6位,按浮点运算方法,完成下列取值的[x+y],[ x-y]运算. (2)x= 2-101*(-0.010110)y=2-100*(0.010110)P29 溢出的判断:第一种方法是采用双符号位法(变形补码)。

任何正数,两个符号位都是“0”,任何负数,两个符号位都是“1”,如果两个数相加后,其结果的符号位出现“01”或“10”两种组合时,表示发生溢出。

最高符号位永远表示结果的正确符号。

第二种方法是采用单符号位法。

P304.运算器可以执行哪些运算?算术运算:加法,减法运算,乘法,除法运算。

逻辑运算:逻辑与,或,非运算等。

5.数据的不同进制表示。

P18一、二进制数转换成十进制数由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。

这种做法称为"按权相加"法。

二、十进制数转换为二进制数十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。

1. 十进制整数转换为二进制整数十进制整数转换为二进制整数采用"除2取余,逆序排列"法。

具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。

2.十进制小数转换为二进制小数十进制小数转换成二进制小数采用"乘2取整,顺序排列"法。

具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。

然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。

三、二进制数转换成八进制数三位二进制数,得一位八进制数。

101010011=(101)5(010)2(011)3=523四、八进制数转换成二进制数一位八进制数,得三位二进制数。

523=(101)5(010)2(011)3=101010011五、二进制数转换成十六进制数四位二进制数,得一位十六进制数。

1101000101100=(1010)A(0010)2(1100)C =A2C 六、十六进制数转换成二进制数一位十六进制数,得四位二进制数。

A2C =(1010)A(0010)2(1100)C =1101000101100十进制整数转二进制整数:除2取余用2辗转相除至结果为1将余数和最后的1从下向上倒序写就是结果例如302302/2 = 151 余0151/2 = 75 余175/2 = 37 余137/2 = 18 余118/2 = 9 余09/2 = 4 余14/2 = 2 余02/2 = 1 余0故二进制为100101110二进制转十进制从最后一位开始算,依次列为第0、1、2...位第n位的数(0或1)乘以2的n次方得到的结果相加就是答案例如:01101011.转十进制:第0位:1乘2的0次方=11乘2的1次方=20乘2的2次方=01乘2的3次方=80乘2的4次方=01乘2的5次方=321乘2的6次方=640乘2的7次方=0然后:1+2+0+8+0+32+64+0=107.二进制01101011=十进制107.第三章1.主存的性能指标有哪些?存储容量,存取时间,存储周期,存储器带宽。

存取时间,存储周期,存储器带宽反映了主存的速度指标。

2.存储器容量的扩充方法及应用。

P731.字长位数扩展2.字存储容量扩展P101 1.设有一个具有20位地址和32位字长的存储器,问:(1)该存储器能存储多少个字节的信息?(2)如果存储器由512K*8位SRAM芯片组成,需要多少片?(3)需要多少位地址做芯片选择?解:(1)220*32/8=222=4M字节(2)(1024K*32)/(512K*8)=2*4=8片(3)1位5.要求用256K*16位SRAM芯片设计1024K*32位的存储器。

SRAM芯片有两个控制端:当CS有效时,该片选中。

当W/R=1时执行读操作,当W/R=0时执行读操作。

解:需要(1024K*32)/(256K*16)=4*2=8片SRAM芯片,需要log2 (1024K /256K)=2位地址做芯片选择7.某机器中,已知配有一个地址空间为0000H-3FFFH的ROM区域。

现在再用一个RAM芯片(8K*8)形成40K*16位的RAM区域,起始地址为6000H。

假设RAM芯片有CS和WE 信号控制端。

CPU的地址总线为A15 -A0,数据总线为D15 -D0,控制信号为R/W(读/写),MREQ(访存),要求:(1)画出主存地址框图。

(2)画出组成连接框图。

解:(1)需要(40K*16)/(8K*8)=5*2=10片SRAM芯片,log2(40K /8K)≈2.2取3位地址做芯片选择(2)3.双端口存储器和多体交叉存储器的工作原理。

P 86双端口存储器采用空间并行技术,具有两组相互独立的控制电路,进行并行的独立操作。

多体交叉存储器采用时间并行技术,具有多个相互独立,容量相同的模块,各模块的读写过程采用流水线方式重叠进行。

4.cache存储器的原理、映射方式、写回方式及相关的计算。

P93 CPU与cache之间的数据交换是以字为单位,而cache与主存之间的数据交换是以块为单位。

一个块由若干字组成,是定长的。

当CPU读取主存中一个字时,便发出此字的内存地址到cache和主存。

此时cache控制逻辑依据地址判断此字当前是否在cache中:若是,此字立即传送给CPU;若非,则用主存读周期把此字从主存读出送到CPU,与此同时,把含有这个字的整个数据块从主存读出送到cache中。

P94 映射方式 1.全相联映射方式 2.直接映射方式 3.组相联映射方式cache的数据块大小称为行,主存的数据块大小称为块。

行与块是等长的。

在全相联映射方式中,将主存中一个块的地址(块号)与块的内容(字)一起存于cache的行中,其中块地址存于cache行的标记部分中。

这种带全部块地址一起保存的方法,可使主存的一个块直接拷贝到cache中的任意一行上。

直接映射方式:一个主存块只能拷贝到cache的一个特定行位置上去。

cache的行号i和主存的块号j有如下函数关系:i=j mod m式中m为cache中的总行数。

在直接映射方式中,cache将s位的块地址分成两部分:r位作为cache的行地址,s-r位作为标记(tag)与块数据一起保存在该行。

组相联映射方式:将cache分成u组,每组v行。

主存块存放到哪个组是固定的,至于存到该组哪一行是灵活的,即有如下函数关系:m=u*v组号q=j mod u块内存地址中s位块号划分成两部分:低序的d位(2d=u)用于表示cache组号,高序的s-d 位作为标记(tag)与块数据一起存于此组的某行中。

P99 写回方式 1.写回法 2.全写法 3.写一次法写回法:当CPU写cache命中时,只修改cache的内容,而不立即写入主存;只有当此行被换出时才写回主存。

全写法:当CPU写cache命中时,cache与主存同时发生写修改,因而较好地维护了cache 与主存的内容的一致性。

写一次法:写命中与写未命中的处理方法与写回法基本相同,只是第一次写命中时要同时写入主存。

P102 9.CPU执行一段程序时,cache完成存取的次数为2420次,主存完成存取的次数为80次,已知cache存储周期为40ns,主存存储周期为240ns,求cache/主存系统的效率和平均访问时间。

相关文档
最新文档