56含时微扰理论
微扰理论

第五章 微扰理论Chapter five perturbation Theory§5-1 非简并定态微扰理论一、体系本征方程nn n E H ψ=ψˆ here '0ˆˆˆH H H+= 二、方程近似解设 +ψ+ψ+ψ=ψ)2()1()0(n n nn+++=)2()1()0(nnnn E E E E))(())(ˆˆ()2()1()0()2()1()0()2()1()0(10 +ψ+ψ+ψ+++=+ψ+ψ+ψ+n n n n n n n n n E E E H H 零阶: )0()0()0(0ˆnn n E H ψ=ψ (零级就是未受微扰情况) (1) 一阶:)0(1)1()1()0(0)ˆ()ˆ(nnn H E E H ψ-=ψ- (2) 二阶:0(0)(2)(1)1(1)(2)(0)ˆˆ()()n n n n n nH E E H E -ψ=-ψ+ψ (3) 三阶:n 阶:…1.能量的一阶修正)1(nE(1)0*0ˆn n n E Hdx ψψ'=⎰conclusion: H ˆ在)0(nψ平均值即能量一阶修正 证明: )0()1()1()1()ˆ()ˆ(nn n n H E E H ψψ'-=- 上式两边和*)0(nψ然后对空间积分⎰⎰-=-τψψτψψd H E d E H n n nn n n)0(1)1()*0()1()0(0)*0()ˆ()ˆ( 左=⎰-τψψd E H n nn)1(*)0()0(0])ˆ[(=0 右=⎰-τψψd H E nnn)0()*0()1('ˆ⎰=τψψd H E nnn)0()*0()1('ˆ 2.波函数的一阶修正)1(n ψ∑-'=m n mn mn E E H )0()0()0()1(0ψψ证明:设(1)(0)n l a ψψ=∑()0()0(H n 是ψ本函)因:)0()1(nn a ψψ∑'=是方程(2)的解则∑+)0()0(na a ψψ也是(2)的解适当选a :消取a n 项 则)0()1(ψψa n '∑=撇“’”表示n ≠代入(2)式0(0)(0)(0)(0)ˆˆ(()n n nH E a E H ψψ''-∑=-) 两边采)*0(m ψ然后空间积分⎰⎰⎰-=ψ∑-τψψτψψτψd H d E d a E H n m n n m n m )0()*0()0()1((*))0()0(0)0('ˆ')ˆ(mn n m H d E E a 'ˆ)(')0()0()0()0(-=-∑⎰τψψmn n m H E E a ')(')0()0(-=-∑δ)0()0()0()0(''mn mnn m mn m E E H E E H a -=--=)0()0()0()1(''mmn mn n E E H ψψ-∑=3.能量二阶修正)2(n E (不讲推导)2200()()()''nmn mn mH E E E =∑-(注:*''m n nm H H m n =≠厄米矩阵)三、conclusion1.设,ˆˆˆ0H H H+=若)0()0('mn mnE E H -〈〈1式'ˆH 很小,且)0()0(m n E E -能级间隔较大则波函数 )2()1()0(n n n n ψ+ψ+ψ=ψ 能级 +++=)2()1()0(n n n n E E E E2.一般情况下能级修正到二阶,波函数修正到一阶(1)能级 1002200'()()*()()()()ˆ||'一级修正二级修正n n nnm nm n mE H dx H EE E ⎧=ψψ⎪⎨=∑⎪-⎩⎰(2)波函数一阶修正)0()0()0()1(''mmn mn mn E E H ψψ-∑= 参原讲义例题例题例题⎪⎭⎪⎬⎫321§5-2 简并的定态微扰理论一、体系的本征方程nn n E H ψ=ψˆ 'ˆˆˆ0H H H += 但in i E H ϕϕ=0ˆ k i ,2,1= (k 重简并) 设 +ψ+ψ+ψ=ψ2)1()0(n n n n +++=2)1()0(n n n n E E E E则()0110()()()()ˆˆ()'n n n nH E E H -ψ=-ψ 一阶方程 二、近似求解1.零阶波函数设001kniii c ψϕ==∑ k i ,2,1=2.久期方程对一阶方程两边同乘*ϕ,后对空间积分⎰ψ-=τϕd E H n n )1()0(0*)ˆ( 左0=⎰ψ-=τϕd H E nn )0()1(*)'ˆ( 右*(1)(0)ˆ(')n i iiE H c d ϕϕτ=-∑⎰10()**()ˆ['] ni i i iE d H d c ϕϕτϕϕτ=∑-⎰⎰(1)(0)[']0n i i iiE H c δ=∑-= (1)(0)(')0i n i iiH E c δ∑-=线性方程组11(1)(0)(0)'(0)111122133(0)'(1)(0)'(0)2112222331(')'02'()0n H E c H c H c H cH E cH c=-+++==+-++=(0)(0)(1)(0)1122'()0k k kk n k kH c H c H E c =+++-=(1)(0)1112131(2)(0)2122132(0)(1)123''''''0''''n n k k k k k n H E H H c H H E H c c H H H k H E ⎛⎫⎡⎤- ⎪⎢⎥- ⎪⎢⎥= ⎪⎢⎥ ⎪⎢⎥⎪⎢⎥-⎣⎦⎝⎭ (1) 齐次线性方程组0'''''''''')0(212)1(222111312)1(11=---nkk k k kn knE H H H H E H H H H H E H 久期方程 (2)三、conclusions1.求解方程(1)就可以得到能量的一阶修正和零阶波函数)0(n ψ2.求解步骤(1)先解久期方程,解出K 个根,若K 个根无重根,简并全部解除,若有重根则部分解除例第n 个能级 k j E E E njn nj 2,1)1()0(=+=)1()0()1(2)0(2)1(1)0(1njn nj n n n n n n E E E E E E E E E +=+=+=(2)将)1()1(2)1(1,nj n n E E E 代入原方程解出)0(i C例)0(1n E 代入可得出一组)0(i C则i ki i nC ψ=ψ∑=1)0()0(§5-3 氢原子的一阶stark 效应一、stark 效应(定义)原子在外电场的作用下,产生谱线分裂的现象叫~二、体系的Hamiltonianr e re H s ⋅+-∇=εμ2222ˆ'ˆˆ0H H+= ˆ'cos H e r e r εεθ=⋅= (设ε 沿Z 方向)三、方程求解 n=21.能量一阶修正003221200200000322221021100322321121110032242112111002rrr r1r (),))()1(),))cos 1r(),))()sin 1r (),))()sin =((((((((a a a i a i R r Y ea a R r Y e a R r Y ee a a R r Y e e a a ϕϕϕθϕϕθϕθϕθϕθϕθϕθ-------=ψ-=ψ==ψ==ψ=1111''*ˆH H d ϕϕτ=⎰⎰⎰ 4242''*ˆH Hd ϕϕτ=⎰⎰⎰ 110'H = 22111111000''**ˆcos sin H H d r dr d d ππϕϕτϕϕϕθθθ∞==⎰⎰⎰⎰⎰⎰20000cos sin sin sin (sin )|1=2d d πππθθθθθθ==⎰⎰ 110'H =01212000211232''*ˆ()()()cos cos sin ra r r H H d e e xa a a r r drd d ϕϕτθεπθθθϕ-==-⨯⎰⎰⎰⎰⎰⎰1!x n n n e x dx αα∞-+=⎰1203'H e a ε=-同理可以求得其他矩阵元0000003003)1(2)1(2)1(2)1(2=------E E E a e a e E εε解行列式方程得:33)1(24)1(23)1(220)1(21==-==E Ea e E a e E εε2.零阶波函数求解(1)0)1(213a e E ε=⎪⎪⎪⎪⎪⎭⎫⎝⎛------0000003000030000330033a e a e a e a e a e a e εεεεεε(0)1(0)2(0)3(0)4c c c c ⎛⎫ ⎪⎪⎪ ⎪ ⎪⎝⎭=0 解得到 (0)(0)340c c ==(0)(0)12c c =- ∴ (0)(0)(0)(0)211122i i icc c ϕϕϕψ==+∑(0)(0)1112c c ϕϕ=- (0)(0)12001210c c =ψ-ψ⎰=ψψ1)0(21*)0(21τd 得(0)1c = 由此得零级近似波函数为:)(21210200)0(21ψ-ψ=ψ∴同理 12203()E e a ε=-当解出:000034120()()()()c c c c === 由此得零级近似波函数为:)(21210200)0(22ψ+ψ=ψ1122()()340 E E =当=时解出: 010*********0300000000()()()()00 0 0 0=c e a c e a c c εε⎛⎫-⎛⎫ ⎪⎪- ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭00000()()()()1234 和为不同时等于零的常数。
微扰理论

(三)能量的二阶修正
上式结果表明,展开式中,an n(1) |ψn (0) > 项的存在 只不过是使整个态矢量|ψn > 增加了一个相因子,这是无 关紧要的。所以我们可取 = 0,即 an n(1) = 0。这样一来,
| n |
|
(0) n
(0) nቤተ መጻሕፍቲ ባይዱ
a
k n
其中λ 是很小的实数,表征微扰程度的参量。
因为 En 、 |ψn > 都与微扰有关,可以把它们看成是λ的函数 (0) (1) ( 2) 而将其展开成λ的幂级数: E n E n E n 2 E n
(0) (1) ( 2) | n | n | n 2 | n
|
(0) n
i |
k 1
(0) n
a
k n
(1) kn
|
(0) k
(1 i ) |
(0) n
k n
(1) (0) akn | k k n
i (0) (1) (0) (0) (1) (0) | a | e i | n akn | k e n kn k k n k n
an n (1) 的实部为 0。an n (1) 是一个纯虚数,故可令 an n (1) = i ( 为实)。
(0) (1) (0) (0) (1) (0) (1) (0) | n | n akn | k | n ann | n akn | k
左乘 <ψm (0) |
k 1
(1) (0) (0) (0) (0) (0) ˆ (1) | ( 0 ) E (1) ( 0 ) | ( 0 ) akn [ Ek En ] m | k m |H n n m n
量子力学第9章-含时微扰

ˆ ˆ H(t) = H0 + H′(t)
量与时间有关, 因为 Hamilton 量与时间有关,所以体系波函数须由含时 方程解出。但是精确求解这种问题通常是很困难的, Schrodinger 方程解出。但是精确求解这种问题通常是很困难的, 而定态微扰法在此又不适用, 而定态微扰法在此又不适用,这就需要发展与时间有关的微扰理 论。 含时微扰理论可以通过 含时微扰理论可以通过 H0 的定态波函数近似地求出微扰存 在情况下的波函数,从而可以计算无微扰体系在加入含时微扰后, 在情况下的波函数,从而可以计算无微扰体系在加入含时微扰后, 体系由一个量子态到另一个量子态的跃迁几率。 体系由一个量子态到另一个量子态的跃迁几率。
比较等式两边得
(0 (1 δnk = an )(0) +λan )(0) +⋯
(0 an )(0 =δnk ) (1 (2 an )(0 = an )(0 =⋯ 0 ) ) =
n
幂次项得: 比较等号两边同 λ 幂次项得:
不随时间变化,所以a 因 an(0)不随时间变化,所以an(0)(t) = an(0)(0) = δnk。 后加入微扰,则第一级近似: t ≥ 0 后加入微扰,则第一级近似:
(0 (1 (2 an = an ) +λan ) +λ2an ) +⋯
∑
n
n
n
n
m n
零级近似波函数 am 不随时 d m) a(0 间变化, = 0 间变化,它由未微扰时体系 (4)解这组方程 解这组方程, (4)解这组方程,我们可得到关于 所处的初始状态所决定。 所处的初始状态所决定。 t d 的各级近似解, an 的各级近似解,从而得到波函 d (1) am (0 ˆ ′ 的近似解。实际上, 数 Ψ 的近似解。实际上,大多数 iℏ n = ∑ an )H neiωm t m d t 情况下,只求一级近似就足够了。 情况下,只求一级近似就足够了。 n a(2 1, (最后令 λ = 1,即用 H’mn代替 d m) (1 ˆ ′ n iℏ = ∑ an )H neiωm t m d t n λ H’mn,用a m (1)代替 λa m (1)。) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ = ⋯ ⋯
第5章 微扰理论-量子跃迁

§6.含时微扰论前面,我们解决的是H ˆ与t 无关,但不能直接求解,而利用020V m2P H ˆ+=有解析解,并且01V V H ˆ-=较小,通过微扰法求解)r (E )r ()p ˆ,r (H ˆψψ=的近似结果。
有时也能用试探波函数,通过变分来获得。
现在要处理的问题是:体系原处于0H ˆ的本征态(或叠加),而有一与t 有关的微扰)t (H ˆ1附加到该体系。
显然,这时体系的能量不是运动常数,其状态并不处于定态(即使1H ˆ在一段时间中不变),在0H ˆ的各定态中的几率并不是常数,而是随时间变化的。
而且无法获得解析结果。
有时附加作用在一段时间之后结束,这时体系处于0H ˆ的本征态的几率又不随时间变化。
当然,这与作用前的几率已有所不同。
也就是,体系可以从一个态以一定几率跃迁到另一态,这称为量子跃迁。
这就需要利用含时间的微扰论。
总之,含时间的微扰论就是处理体系所处的位势随时间发生变化时,或变化后,体系所处状态发生的变化。
H ˆ与t 有关,体系原处于)P ˆ,r (H ˆ0,随t 加一微动)t (V ψψH ˆti =∂∂ , )t (V H ˆ)t (H ˆ0+= 因0H ˆ不显含t ,而有 )r (E )r (H ˆn0n n 0ϕϕ= 则 ψψ0H ˆti =∂∂的通解为 ∑-=ψnt iEn n 0nea )t ,r (ϕ 0H 的定态∑=nn )t ,r (a ψt iEn ne )r ()t ,r (ϕψ=而 n a 是常数))0,r (),r (())t ,r (),t ,r ((a n n n ψ=ψ=ϕψ 不随t 变当nk n a δ=时,即0t =,处于)r (k ϕ时)t ,r (e )r ()t ,r (k t iEk kψϕ==ψ-即微扰不存在时,体系处于定态)t ,r (k ψ上。
当微扰存在时,特别是与t 有关时,则体系处于0H ˆ的各本征态(或定态) 的几率将可能随时间发生变化。
第五章微扰理论

2b 2 2 nπx 2b nπx ( 0 )∗ (0) = ∫ψ n H 'ψ n dx = − sin dx + sin 2 dx ∫ ∫ a 0 a a a a 0
a a 2 nπ
a
2b =− nπ
=−
2b sin ydy + ∫ nπ 0
2
2
nπ
n
∫ sin π
2
2
ydy ⎞ ⎟=0 。 ⎠
−n
2 3
)
[1 − (− 1) ] sin mLπ x
m+ n
。
⎧− b,0 ≤ x ≤ a / 2, 例 4、粒子处于宽为 a 的一维无限深势阱中,若微扰为 H ' = ⎨ 试求粒子 ⎩ b, a / 2 ≤ x ≤ a, ,
能量和波函数的一级修正。 解: (1)能量的一级修正,按公式
E
(1) n
m+ n
−1
] [
,
所以波函数的一级修正为:
(1) (x ) = ψn
∑
m
'
2 μL2 4 Lamn (− 1)m+ n − 1 ⋅ 2 2 2 2 2 2 2 2 π h (n − m ) (m − n ) π
]
2 mπ sin x L L
4
8μL3 an = 4 2 π h
2 L
∑
m
'
(m
m
2
2
。
E ( 0) + b a ⎞ ( 0) ˆ ( 0) 表象中的表示为 H = ⎛ ⎜ 1 ⎟ ,其中 E1 例 1、设体系的哈密顿在 H , E (20) 为 (0) ⎜ a ⎟ E2 + b⎠ ⎝
56与时间有关的微扰理论

能量并不守恒,mk 不确定。
3) mk
不确定的范围:
mk
:
1 t'
(10)
由于k分立,m连续,所以
mk
( m
k h
)
1 h
m
(11)
结果(10),(11)式: t ' m : h (12)
这个微扰过程是测量末态能量的过程:以ω试, 到达如何 mk 时跃迁,即可从初态推测到末态。 (12)式说明,测量时间间隔t’与能量不确定
1、先求的第k个本征态(初态) k 和第m 个本征态(末态)之间的微扰矩阵元:
Hµ'mk m* Hµ'k d Fmk (eit eit ) (2)
Fmk (m, Fµk),不含时。 (3)
2、将(2)式代入上节 am (t) 公式(5.6-10),即(14) 式中积分:
am
(t)
1 ih
4
H
' mk
h2
2
sin2 mkt
2
2 mk
W 4 h
sin2 mkt
H
' mk
2
(m)
2
2 mk
dmk
(3)
(4)
利用公式
lim
t
sin2 xt
tx2
(x)
W 2t h
H
' mk
2
(m)mk dmk
(5)
如果对(5)式只考虑
H
' mk
和ρ(m)都随
m平滑变
化的情况,将他们移出积分号外。
dt
从k m (初态 终态)。即发生量子跃 迁,从一个定态 另一个定态,系统有局部的能
量子力学第五章微扰理论

c1(0) (0) c2 0 (4) (0) c k
有非零解的条件是系数行列式等于零。
H '11 En(1) H '12 H ' 21 H ' 22 En(1) H ' k1 H 'k 2
H '1k H '2k
' H kk En(1)
ˆ ˆ H li l* H i d
( ˆ ( i En1)li )Ci(0) 0 i
(3)
14
写成矩阵形式:
H '11 En(1) H '12 ' ' (1) H 22 En H 21 H' H 'k 2 k1
' H 2k ' (1) H kk En H '1k
( 0)
5 利用 E
( 2) n
′ ′ | H nm |2 = ∑ ( 0) ( 0 ) 求能级的二级近似 En Em m
12
5.2 简并情况下的微扰理论
( En0) 是 k 度简并的,则有 k 个本征函数 1 , 2 ,k 若
满足方程
( ˆ H (0)i En0)i
(i 1, 2,k )
(16)
代入(9)式得
l
E (0) a (1) (0) E (0)
l l l n
l
a (1) (0) E (1) (0) H (0) ˆ l l n n n
( 以 m0)* (m n) 左乘,并积分,并注意 l(0) 的正交归一
( 性 m0)* l( 0) d ml 得到:
第六章 微扰理论简介

(0) (1) 2 (2) Ψi = Ψi + λΨi + λ Ψi +L
式中 是 的本征函数: 的本征函数
17
量子化学
存在简并态时, 存在简并态时,对应于每个 不止一个,这样 中的 不止一个,这样(1)中的 么如何选取这个函数呢? 么如何选取这个函数呢? 假设相对于 的本征函数有: 的本征函数有:
而E实验=-79.0 eV 可见,经微扰校正后 计算值相当接近于实验值。 经微扰校正后, 可见 经微扰校正后,计算值相当接近于实验值。
21
量子化学
Higher-order corrections
第六章
λ E
2 ( 2)
= −4.3 eV, λ E
3 (3)
= 0.1 eV
) ) ) E 2 ≈ E (02 + λE (1) + λ2 E ( 22 + λ3 E (32 2 1s
(1)MØller-Plesset perturbation theory (MPPT) is sometimes called RSPT (Rayleigh-Schrödinger perturbation theory) or alternatively called many-body perturbation theory (MBPT). (2) Useful terminologies: MP2 (second order), MP3 (third order), MP4 (fourth order), …
2
量子化学 6.1 非简并态的微扰理论 6.2 简并态的微扰理论 6.3 微扰理论的应用举例
第六章
6.4 Comments on perturbation theory
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t>t0,
, 求cn(t).
二、相互作用表象
注意差别与相似性: 态矢随时间的变化:
即: 同理可得:
三、态矢方程 由
得
三、态矢方程
即有耦合微分方程组:
四、含时的两态问题
正弦交变势中两能态体系是可严格求解的含时势 问题
四、含时的两态问题
对:
有
振荡角频率的1/2: 共振:
共振:
一、吸收与受激发射
根据初末态的能量关系,可知exp(-iωt)对应于吸收, exp(iωt)对应于受激发射。
对吸收项 吸收截面:
偶极近似
由于 有 利用
得偶极近似下:
求和规则
总吸收截面:
振子强度
Thomas-Reiche-Kuhn求和规则:
2m
fni
ni
2 2m nxi
变分方法/例3:常见电子结构理论计算原理
一般均可表示为:
cii ;
i
H
E
H ijcic j
i, j
Oijcic j
i, j
E
H ij ( c i jk c j ik )
ij
ck
O ijc ic j
i, j
H ijc ic j
i, j
( O ij c i c j ) 2
对B1/B0«1,Leabharlann 共振即ω≈ω21时,顺时针分量
(相当于-ω)可忽略(且相应分量的振荡频率远大于
共振分量的频率)。
共振问题在解释原子分子束和核磁共振实验有重要意 义。通过改变振荡磁场的频率,可精确测得体系的磁 矩。
§5.6 含时微扰理论
一、直接微扰法:
二、含时微扰的Dyson级数
三、跃迁几率
一般情况:
五、自旋的磁共振
自旋1/2体系受沿z向恒定磁场与在xy平面内转动的磁场 作用:
相当于:
体系自旋在进动基础上有翻转行为,可半经典地理解为 受磁场的扭矩所引起。
当磁场的转动频率与自旋进动频率( 体系产生共振,自旋翻转的几率特别大。
)相同时,
旋转磁场不易实现,但固定方向振荡的磁场可产生相 似效果:
由
及
知
和
可见
取
则
将微扰展开代入Dyson级数得
其中
四、定势微扰:
据上述微扰理论,有
(时间-能量测不准关系)
末态为准连续态时 对末态求和: 因 故
跃迁速率:
费米黄金规则:
2阶微扰:
总跃迁速率:
五、简谐微扰
初态为|i>,
t∞时要求:
综合有:
由于 故有精细平衡关系
§5.7 对与经典辐射场作用的应用
( c i jk c j ik ) O ij
ij
i, j
2 H ik c i 2 E O ik c i
i
i
0
O ij c i c j
O ijc ic j
i, j
i, j
( H ij E O ij ) c j 0 j
§5.5 含时势:相互作用图像
一、问题:
已知 初态
, H0(t)=H0, H=H0+V(t),
ni n x i i x n
n
n
n
2
n
1 i
n
px
i
i
xn
2 i
i
xpx
i
2 i
i
m
x i
[x,H0] i
m (i )2
i [x,[x,H0]] i
1 i
i [x, px] i
1
于是有:
作业:题30、36 、37