最新人教版(完整版)七年级下册数学课本知识点归纳
人教版七年级数学下册各章节知识点归纳

人教版七年级数学下册各章节知识点归纳第一章:直线与角1. 定义平行线和垂直线的概念,了解直线的性质。
2. 知道角的概念和角的分类,包括锐角、直角、钝角和平角。
3. 掌握角的度量单位:度和弧度。
4. 学习如何用直尺和量角器画角。
第二章:平行线与平面1. 学习如何用直尺和圆规做等分线段、垂线、平行线、垂直平分线和角的平分线。
2. 理解平行线与转角的关系,学会证明平行线与转角的基本性质。
3. 掌握平面的概念,理解平面的性质和表示方法。
4. 学习如何判断平面与平面的位置关系,包括平行、垂直和交叉。
第三章:三角形1. 知道三角形的定义和分类,包括等边三角形、等腰三角形、直角三角形和普通三角形。
2. 掌握三角形内角的和定理和外角的性质。
3. 学习三角形的判定方法,包括SSS、SAS、ASA和AAS。
4. 理解三角形中的全等概念,学会判断和证明两个三角形是否全等。
第四章:四边形1. 知道四边形的定义和分类,包括矩形、正方形、菱形、平行四边形和梯形。
2. 掌握矩形、正方形和菱形的性质,包括边长、对角线、内角和面积的计算方法。
3. 学习平行四边形的性质,包括对角线的关系、内角和、面积和周长的计算方法。
4. 理解梯形的定义和性质,学会计算梯形的面积和周长。
第五章:图形的变化1. 了解图形中的平移、旋转、翻折和对称等基本变化。
2. 学习如何用折纸法进行图形变化。
3. 理解相似图形的概念和性质,学会判断和证明两个图形是否相似。
4. 掌握相似图形的计算方法,包括比例尺和相似比的计算。
第六章:数的运算1. 复习整数的概念和运算法则,包括加法、减法、乘法和除法。
2. 学习分数的概念和运算规则,包括分数的四则运算和混合运算。
3. 掌握百分数的概念和表示方法,包括百分数与分数的转换。
4. 学习用图形表示分数和百分数的大小关系,包括数轴和百分数相应的阶梯图。
第七章:方程与不等式1. 知道方程和不等式的定义和表示方法。
2. 学习一元一次方程和一元一次不等式的解法,包括等式和不等式的性质及运算规则。
七年级数学下册(人教版)全册笔记 超详细

七年级数学下册(人教版)全册笔记超详细第一章分数1.1 分数的引入- 分数的概念:分数是整数与整数之间的比值关系。
- 分子和分母:分数的分子表示分数的份数,分母表示每份的份数。
- 分数的意义:分数表示一个数比整数大,但比下一个整数小。
1.2 分数的性质- 分数的大小比较:分数的分母相同,分子大的分数大;分数的分子相同,分母小的分数大。
- 分数的约分:分子和分母同时除以一个相同的数,得到的分数与原分数相等。
1.3 分数的加减运算- 分数的加法:分母相同,分子相加;分母不同,通分后分子相加。
- 分数的减法:分母相同,分子相减;分母不同,通分后分子相减。
1.4 分数的乘除运算- 分数的乘法:分子相乘,分母相乘。
- 分数的除法:将除数倒置后变成乘法。
第二章小数2.1 小数的引入- 小数的概念:小数是整数与整数之间的比值关系,但分子是整数,分母是10的幂次。
2.2 小数与分数的关系- 小数转分数:小数的数字部分作为分子,根据小数位数确定分母的幂次。
- 分数转小数:分子除以分母得到小数。
2.3 小数的加减运算- 小数的加法:小数部分相加,整数部分相加。
- 小数的减法:小数部分相减,整数部分相减。
2.4 小数的乘除运算- 小数的乘法:小数部分相乘,整数部分相乘。
- 小数的除法:将被除数的小数点移动与除数对齐,然后按整数除法进行计算。
第三章平方根3.1 平方根的引入- 平方根的概念:平方根是一个数的平方等于另一个数的运算。
3.2 平方根的性质- 平方根的符号:非负数的平方根为正数。
- 平方根的大小比较:对于非负数,平方根越大,被开方数越大。
3.3 平方根的计算- 尝试法计算平方根:通过试探和逼近的方法计算一个数的平方根。
3.4 平方根的运算- 平方根的加减运算:分别计算两个数的平方根,然后进行加减运算。
- 平方根的乘除运算:分别计算两个数的平方根,然后进行乘除运算。
以上是《七年级数学下册(人教版)全册笔记》的内容概要。
最新版人教版七年级数学全册知识点

人教版七年级数学全册知识点第一章:有理数知识框架:正分数负分数正整数0负整数基本概念:1.大于0的数叫做正数。
2.在正数前面加上负号“-”的数叫做负数。
3.整数和分数统称为有理数。
4.人们通常用一条直线上的点表示数,这条直线叫做数轴。
5.在直线上任取一个点表示数0,这个点叫做原点。
6.一般的,数轴上表示数a 的点与原点的距离叫做数a 的绝对值。
7.由绝对值的定义可知:(1) 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
(2)正数大于0,0大于负数,正数大于负数。
(3)两个负数,绝对值大的反而小。
8.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
9.有理数的加法中,两个数相加,交换交换加数的位置,和不变。
10.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
11.有理数减法法则减去一个数,等于加上这个数的相反数。
12.有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
13.有理数中仍然有:乘积是1的两个数互为倒数。
14.一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
15.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
16.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
17.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a n 中,a叫做底数,n叫做指数18.根据有理数的乘法法则可以得出负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
初中数学七年级下册知识点及公式总结大全(人教版)

七年级数学(下)知识点1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
4.平行线:在同一平面内,永不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:同旁内角:∠4与∠5、∠3与∠6像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.对顶角的性质:对顶角相等。
10.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角互补,两直线平行。
第六章平面直角坐标系一.知识框架二.知识概念1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
注意:坐标轴上的点不在任何一个象限内。
第七章三角形一.知识框架二.知识概念1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
新人教版七年级下册数学知识点整理

新人教版七年级下册数学知识点整理的两个角叫做同位角,它们的度数相等。
②在两条直线(被截线)的异侧,都在第三条直线(截线)的同一侧,这样的两个角叫做内错角,它们的度数相等。
③在两条直线(被截线)的同一侧,都在第三条直线(截线)的同一侧,这样的两个角叫做同旁内角,它们的度数互补。
7、平移是指在平面内,将一个图形沿着某个方向按照某个距离移动,移动后的图形与原图形形状、大小、方向都相同。
平移的性质:平移不改变图形的形状、大小和方向,只改变图形的位置。
本文介绍了平面几何中的角度和平行线的相关概念和性质。
其中,角度分为同位角、内错角和同旁内角,平行线的判定包括同位角相等、内错角相等、同旁内角互补和平行于同一条直线的两条直线互相平行。
此外,文章还介绍了命题和定理的概念,以及平移变换的性质。
最后,文章对实数进行了分类,包括按定义分类和按性质符号分类。
科学记数法是一种将数表示为(1≤<10,n为整数)形式的记数方法。
平面直角坐标系由有序数对和两条互相垂直且有公共原点的数轴组成。
其中,有序数对是有顺序的两个数a与b组成的数对,记做(a,b)。
横轴是水平的数轴,也称为x轴或横轴;纵轴是竖直的数轴,也称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
坐标轴上的点不在任何一个象限内,而两条坐标轴将平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。
坐标轴上的点有特殊的坐标特点,如x轴正半轴上的点的坐标为(a,0),y轴负半轴上的点的坐标为(0,-b)。
点P(a,b)到x 轴的距离是|b|,到y轴的距离是|a|。
对称点的坐标特点包括:关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
(完整版)七年级下册数学知识点总结(人教版)(最新整理)

一、有序数对 有序数对:把有顺序的两个数 a 与 b 组成的数对叫做有序数对,记做(a,b)。
利用有序数对,能准确表示一个位置,这里两个数的顺序不能改变。 二、平面直角坐标系 平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系。 水平方向的数轴称为 x 轴或横轴,习惯取向右的方向为正方向;竖直方向上的数 轴称为 y 轴或纵轴,习惯取向上的方向为正方向;两坐标轴的交点是平面直角坐 标系的原点 .
七、命题、定理、证明 命题:判断一件事情的语句,叫做命题。命题由题设和结论两部分组成。题设是 已知事项,结论是由已知事项推出的事项。数学中的命题常可以写成“如果…… 那么……”的形式,“如果”后的部分是题设,“那么”后的部分是结论。
如果题设成立,那么结论一定成立,这样的命题称真命题。命题成立,而结 论不一定成立,这样的命题称假命题。
的垂线.
B
工具:直尺、三角板
1 放:放直尺,直尺的一边要与已知直线重合; 2 靠:靠三角板,把三角板的一直角边靠在直尺上; 3 移:移动三角板到已知点; 4 画线:沿着三角板的另一直角边画出垂线.
A
l
垂线的性质: 1、同一平面内,过一点有且只有一条直线与已知直线垂直. 2、连接直线外一点与直线上各点的所有线段中,垂线段最短,或说成垂线段最短。 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
1.有两个未知数.(二元) 2.含未知数的指数都为 1.(一次) 3.两个一次方程组成.(方程组) 二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程 组的解。二元一次方程组的解只有一个,可以理解为两条直线相交点的坐标。
定理:有些真命题是基本事实,它们的正确性是经过推理证实的,无需再次进行 证明的,这样的真命题叫定理。
人教版七年级下册数学知识点总结归纳

人教版七年级下册数学知识点总结归纳七年级下册数学知识点1概率1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
3.互斥事件:不可能同时发生的两个事件叫做互斥事件。
4.对立事件:即必有一个发生的互斥事件叫做对立事件。
5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。
6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。
2相交线与平行线1.相交线在同一平面内,两条直线的位置关系有相交和平行两种。
如果两条直线只有一个公共点时,称这两条直线相交。
2.垂线当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。
3.同位角两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。
4.内错角两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。
5.同旁内角两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。
6.平行线几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。
平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
7.平移平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
3平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
2024年人教版七年级数学知识点总结(2篇)

2024年人教版七年级数学知识点总结一、有理数1. 有理数的概念:有理数是可以表示为两个整数的比值的数。
2. 有理数的分类:整数、分数、零。
3. 有理数的表示形式及比较大小:分数、小数、整数。
二、整数1. 整数的概念:由整数可以用整数1表示,包含正整数、负整数和零。
2. 整数的运算:加法、减法、乘法、除法的运算法则。
3. 知识点:正负整数的加减法、乘法及除法的运算规则。
三、分数1. 分数的概念:分母为0的数除外,一个不能化为整数的数叫分数。
2. 分数的基本概念:分子、分母、真分数、假分数和带分数。
3. 分数的化简和等值分数:化简分数的方法,等分数的概念。
4. 分数的加减法:同分母的分数相加减,异分母的分数相加减。
5. 分数的乘法:分数与整数相乘,分数之间相乘。
6. 分数的除法:分数与整数相除,分数之间相除。
四、小数1. 小数的概念:有限小数和无限循环小数。
2. 小数的读法和写法:小数的读法,小数的书写规则。
3. 小数的四则运算:小数的加减法,小数的乘法,小数的除法。
4. 小数与分数的相互转换:小数转分数,分数转小数。
五、实数1. 实数的定义:有理数和无理数的统称。
2. 无理数的概念:不能表示为两个整数之比的数,如根号2,根号3等。
六、代数式与方程式1. 代数式的概念:用字母表示数的式子。
2. 方程式的概念:含有等号的代数式叫做方程式。
3. 一元一次方程的解:方程的根、方程的解集。
4. 一元一次方程的应用:利用一元一次方程解决实际问题。
七、比例与百分数1. 比例的概念:两个含有比的式子叫做比例。
2. 比例的性质:比例的基本性质、相等比例的性质。
3. 比例的计算:已知两个相等比例的三个量中的任意两个量,可以求出第三个量。
4. 百分数的概念:以百分号表示的数。
5. 百分数与分数、小数的相互转换。
6. 增长量和减少量的计算:已知原数和增长量(减少量)之比和增长率(减少率),可以求出增加量(减少量)。
八、平面图形的初步认识1. 二维图形的分类:几何图形、点、线段、直线、角、多边形、平行四边形、正方形、长方形、正三角形、等腰三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
(一) 有序数对 1.有序数对 用两个数来表示一个确定个位置,其中两个数各自表示不同的意义, 我们把这种有顺序的两个数组成的数对, 叫做有序数对,记作(a,b) 2. 坐标:数轴( 或平面 )上的点可以用一个数 ( 或数对)来表示,这个数 (或数对 )叫做这个点的坐标。 (数二轴)平。面这直样角我坐们标就系说在平面上建立了平面直角坐标系, 简称直角坐标 1.平面直角坐标系:在平面内画两条互相垂直,并且有公共原点的 系。 2.X轴:水平的数轴叫 X轴或横轴。向右方向为正方向。 3.Y轴:竖直的数轴叫 Y轴或纵轴。向上方向为正方向。 4.原点:两个数轴的交点叫做平面直角坐标系的原点。 5. 在平面直角坐标系中对称点的特点: ①关于 x 成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。 ②关于 y 成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。 ③关于原点成中心对称的点的坐标, 横坐标与横坐标互为相反数, 纵 坐标与纵坐标互为相反数。 (三)象限 1.象限: X轴和 Y轴把坐标平面分成四个部分,也叫四个象限。右 上面的叫做第一象限, 其他三个部分按逆时针方向依次叫做第二象限、
属于任何象限。一般,在 x 轴和 y 轴取相同的单位长度。
2.象限的特点: ①特殊位置的点的坐标的特点: (1).x 轴上的点的纵坐标为零; y 轴上的点的横坐标为零。 (2). 第一、三象限角平分线上的点横、纵坐标相等;第二、四象限 角平分线上的点横、纵坐标互为相反数。 (3). 在任意的两点中,如果两点的横坐标相同,则两点的连线平行 于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。 ②点到轴及原点的距离: 点到 x 轴的距离为 |y| ; 点到 y 轴的距离为 |x| ; 点到原点的距离为 x 的平方加 y 的平方再开根号; ③各象限内和坐标轴上的点和坐标的规律: 第一象限:(+,+) 第二象限:(- ,+) 第三象限:(- ,-) 第四象限:(+,-)。 x 轴正方向:(+,0) x 轴负方向:(-,0)
以上性质可简单说成:
1. 两条直线平行,同位角相等。 2. 两条直线平行,内错角相等。 3. 两条直线平行,同旁内角互补。 (四)命题、定理 1.命题的概念:判断一件事情的语句,叫做命题。 2. 命题的组成:每个命题都是题设、结论两部分组成。 题设是已知事项;结论是由已知事项推出的事项。命题常写成“如果 ,, ,那么,, ”的形式。具有这种形式的命题中,用“如果”开始的部 分是题设,用“那么”开始的部分是结论。 3.真命题:正确的命题,题设是成立,结论一定成立。 4.假命题:错误的命题,题设是成立,不能保证结论一定成立。 5. 定理; 经过推理证实得到的真命题。 (定理可以做为继续推理的依 离,这样的图形运动叫做平移变换 ( 简称平移 ),平移不改变物体的 据) 形状和大小。 (五)平移 2. 平移的性质 ①把一个图形整体沿某一直线方向移动, 会得到一个新的图形, 新图 1.平移: 平移是指在平面内, 将一个图形沿着某个方向移动一定的距 形与原图形的形状和大小完全相同。 ②新图形中的每一点, 都是由原图形中的某一点移动后得到的, 这两
3
个点是对应点。连接各组对应点的线段平行且相等。 第六章 实数
一、算术平方根 1.算术平方根:如果一个正数 x 的平方等于 a,即 x =a,2 那么这个 正数 x 叫做 a 的算术平方根,记作√ a。0 的算术平方根为 0;
2
的平方根 (或二次方根 ) 。 3.开平方:求一个数 a 的平方根的运算 ( 与平方互为逆运算 ) 4.平方根性质:正数有 2 个平方根(一正一负),它们是互为相反数; 负数没有平方根。 二、立方根 3.立方根性质:正数的立方根是正数;负数的立3方根是负数。 0 的 立方根是 0; 的立方根 (或三次方根 ) 。 三、实数 21..开无立理方数::求无一限个不数循环a小的数立。方如根:的π、运√算 ( 与2立、方√3互为逆运算 )。 2.实数:有理数和无理数统称实数。 实数都可以用数轴上的点表示。
3.对顶角相等。
二、垂线
1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线: 垂直是相交的一种特殊情形,两条直线垂直,其中一条直
线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4到.直垂线线的特距点离:。过连一接点直有线且外只一有点一与条直直线线上与各已点知的直所线有垂线直段。中, 垂线段
5最.短点。到直线的距离: 直线外一点到这条直线的垂线段的长度,叫点
三、同位角、内错角、同旁内角
两条直线被第三条直在两条直线的上方,又在直线 EF的同侧,具有这种位置 关系的两个角叫同位角。如:∠ 1 和∠5。 2.内错角:在在两条直线之间,又在直线 EF的两侧,具有这种位置 关系的两个角叫内错角。如:∠ 3 和∠5。 3.同旁内角:在在两条直线之间,又在直线 EF的同侧, 具有这种位置关系的两个角叫同旁内角。如:∠ 3 和∠6。 四、平行线 (1一. 平) 行平:行两线条直线不相交。互相平行的两条直线,互为平行线。 a∥b (在同一平面内,不相交的两条直线叫做平行线。 )
最新人教版七年级下册数学课本知识点归纳
第五章 相交线与平行线
一、相交线 两条直线相交,形成 4 个角。 1.邻补角:两个角有一条公共边, 它们的另一条边互为反向延长线。 具有这种关系的两个角,互为邻补角。如:∠ 1、∠2。 2.对顶角:两个角有一个公共顶点,并且一个角的两条
边,分别是另一个角的两条边的反向延长线,具有这种 关系的两个角,互为对顶角。如:∠ 1、∠3。
2.平行公理:经过直线外一点, 有且只有一条直线与这条直线平行。 3. 平行公理推论:①平行于同一直线的两条直线互相平行。 ②在同一平面内,垂直于同一直线的两条直线互相平行。 (二)平行线的判定: 1. 同位角相等,两直线平行。 2. 内错角相等,两直线平行。 3. 同旁内角互补,两直线平行。 (三)平行线的性质 1. 两条平行线被第三条直线所截,同位角相等。 2. 两条平行线被第三条直线所截,内错角相等。 3. 两条平行线被第三条直线所截,同旁内角互补。