研究性学习桥梁设计中的力学知识与模型制作
桥梁模型制作实训报告

目录一、科技作品制作前的参考➢参考1、明石海峡大桥➢参考2、维拉扎诺桥➢参考3、润扬长江公路大桥二、确定方案三、悬索桥概论四、科技作品的材料准备五、制作过程➢桥面制作➢塔架制作➢缆索、吊杆、桥面的连接六、总结一、科技作品制作前的参考参考1、明石海峡大桥在1998年4月5日,世界上目前最长的吊桥——日本名石海峡大桥正式通车。
大桥坐落在日本神户市与淡路岛之间(东经135度01分,北纬34度36分),全长3911米,主桥墩跨度1991米。
两座主桥墩海拔297米,基础直径80米,水中部分高60米。
两条主钢缆每条约4000米,直径1.12米,由290根细钢缆组成,重约5万吨。
大桥于1988年5月动工。
1998年3月竣工。
明石海峡大桥首次采用1800MPa级超高强钢丝,使主缆直径缩小并简化了连接构造,首创悬索桥主缆,这也是第一座用顶推法施工的跨谷悬索桥,由法国埃菲尔集团公司承建。
日本明石海峡大桥创造了本世纪世界建桥史的新纪录。
大桥按可以承受里氏8.5级强烈地震和抗150年一遇的80m/s的暴风设计。
1995年1月17日,日本坂神发生里氏7.2级大地震(震中距桥址才4公里),大桥附近的神户市内5000人丧生,10万幢房屋夷为平地,但该桥经受住了大自然的无情考验,只是南岸的岸墩和锚锭装置发生了轻微位移,使桥的长度增加了0.8m。
除地震以外,还必须保证大桥在台风季节能够经受住时速超过200公里狂风的袭击。
为此对桥梁进行了1%模型的风洞试验,在桥塔上安装了20个质量阻尼装置。
1988一1998年间,在日本大鸣门桥以北,建造了一座跨明石海峡的大型悬索桥。
该桥位于本州与四国之间的神户―鸣门线上,神户市西南。
明石海峡大桥是世界上第一座主跨超过1英里(为1609m)及1海里(合1852m)的桥梁。
两边跨也很大,每跨达960m,是目前世界上最长的边跨。
钢桥塔高为297m,是世界上最高的桥塔。
用钢桁式加劲梁,横截面尺寸为35.5m×14.0m。
研究性学习报告桥梁中的物理学,成果总结

研究性学习报告桥梁中的物理学,成果总结
通过建模试验来研究桥梁中的物理学,过程及成果总结如下:
一、三种常见建桥材料:
1.石材:便宜且坚固、耐用,但不耐拉。
2.钢材:比较便宜,耐用也耐拉,坚固,但需要防止腐蚀。
3.混凝土;便宜且坚固、耐压,但不耐拉,可以用钢筋加固。
二、实验:
1.桥梁结构模型的设计制作
目的:建造一个接近实际的桥梁
实验器材:卡片、纸、绳、铁丝、胶水等
步骤:
①设计图纸
②制作桥梁模型
③对模型进行评价(以放重物的办法,判断桥梁的坚固性)图纸:
实验现象:“拱型桥”能支撑4本书,“梁式桥”能支撑2本书初步实验结论:拱型桥比梁式桥更能曾受压力。
收获与体会:通过模型制作,使研究的对象(桥梁)具体化,便通过对其加重物使我们对桥梁的受力状况加深了了解。
2.模拟桥侧面抗压实验
目的:模拟拱桥与传统桥侧面抗压情况。
实验器材:硬纸片,筷子,橡皮筋,可调风力的电风扇步骤:
①将硬纸片裁成如图形状,
②用规格相同的橡皮筋将硬纸片固定于筷子上,
③用可调风力的电风扇从正面吹硬纸片并比较其橡皮筋形变程度。
三、实验现象:“拱形”的橡皮筋形变程度在不同风力下总小于对照组的形变程度。
四、实验结论:拱形桥可大大减少侧面压力,而比传统桥更具防洪能力,更使我们感慨古人的创造能力。
桥梁结构模型与实验报告(一)

桥梁结构模型与实验报告(一)桥梁结构模型与实验报告引言•桥梁结构在现代社会中起着重要的连接作用。
•为了确保桥梁的安全可靠性,工程师们需要进行结构模型和实验研究。
结构模型研究•结构模型的作用:–通过缩小比例,更加便捷地研究桥梁结构的力学性能。
–分析桥梁结构对不同荷载的响应情况。
•结构模型的制作:–选择合适的材料,如木材或塑料。
–使用CAD软件制作桥梁的几何模型。
–建立材料的力学性能模型。
•结构模型的测试:–将结构模型放置在合适的实验装置中。
–施加预定荷载,如静态荷载或动态荷载。
–记录桥梁结构在荷载下的变形和应力情况。
实验报告撰写•实验目的:–阐明研究桥梁结构的目的和意义。
–确定实验的具体目标。
•实验步骤:1.准备结构模型和实验装置。
2.测量结构模型的初始尺寸和材料参数。
3.施加荷载并记录数据。
4.分析数据,得出结论。
•实验结果:–展示实验数据的图表和曲线。
–用文字描述实验结果和观察到的现象。
–对实验数据进行分析和解释。
•结论和讨论:–总结实验结果,回答实验目标。
–讨论实验结果与预期的关系。
–探讨实验中的局限性和改进方法。
结束语•结构模型和实验报告是研究桥梁结构的重要工具。
•通过结构模型和实验,工程师们能够更好地了解桥梁结构的性能和安全性。
•期待未来的研究能够推动桥梁工程的发展和创新。
模型与实验结果的应用•通过模型和实验的研究,我们可以对桥梁结构的设计和施工提供可靠的依据。
•模型和实验结果可以用于验证设计理论和计算方法的准确性。
•模型和实验结果可以为桥梁结构的维护、修复和改造提供参考。
模型与实验的挑战•结构模型和实验需要考虑材料和尺寸的缩放比例,可能会引入缩放效应的误差。
•实验中可能存在测量误差和装置误差,需要进行有效的误差分析和修正。
•模型和实验结果的适用性需要经过多次验证和对比才能确认。
其他研究方法的补充•除了结构模型和实验,还可以使用计算力学方法进行桥梁结构的分析和优化设计。
•运用有限元分析和计算流体力学方法,对桥梁结构的强度、刚度和稳定性进行数值模拟。
力学承重桥梁模型总结

力学承重桥梁模型总结
1、设计决定着木桥的承重量,这里蕴含着物理的力学知识和数学知识,它是一个设计师智慧的结晶。
桥的设计越科学合理,压的重量越多,反之,压重就比较小,这里当然包含制作工艺的因素。
根据现行的比赛规则,制作好的木桥和胶水的总质量小于等于22g,比赛比的是承重量,承重量大着为优,相同承重量的情况下看桥的质量,质量小的为优。
2、套材中木条是有差别的,他们处在木料的不同位置,质地、光泽度、硬度是有差别的,我们要选择质地坚硬光泽度好的两根作为梁,这很重要。
在制作时尽量将长的部件先截下来,余下的作为短的部件,这样可以充分利用套材,不至于剩下许多短的木条,而截不出长的作为桥的部件。
在粘贴的时候,我们要对木条表面进行打磨,让木条表面光滑一些,尽可能让粘贴的部位接触面大一点,能用夹子夹的用夹子夹好再点胶水,这样粘贴的效果比较好牢固,这样的处理也是符合物理学原理的。
3、我们在设计桥时,要统筹好桥的质量和承重这两个量的关系,既要使桥的承重量比较大又要使桥的质量比较小。
在设计桥梁时,我们可以考虑让桥是三角形结构,利用三角形具有稳定性这一特性,可以含有半圆形或者半椭圆形结构,从物理力学的角度讲上述结构是比较科学合理的结构。
桥的设计数学知识点手抄报

桥的设计数学知识点手抄报桥是人类在交通工程中常见的建筑物之一,为了保证桥的安全和稳定性,设计者需要运用大量的数学知识来进行桥梁设计。
本手抄报将介绍桥的设计中所涉及的几个重要的数学知识点。
一、静力学静力学是桥梁设计中最基本的数学知识之一。
桥梁的静力学原理可以用来计算桥梁的受力情况,从而确保桥梁的承重能力。
在桥梁设计中,常用的静力学原理有杆件受力平衡、力矩平衡等。
设计者需要通过解决静力学方程组来确定桥梁各个部分的受力情况,从而保证桥梁的结构稳定。
二、材料力学在桥梁设计中,材料力学是不可或缺的数学知识点。
不同材料具有不同的材料强度和弹性模量,设计者需要通过材料力学的知识来评估桥梁在各种荷载下的变形和破坏情况。
常用的材料力学知识包括拉力、压力、剪力等的计算,设计者需要确保桥梁在各种荷载下材料的强度和变形都可以满足设计要求。
三、三角函数三角函数在桥梁设计中也是常用的数学工具之一。
桥梁的形状通常涉及到角度的计算和三角函数的应用。
例如,弧形桥梁的设计需要使用正弦函数来计算桥梁的曲线形状,从而确保桥梁的高度和曲线的光滑性。
此外,三角函数还可以用于计算桥墩的高度和桥面的坡度等设计要素。
四、微积分微积分在桥梁设计中也扮演着重要的角色。
桥梁设计中常常需要对桥梁的曲线进行分析和计算,这时微积分的知识就非常有用了。
设计者需要使用微积分的方法来计算桥梁的曲率、切线和曲线的长度等。
此外,微积分还可以应用于桥梁的荷载分析和弯矩计算等方面。
综上所述,桥的设计中涉及了许多数学知识点,其中包括静力学、材料力学、三角函数和微积分等。
这些数学知识点的应用可以帮助设计者确保桥梁的结构稳定、强度合理、形状美观。
在今后的桥梁设计过程中,我们应该不断学习和应用数学知识,不断提高桥梁设计的质量和效率。
只有通过运用科学的数学方法,才能建造出更加安全、稳定和美观的桥梁。
力学知识在桥梁中的运用

力学知识在桥梁中的运用桥梁是连接两个地点的结构,承载着交通运输的重任。
为了确保桥梁的稳定和安全,力学知识在桥梁设计和建设中起着关键作用。
本文将详细介绍力学知识在桥梁中的应用。
首先,桥梁的荷载分析是桥梁设计的一项重要任务。
荷载通常包括自重、交通荷载、风荷载、地震荷载等。
力学知识通过对桥梁结构的静力学和动力学分析,确定桥梁所承受的荷载大小和方向,从而使设计师能够选择适当的材料和结构形式。
静力学分析包括确定桥梁各构件的受力情况、求解构件的内力和变形等。
动力学分析主要包括对桥梁长期变形、振动与共振的研究,确保桥梁在运行时的稳定性和安全性。
其次,在桥梁结构设计中,力学知识可以确定桥梁的大小和形状,以满足相关的构造和使用要求。
例如,力学知识可以帮助设计师决定桥梁的跨度、荷载携载能力和桥墩的布置方式。
通过合理使用力学原理,可以确保桥梁的强度、刚度、稳定性以及对外界荷载的抵抗能力。
然后,力学知识在桥梁材料的选择和研发中也发挥着重要作用。
桥梁常用的材料包括钢、混凝土、预应力混凝土、木材等。
力学原理可以帮助工程师确定每种材料的力学性能,例如强度、韧性、抗变形性和耐久性等。
通过力学知识的应用,可以选择最合适的材料来确保桥梁的安全性和经济性。
此外,力学知识还用于桥梁结构的维修和监测。
桥梁在使用过程中会产生各种力学问题,如裂缝、变形和损伤等。
力学原理可以用于分析和评估这些问题的原因和严重程度,并确定适当的维修方法。
另外,桥梁结构的健康监测对于确保长期的安全运行也至关重要。
力学知识可以应用于桥梁结构的结构健康评估,通过使用传感器和监测设备来收集和分析桥梁的运行数据,以及时发现和解决可能的问题。
最后,力学知识还可以用于桥梁的抗震设计。
地震是桥梁安全性的威胁之一,特别是在地震频发地区。
力学分析可以用于评估桥梁结构对地震荷载的抵抗能力,并确定合适的抗震设计措施,如设立隔震装置、加固桥墩和梁体等,以提高桥梁的抗震性能。
综上所述,力学知识在桥梁中的应用是不可或缺的。
造桥物理知识点总结

造桥物理知识点总结在建设桥梁时,物理学的一些基本原理和知识是不可或缺的。
本文将从力学、热学和光学等角度总结造桥的物理知识点,并探讨这些知识对桥梁设计和建设的重要性。
1.力学知识点 1.1. 桥梁的结构力学:桥梁在承受车辆和行人的负荷时需要具备足够的强度和刚度。
结构力学的知识可以帮助我们确定各种结构元件的尺寸和形状,以满足设计要求。
1.2. 材料力学:桥梁使用的材料(如钢、混凝土等)的力学性质对桥梁的承载能力和耐久性有着重要影响。
了解不同材料的强度、刚度和疲劳特性,可以帮助我们选择合适的材料,并合理设计桥梁的结构。
1.3. 桥梁的静力学平衡:桥梁的承载能力与其结构的平衡状态密切相关。
静力学平衡的知识可以帮助我们确定各个结构元件的受力情况,以确保桥梁的稳定性和安全性。
2.热学知识点 2.1. 热膨胀:桥梁在受热后会发生膨胀,而在受冷后会发生收缩。
了解热膨胀的原理和特性,可以帮助我们在桥梁设计和施工过程中合理考虑温度变化对桥梁的影响,避免因温度变化导致的结构损坏或变形。
2.2.热传导:不同材料的热传导性能不同,了解热传导的基本原理可以帮助我们在桥梁设计中选择合适的隔热或导热材料,以降低温度传导对桥梁结构的影响。
3.光学知识点 3.1. 反射与折射:了解光的反射和折射原理,可以帮助我们设计桥梁的照明系统,以确保行人和车辆在夜间或恶劣天气条件下能够清晰看到桥梁的存在和形状。
3.2. 环境光的影响:了解环境光对桥梁视觉效果的影响,可以帮助我们选择合适的桥梁材料和颜色,以提高桥梁的可见性和美观度。
总结起来,造桥涉及的物理知识点非常广泛,包括力学、热学和光学等多个学科。
通过了解这些物理知识,我们可以更好地设计和建造结构稳定、安全可靠的桥梁。
设计桥梁手工制作知识点

设计桥梁手工制作知识点设计和制作桥梁是一项需要综合知识和技能的任务,需要考虑到结构的稳定性、材料的选择、建筑的美观等多个方面。
在本文中,我们将探讨一些关键的设计和制作桥梁的知识点,以帮助读者更好地了解这一领域。
1. 桥梁设计的基本原理- 荷载分析:了解桥梁所需承载的重量和力的类型,以便选择适当的结构和材料。
- 结构形式:常见的桥梁结构形式有梁桥、拱桥、悬索桥等,不同的结构形式适用于不同的场景。
- 材料选择:选择合适的材料,如混凝土、钢材等,考虑到材料的强度、耐久性和成本等因素。
- 结构计算:通过运用工程力学原理和计算方法,计算桥梁的结构尺寸和受力情况,确保其稳定性和安全性。
2. 桥梁制作的关键步骤- 建立模型:根据设计图纸,使用合适的比例和尺寸,制作出桥梁的模型。
可以使用纸板、木材或其他适合的材料。
- 进行模型测试:将模型置于模拟环境中进行测试,模拟桥梁所需承载的荷载和力的作用,检验桥梁的强度和稳定性。
- 材料加工:根据设计要求,将所选材料切割、弯曲、焊接等加工成合适的形状和尺寸,为后续的组装做准备。
- 组装桥梁:将加工好的材料进行组装,使用合适的工艺和工具,确保桥梁的结构稳定,并进行必要的调整和修正。
- 完善细节:对桥梁进行细节修饰,修整和装饰桥面、桥墩等部分,增加桥梁的美观度和真实感。
3. 注意事项和技巧- 一手抓稳固性,一手抓美观性:在设计和制作过程中,需要平衡桥梁的稳定性和美观性,确保桥梁既能承担荷载,又能呈现出良好的外观效果。
- 选择合适的工具:根据桥梁的材料和制作要求,选择适当的工具,如锯、刨、钳等,以确保制作过程的顺利进行。
- 坚持细节的精益求精:桥梁的细节决定了整体效果,注意对桥面、桥墩等进行精细的修整和装饰,使桥梁呈现出最佳的外观效果。
- 真实模拟实际场景:在模型测试中,尽量模拟实际桥梁所需承载的荷载和力的作用,以验证桥梁的强度和稳定性,并进行相应的优化。
通过学习和了解以上的设计和制作桥梁的知识点,读者可以更好地进行桥梁项目的规划、设计和制作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桥梁设计中的力学知识与模型制作
1. 桥梁有哪些种类?
基本有如下几种:
2.为什么有这样的设计?
人和车辆等通过桥梁时,桥面会弯曲,如果桥面弯曲的越厉害就越会发生危险。
同样的材料,同样的厚度,桥的跨度越大,越易弯曲。
为防止桥面过于弯曲,可采用不同的方法帮助桥面承担重量。
如:梁式桥
梁式桥是一种在竖向荷载作用下无水平反力的结构。
由于外力(恒载和活载)的作用方向与承重结构的轴线接近垂直,故与同样跨径的其它结构体系相比,梁内产生的弯矩最大,通常需用抗弯能力强的材料(钢、木、钢筋混凝土等)来建造。
梁式桥还可分为:钢桁梁桥、T型梁桥、悬臂梁桥、连续梁桥和连续钢构桥等。
图一钢桁梁桥
图二连续式梁桥
拱式桥
拱式桥的主要承重结构是拱圈或拱肋。
这种结构在竖向荷载作用下,桥墩或桥台将承受水平推力。
同时,这种水平推力将显著抵消荷载所引起在拱圈(或拱肋)内的弯矩作用。
因此,与同跨径的梁相比,拱的弯矩和变形要小得多。
鉴于拱桥的承重结构以受压为主,通常就可用抗压能力强的圬工材料(如砖、石、混凝土)和钢筋混凝土等来建造。
拱桥的跨越能力很大,外形也较美观,在条件许可的情况下,修建拱桥往往是经济合理的。
拱桥种类繁多,常见的有:圬工拱桥、箱型拱桥、双曲拱桥、钢架拱桥、桁架拱桥、肋拱桥、桁式组合拱桥和斜腿钢架拱桥等。
根据拱桥的不同承载方式,还可分为:上承式桥梁、下承式桥梁、中承式桥梁。
图六上承式拱桥桥梁
图七下承式拱桥桥梁
图八中承式拱桥桥梁
悬索桥
传统的悬索桥(也称吊桥)均用悬挂在两边塔架上的强大缆索作为主要承重结构。
在竖向荷载作用下,通过吊杆使缆索承受很大的拉力,通常就需要在两岸桥台的后方修筑非常巨大的锚碇结构。
悬索桥也是具有水平反力(拉力)的结构。
现代的悬索桥上,广泛采用高强度的钢丝成股编制的钢缆,以充分发挥其优异的抗拉性能,因此结构自重较轻,就能以较小的建筑高度跨越其它任何桥型无与伦比的特大跨度。
悬索桥的另一特点是:成卷的钢缆易于运输,结构的组成构件较轻,便于无支架悬吊拼装。
我国在西南山岭地区和在遭受山洪泥石冲击等威胁的山区河流上,以及对于大跨径桥梁,当修建其他桥梁有困难的情况下,往往采用吊桥。
悬索桥的样式图见下图所示:
图九单跨式悬索桥
斜拉桥
斜拉桥由斜索、塔柱和主梁所组成。
用高强钢材制成的斜索将主粱多点吊起,并将主梁的恒载和车辆荷载传至塔柱,再通过塔柱基础传至地基。
这样,跨度软人的主梁就象一根多点弹性支承(吊起)的连续梁一样工作,从而可使主梁尺寸大大减小,结构自重显著减轻,既节省了结构材料,又大幅度地增大桥梁的跨越能力。
此外,与悬索桥相比,斜拉桥的结构刚度大,即在荷载作用下的结构变形小得多,且其抵抗风振的能力也比悬索桥好,这也是在斜拉桥可能达到大跨度情况下使悬索桥逊色的重要因素。
斜索在立面上也可布置成不同型式。
各种索形在构造上和力学上各有特点,在外形美观上也各具特色。
常用的索形布置为竖琴形(图十)和扇形(图十一)两种。
另一种是斜索集中锚固在塔顶的辐射形布置(图十二),因其塔顶锚固结构复杂而较
少采用。
图十竖琴形斜拉桥
图十一扇形斜拉桥
图十二放射形斜拉桥
3.建桥的材料及性能。
材料的选择主要考虑如下方面:(1).材料是否易得?(2).成本有多
桥梁模型制作:
自己设计并制作桥梁模型
要求:制作一个主桥面长不少于50cm的桥梁模型。
桥跨度不少于15厘米,桥面距离桌面高度不少于4厘米,宽度不少于7厘米,桥的总质量尽量轻。
材料:纸,木条,绳,铁丝,胶水等。
评价标准:
(1)桥梁的坚固性(可以用桥面上放重物的方式)。
(2).造型是
否美观。
作品应力求有创造性,并能贴近实际、结构合理、制作精巧。
纸结构的基本形状:
纸结构的组合:
纸结构的连接技巧:
纸板结构设计
一、纸板构件不同形状的载重量和坚固性 二、纸板构件不同组合的载重量和坚固性 三、你的设计如何做到载重量最大和最坚固。