中压配电网无功补偿装置对电力线载波通信影响分析的文献综述

中压配电网无功补偿装置对电力线载波通信影响分析的文献综述
中压配电网无功补偿装置对电力线载波通信影响分析的文献综述

中压配电网无功补偿装置对电力线载波通信影响分析的文献综述

1.课题的目的和意义

保障能源安全、应对全球气候变化是全人类所面临的重大挑战[1]。为应对这一严峻各国都把电力建设的重点放在了智能电网的研究与建设上。智能电网是使用健全的双路通信、高级的传感器和分布式计算机的电力传输与分配的网络,其目的是改善电力传送和使用的效率,提高电网的可靠性和安全性[2]。在智能电网的建设过程中,智能配电网是其研究重点,而通信技术则是实现智能配电网的基础。为了保证智能配电网的特征能够实现,其通信系统需要满足高可靠性、安全性、实时性和灵活性等条件。目前,常用的通信技术分为无线通信和有线通信两种。有线通信技术包括光纤通信、电力线载波通信 (PLC)、以太网无源光网络 (EPON)等。无线通信技术包括ZigBee、全球微波接入系统(WiMAX[3])、GPRS 等。随着电力线载波技术的革新,电力线载波通信(PLC)又成为了新的热点,在中压配电网中,PLC 可以为配电网自动化、AMI 等提供数据传输通道。配电网处于电力系统的末端[4],具有地域分布广、电网规模大、设备种类多、网络连接多样、运行方式多变等鲜明特点。我国的配电

网规模是巨大的,用户数量和类型是多变的,为了维持电压和无功的稳定,在配电网中存在大量的无功补偿装置,所以信号在电力载波线中传递时通常会经过一个或以上的无功补偿装置,会对信号的强度或其他的方面有一定的影响。本课题就信号

通过不同无功补偿装置前后产生的差异进行研究。

2.1电力线载波通信的发展历程

电力线载波(Power Line Carrier,PLC)通信是利用高压电力线(通常指35 kV及以上电压等级)、中压电力线(指10 kV电压等级)或低压配电线(380 220 V用户线)作为信息传输媒介进行语音或数据传输的一种特殊通信方式。电力线载波通信是电力系统独有的通信方式,其最大传输距离可达十几千米,系统可靠性高,且专有通道可以保证数据安全[5]。电力线载波通信中压、低压均可覆盖,适用于用户信息采集、负荷管理等业务,以及配电自动化、智能电动车充电站等扩展业务。我国中压配电网基本以10 kV 为主/ 10 kV而配电网的网络损耗最大,改造的潜力也最大。电力线载波通信技术的发展经历了从模拟到数字的发展过程。电力线载波通信技术出现于20世纪(以下,省略)20年代初期。它以电力线路为传输通道,具有可靠性高、投资少、见快、与电网建设同步等得天独厚的优点。在我国,40年代时已有日本生产的载波机在东北运行,作为长距离电力调度的通信手段。50~60年代,我国开始研制自己的ZDD-1型电力线载波机,未能实现产品化。后经不断改进,形成了具有中国特色的ZDD-5型电力线载波机。该设备为4门用户、两级调幅、具有AGC(自动增益控制)电路和音频转接接口,呼叫方式采用脉冲制式,经改进的ZDD-5A型机也能够复用远动信号。70年代,我国模拟电力线载波机技术已趋成熟,以ZDD-12、ZJ-5、ZBD-3机型为代表,在技术指标上得到了较大地提高,并成为我国应用时间最长的主流机型。我们

可将在此之前的载波机称为第一代载波机。80年代中期,电力线载波技术开始了单片

机和集成化的革命,产生了小型化、多功能的载波机,如S-2载波机等。在这一阶段,主要的技术进步为单片机自动盘代替了布线逻辑的自动盘;集成电路的调制器、压扩器、滤波器和AGC放大器代替了笨重、多故障的模拟电路;CMOS、VMOS高频大功率管在功放电路中的应用等。这一阶段的载波机可称之为第二代载波机。90年代中期,以SNC-5电力线载波机为代表,在国内首次采用数字信号处理(DSP)技术,将载波机音频至中频部分的信号处理使用DSP器件来完成,实现了软件调制、滤波、限幅和自动增益控制。这类载波机可称之为数字化电力线载波机,划为第三代。90年代末期,采用新西兰生产的M340数据复接器(目前国内已有自主知识产权的同类产品),结合电力线载波机的高频部分为一体的全数字多路复接的载波机问世。这一成果提高了载波机的通信容量,从根本上初步解决了载波机通信容量小的技术“瓶颈”问题,从而

为电力线载波市场带来了空前的机遇。

2.2.电力线载波通信的现状和瓶颈

近年来,随着光纤通信的发展,电力线载波通信已从主导的电力通信方式改变为辅助通信方式。但是,由于我国电力通信发展水平的不平衡,由于电力通信规程要求主要变电站必须具有两条以上不同通信方式的互为备用的通信信道,由于电力线载波技术革新带来的新的载波功能以及由于昔日数量庞大的电力线载波机的更新换代,都导致了电力线载波机虽然作为电力通信的辅助通信方式,但是在全国仍然存在较大的市场需求。而且电力线通信(Power Line Communication, PLC)可以充分利用电网现成的物理网络进行通信,具有投资小、灵活性强、网络可靠性高等特点。此外,它可以沟通到电网中的任何测控点,可以实现控制中心与各远方终端设备的信息交换[6],所以电力线载波通信成为构成智能配电网的重要方式。

目前,中压电力线载波通信技术发展遇到瓶颈[7],主要表现为:现有技术未能有效解决复杂信道对载波传输影响,导致电力线载波通信传输带宽、距离没有明显提高;现有载波传输容量较小,尚不能满足大容量业务需求;现有载波网络串行工作方式未能满足 IP 化网络发展趋势。由于中压电力线具有噪声大、信号衰减快、线路阻抗变化大等不利因素,在很大程度上影响了通信的可靠性。所以,如何克服以上问题,提高信号传输的稳定性和抗干扰性是实现电力线载波通信技术的关键。

3.1无功补偿装置的作用

无功补偿装置能有效地达到平衡电网中的无功、提高系统功率因数和系统中无功储备、防止电压崩溃、保障电力系统电能质量、降低网络损耗,是电网能够安全运行不可缺少的部分,也是提高中压输配电网络经济性和保障可靠运行的一种经济实用的技术手段。无功补偿装置从原理上说是电网中呈容性或感性的元件,它是由电容器组及其配套设备(投切元件、检查及保护元件)连接而成的一个整体,对系统进行无功功率补偿、电压控制的装置[8]。

3.2中压配电网的无功补偿方式

目前,国内10kV配电网无功补偿方式一般有:变电站集中补偿方式、低压集中补偿方式、杆上无功补偿方式和用户终端分散补偿方式。(1)变电站集中补偿方式。主要针对输电网的无功平衡,在变电站进行集中补偿,补偿装置一般连接在变电站的1OkV母线上,补偿装置包括并联电容器、同步调相机、静止补偿器等。主要目的是改善输电网的功率因数、提高终端变电所的电压和补偿主变的无功损耗,但是对配电网的降损所起作用不大。(2)低压集中补偿方式。是指在配电变压器低压侧进行集中补偿,通常采用微机控制的低压并联电容器柜。此种方式可以提高配变的功率因数,实现无功的就地平衡,对配电网和配变的降损有一定作用,对用户侧电压水平有一定稳定作用。这种方式虽然有助于保证用户的电能质量,由于线路的电压水平是由配电网系统情况决定的,因此对系统无功情况改善不大。(3)杆上补偿方式。是指采用IOkV户外并联电容器安装在架空线路的杆塔上(或另行架杆)进行无功补偿的方式,以提高配电网功率因数,达到降损升压的目的。现有杆上补偿方式一般采用长期固定补偿,但适应能力较差,另外易受安装环境和空间等客观条件限制。

(4)用户终端分散补偿方式。是指直接对用户末端进行无功补偿的方式,以降低损耗和维持电压水平。此种方式的低压无功补偿通常按配电变压器低压侧最大无功需求来确定安装容量,但各配电变压器低压负荷波动的不同时吐易造成大量电容器在较轻负载时的闲置,设备利用率不局[9]。

3.3无功补偿装置的类型和结构

考虑到无功功率是由于系统中各种感性负载所产生,早期的无功功率补偿主要为同步调相机和静止电容器[10]。同步调相机是一台工作于空载的同步电动机。根据需要控制其励磁磁场,可以使其向系统提供感性无功功率或从系统吸取感性无功功率。但由于动态响应速度慢,不适合各类快速变化非线性负载的要求,且成本高,安装复杂,因此应用受到限制。

无功补偿电容器是早期无功功率补

偿的另一种方法。该方法是将一定数量的

电容器并联在电网中。由于补偿方法简单

经济,灵活方便因此早期得到广泛的应用。

但补偿容量有级,固定,而且可能与系统

发生谐振。并联型无功补偿装置可以等效成一个电流源,从系统中吸收容性电流.其等效电路如图所示[11].

随着电力电子技术的发展及其在电力系统中的广泛应用,产生了目前广泛用于无功补偿的静止无功补偿器简称SVC。由晶闸管控制电器(ThyristorCon-trolledReactor———TCR),晶闸管投切电容器(Thyristor Switched Capacitor———TSC)和以及二者的混合装置(TCR+TSC)等主要形式组成的静止补偿

器(Static Var Compensator———SVC)实际上可看作一个可调节的并联电纳,其性能比固定并联电容器要好得多[12]。而所谓静止是指没有运动部件,这和同步调相机不一样。静止补偿器最重要的性质是它能维持其端电压实际上不发生变化,所以它要连续调节与电力系统变换功率,其第二个重要性质是响应速度。

图1 TCR 图2 TSC 图3 SVC

如图 1 所示为 TCR 单相原理图,将两个反并联的晶闸管与电抗器串联再接入电网中。TSC 单相原理图如图2 所示,两个反并联晶闸管串联电容器并联接入电网系统中。如图3 所示为混合型 SVC 单相原理图。显然这种结构的无功补偿装置综合了TCR 和 TSC 二者的优点,图中电感与电容的两个并联支路分别表示 3 次和 5 次谐波滤波器[13]。

SVG又称为静止无功发生器(Static Var Generator———SVG[14])或高级静止无功补偿器(Advanced Static VarCompensator———ASVC[15]),也叫静止调相机(StaticCondenser———STATCON[16-17])。它是基于瞬时无功功率的概念和补偿原理采用GTO构成的换相交流器。SVG分电压型和电流型桥式电路两种。由于电压型控制方便,损耗小,因此在实际应用中被广泛采用。通过调节桥式电路交流侧输出电压的相位,幅值或者直接调节其交流侧电流进行无功功率的交换。与SVC相比,其调节速度更快,调节范围更宽,欠压条件下的无功调节能力更强,因此具有良好的补偿特性。但在大功率输电系统中受现有GTO开关频率的限制必须采用多桥的SPWM技术抑制电路的谐波。因为SVG比SVC的调节速度更快、运行范围更宽,所用电抗器的容量也大为降低,所以SVG是动态无功补偿装置发展的重要方向。

4.总结

随着能源形势的越来越严峻,智能电网成为国内外的研究热点是必然的[18-19]。智能配电网是智能电网的重要组成部分,通信技术是实现智能配电网的关键。随着电力

线载波通信技术的发展,电力线载波通信成为实现智能配电网的重要方式。在我国10kv配电网的规模是巨大的,每时每刻都有不同的信号在电力线中进行着传播,无功补偿装置遍布于配电网的每一个角落,所以信号经过无功补偿装置是无法避免的,通过研究可以提前预知信号的变化,为信号的正确传递提供保障。

参考文献:

[1]刘家泰、孙振权,陈颖智能配电网通信技术发展综述[J] 物联网技术2013.1.1 5

[2]黄盛智能配电网通信业务需求分析及技术方案[J] 电力系统通信 2010.6.10

[3]辛培哲、李隽、王玉东、肖智宏、刘丽榕、刘颖智能配电网通信技术研究及应用[J] 电力系统通信 2010.11.10

[4]刘科研,盛万兴,张东霞,贾东梨,胡丽娟,何开元智能配电网大数据应用需求和场景分析研究[J] 中国电机工程学报 2015.1.20

[5]汤效军电力线载波通信的技术的发展及特点[J] 电力系统通信 2003.2.25

[6]郭以贺中压电力线通信关键技术研究[D] 华北电力大学2014.6.1

[7]闫磊、常海娇、许鸿飞、罗先南中压电力线载波通信现状及发展趋势探讨[J] 电力信息与通信技术 2014.1.15

[8]方欢欢我国中压动态无功补偿装置的发展及展望[J] 电子技术应用 2012.8.6

[9]周亮军 10kV配电网无功补偿优化配置[J] 四川建材 2011.12.08

[10]王晓明无功补偿装置的现状和发展趋势[J] 应用能源技术 2006.4.25

[11]华福年、陈宏剑,李仁杰无功补偿装置综述[J] 沈阳工业大学学报 1998.6.30

[12]张刘春、韩如成、张守玉无功补偿装置的现状和发展趋势[J] 太原重型机械学院学报 2004.3.30

[13]王一鸣,杨昊明 10kv动态无功补偿装置的研究[J] 中国科技信息 2005.12.15

[14] Laszlo Gyugyi Dynamic canpensation of AC transmission lines by soli-d-state sychronous voltage sources IEEE Transtction on Pover Delivery, 1994,9(2):904-911 [15]Vector Analysis and Control of Advanced Static V AR Compensators[J].C.Schaud er,H.Mehta.IEE PROCEEDINGS C,1993,140(4):8-10.

[16]Modeling Analysis and Control of a Current Source Inverter-Based STATCOM [J].Dong Shen and P.W.Lehn,member,IEEE.IEEE Trasactions of Power Delivery,2002, 17(1):197-203.

[17]Circuit-Level Comparison of STATCOM Technologies[J].C.K.Lee,JosephS.K.L e ung,Member,IEEE.IEEE TRANSACTIONS ON POWER ELECRONICS,2002,18(4):3 06-310.

[18] Research Reports International. Understanding the Smartcria[R]. Zoos.

[19]郭以贺,谢志远,石新春基于多导体传输线的中压电力线通信信道建模[J] 中国电机工程学报2014.3.5

电力通信传输网络可靠性分析

电力通信传输网络可靠性分析 摘要:根据智能电网的要求,通信传输网的可靠性分析对电力系统很重要。传输网作为电力通信网的核心,它承载着大量的生产和管理业务,是业务正常运行的保证,其可靠性高低直接影响着电力系统安全生产和稳定运行。本文对电力通信传输网络可靠性进行了简要的分析。 关键词:电力通信传输网;可靠性;分析 abstract: according to the requirement of intelligent power grid, the reliability of the transmission network communication of power system analysis is very important. as the core of the electric power communication network transmission, it carries with a lot of production and management business, it is the business that the normal operation of the guarantee, the reliability of the power system directly influence the safety production and stable operation. in this paper, the electric power transmission network reliability briefly analysed. key words: electric power transmission network communication; reliability; analysis 中图分类号:f407.61 文献标识码:a 文章编号 1.电力通信网可靠性研究现状

配电网无功补偿方式

配电网无功补偿方式 合理的无功补偿点的选择以及补偿容量的确定,能够有效地维持系统的电压水平,提高系统的电压稳定性,避免大量无功的远距离传输,从而降低有功网损。而且由于我国配电网长期以来无功缺乏,造成的网损相当大,因此无功功率补偿是降损措施中投资少回收高的有效方案。配电网无功补偿方式常用的有:变电站集中补偿方式、低压集中补偿方式、杆上无功补偿方式和用户终端分散补偿方式。 配电网无功补偿方案 1 变电站集中补偿方式 针对输电网的无功平衡,在变电站进行集中补偿(如图1的方式1),补偿装置包括并联电容器、同步调相机、静止补偿器等,主要目的是改善输电网的功率因数、提高终端变电所的电压和补偿主变的无功损耗。这些补偿装置一般连接在变电站的10kV母线上,因此具有管理容易、维护方便等优点。 为了实现变电站的电压控制,通常采用无功补偿装置(一般是并联电容器组)结合变压器有载调压共同调节。通过两者的协调来进行电压/无功控制在国内已经积累了丰富的经验,九区图便是一种变电站电压/无功控制的有效方法。然而操作上还是较为麻烦的,因为由于限值需要随不同运行方式进行相应的调整,甚至在某些区上会产生振荡现象;而且由于实际操作中变压器有载分接头的调节和电容器组的投切次数是有限的,而在九区图没有相应的判断。因此,现行九区图的调节效果还有待进一步改善。 2 低压集中补偿方式 在配电网中,目前国内较普遍采用的无功补偿方式是在配电变压器380V侧进行集中补偿(如图1的方式2),通常采用微机控制的低压并联电容器柜,容量在几十至几百千乏左右,根据用户负荷水平的波动投入相应数量的电容器进行跟踪补偿。它主要目的是提高专用变用户的功率因数,实现无功补偿的就地平衡,对配电网和配电变的降损有积极作用,同时也有助于保证该用户的电压水平。这种补偿方式的投资及维护均由专用变用户承担。目前国内各厂家生产的自动补偿装置通常是根据功率因数来进行电容器的自动投切。就这种方案而言,虽然有助于保证用户的电能质量,但对电力系统并不可取。虽然线路电压的波动主要由无功量变化引起,但线路的电压水平往往是由系统情况决定的。当线路电压基准值偏高或偏低时,无功的投切量可能与实际需求相去甚远,易出现无功过补偿或欠补偿。 对配电系统来说,除了专用变之外,还有许多公用变。而面向广大家庭用户及其他小型用户的公用变,由于其通常安装在户外的杆架上,实现低压无功集中补偿则是不现实的:难于维护、控制和管理,且容易造成生产安全隐患。这样,配电网的无功补偿受到了很大地限制。 3 杆上补偿方式 由于配电网中大量存在的公用变压器没有进行低压补偿,使得补偿度受到限制。由此造成很大的无功缺口需要由变电站或发电厂来填,大量的无功沿线传输使得配电网网损仍然居高难下。因此可以采用10kV户外并联电容器安装在架空线路的杆塔上(或另行架杆)进行无功补偿(如图1的方式3),以提高配电网功率因数,达到降损升压的目的。但由于杆上安装的并联电容器远离变电站,容易出现保护不易配置、控制成本高、维护工作量大、受安装环境和空间等客观条件限制等问题。因此,杆上无功优化补偿必须结合以下实际工程要求来进行: (1)补偿点宜少,建议一条配电线路上宜采用单点补偿,不宜采用多点补偿; (2)控制方式从简。建议杆上补偿不设分组投切; (3)建议补偿容量不宜过大。补偿容量太大将会导致配电线路在轻载时出现过电压和过补偿现象;另外杆上空间有限,太多数电容器同杆架设,既不安全,也不利于电容器散热; (4)建议保护方式应简化。主要采用熔断器和氧化锌避雷器作简单保护。 显然,杆上无功补偿主要是针对10kV馈线上的公用变所需无功进行补偿,因其具有投资小,回收快,补偿效率较高,便于管理和维护等优点,适合于功率因数较低且负荷较重的

网络系统可靠性研究现状与展望资料

网络系统可靠性研究 现状与展望 姓名:杨玉 学校:潍坊学院 院系:数学与信息科学学院 学号:10051140234 指导老师:蔡建生 专业:数学与应用数学 班级:2010级二班

一、摘要 伴随着人类社会的网络化进程,人类赖以生存的网络系统规模越来越庞大、结构越来越复杂,这导致网络系统可靠性问题越来越严峻。本文首先探讨了网络系统可靠性的发展历程、概念与特点,进而从度量参数、建模、分析、优化四个方面系统综述了网络系统可靠性的研究现状,最后对网络系统可靠性研究未来的发展进行了展望。 二、关键词:可靠性;网络系统;综述;现状;展望 三、引言 21 世纪以来,以信息技术的飞速发展为基础,人类社会加快了网络化进程。交通网络、通信网络、电力网络、物流网络……可以说,“我们被网络包围着”,几乎所有的复杂系统都可以抽象成网络模型,这些网络往往有着大量的节点,节点之间有着复杂的连接关系。自从小世界效应[1]和无标度特性[2]发现以来,复杂网络的研究在过去10 年得到了迅速发展,其研究者来自图论、统计物理、计算机、管理学、社会学以及生物学等各个不同领域,仅发表在《Nature》和《Science》上的相关论文就达百篇。对复杂网络系统结构、功能、动力学行为的深入探索、科学理解以及可能的应用,已成为多个学科领域共同关注的前沿热点[3-14]。 随着复杂网络研究的兴起,作为复杂网络最重要的研究问题之一,网络系统可靠性研究的重大理论意义和应用价值也日益凸显出来[15, 16]。人们开始关注:这些复杂的网络系统到底有多可靠?2003 年8 月美加大停电事故导致美国的8 个州和加拿大的2 个省发生大规模停电,约5000 万居民受到影响,损失负荷量61800MW,经济损失约300 亿美元;2005 年12 月台湾海峡地震造成多条国际海底通信光缆发生中断,导致整个亚太地区的互联网服务几近瘫痪,中国大陆至台湾地区、美国、欧洲等方向国际港澳台通信线路受此影响亦大量中断;2008 年1 月,南方冰雪灾害导致我国十余个省市交通瘫痪、电力中断、供水停止、燃料告急、食物紧张……这些我们赖以生存的网络系统规模越来越庞大,结构越来越复杂,但越来越频繁发生的事故也将一系列严峻的问题摆在我们面前:一些微不足道的事故隐患是否会导致整个网络系统的崩溃?在发生严重自然灾

配电变压器损坏原因分析及对策(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 配电变压器损坏原因分析及对策 (标准版)

配电变压器损坏原因分析及对策(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 1原因分析 在广大农村,配电变压器时常损坏,特别是在农村用电高峰期和雷雨季节更是时有发生,笔者通过长期跟踪调查发现导致配电变压器损坏的主要原因有以下几个方面。 1.1过载 一是随着人们生活的提高,用电量普遍迅速增加,原来的配电变压器容量小,小马拉大车,不能满足用户的需要,造成变压器过负载运行。二是由于季节性和特殊天气等原因造成用电高峰,使配电变压器过载运行。由于变压器长期过载运行,造成变压器内部各部件、线圈、油绝缘老化而使变压器烧毁。 1.2绕组绝缘受潮 一是配电变压器的负荷大部分随季节性和时间性分配,特别是在农村农忙季节配电变压器将在过负荷或满负荷下使用,在夜晚又是轻负荷使用,负荷曲线差值很大,运行温度最高达80℃以上,而最低温

度在10℃。而且农村变压器因容量小没有安装专门的呼吸装置,多在油枕加油盖上进行呼吸,所以空气中的水分在绝缘油中会逐渐增加,从运行八年以上的配电变压器的检修情况来看,每台变压器底部水分平均达100g以上,这些水分都是通过变压器油热胀冷缩的呼吸空气从油中沉淀下来的。二是变压器内部缺油使油面降低造成绝缘油与空气接触面增大,加速了空气中水分进入油面,降低了变压器内部绝缘强度,当绝缘降低到一定值时变压器内部就发生了击穿短路故障。 1.3对配电变压器违章加油 某电工对正在运行的配电变压器加油,时隔1h后,该变压器高压跌落开关保险熔丝熔断两相,并有轻微喷油,经现场检查,需要大修。造成该变压器烧毁的主要原因:一是新加的变压器油与该变压器箱体内的油型号不一致,变压器油有几种油基,不同型号的油基原则上不能混用;二是在对该配电变压器加油时没有停电,造成变压器内部冷热油相混后,循环油流加速,将器身底部的水分带起循环到高低压线圈内部使绝缘下降造成击穿短路;三是加入了不合格变压器油。 1.4无功补偿不当引起谐振过电压 为了降低线损,提高设备的利用率,在《农村低压电力技术规程》中规定配电变压器容量在100kVA以上的宜采用无功补偿装置。如果补

10kV配电网无功补偿技术的应用和要点

10kV配电网无功补偿技术的应用和要点 发表时间:2018-11-13T19:04:56.750Z 来源:《电力设备》2018年第20期作者:单颖 [导读] 摘要:10kV电网运行过程中,存在电能损耗过大的情况,选择合理的无功补偿方式,能够使配电网线路电能损耗大大降低,从而使配电网的运行更好的满足生产和生活需要,更好的保障电网的安全运行,提高了电力企业的经济效益,值得进行推广。 (保定电力职业技术学院河北保定 071051) 摘要:10kV电网运行过程中,存在电能损耗过大的情况,选择合理的无功补偿方式,能够使配电网线路电能损耗大大降低,从而使配电网的运行更好的满足生产和生活需要,更好的保障电网的安全运行,提高了电力企业的经济效益,值得进行推广。 关键词:10kV配电网;无功补偿技术;应用;要点 引言 当前社会发展迅速,人们对电能的依赖程度不断增加,保证电能供应质量,关系着供电单位的外在形象以及经济效益的增长。无功补偿可保证电气设备的正常运行,降低给有功功率造成的不良影响,降小配电网线损的同时,保证供电质量,因此,供电单位应做好无功补偿技术的研究,保证配电网安全稳定运行,为人们的生产生活提供优质的电能,满意的服务。 1无功功率及补偿原理 配电网中的功率分为有功功率、无功功率与视在功率,其中有功功率指做功消耗的功率,视在功率是有功功率与无功功率的向量和。为加深对无功补偿的理解,在探讨无功补偿原理之前,有必要对配电网中无功功率进行分析,以正确认识无功功率存在的客观性与必要性。 1.1无功功率 众所周知,配电网中存在电流与磁场间的转换,电气设备中用于建立与维持磁场的电功率,即为无功功率。无功功率不对外做功,但是维持电气设备及配电网正常运行的重要功率,例如,变压器线圈产生的磁场、电动机转子磁场,都需要从电源中获得无功功率加以维持。考虑到配电网中电磁间的转化复杂,配电网提供的无功功率无法满足负荷要求,因此,需应用专业技术对无功功率进行补偿,确保用电设备在额定功率状态下工作。 1.2无功补偿原理 无功补偿的原理为:将感性功率负荷和容性功率负荷装置并联接入到同一电路中,当感性负荷释放能量时,容性负荷会吸收释放的能量,反之,感性负荷会吸收容性负荷释放的能量,这样能量便在两者之间相互交换,最终实现无功补偿的目的。 1.3无功补偿原则 配电网无功补偿是一项专业性较强的工作,为实现更好的补偿效果,供电单位应注重遵守以下原则:全面规划原则。设计与构建配电网时,应做好充分的调查,认真考虑配电网负荷情况,以及所用电气设备数量、类型等内容,将无功补偿纳入设计工作的重点,对无功补偿进行全面规划。如此才能在保证配电网建设工作稳步推进的基础上,更好的投入运营。合理布局原则。配电网无功补偿时,还应注重合理性,既要考虑补偿位置选择的合理性,又要保证补偿装置、补偿容量选择的合理性。分级补偿原则。对配电线路无功补偿方案进行充分的论证,分析影响无功补偿的因素,从经济投入,实施难易程度上加以权衡,确定最佳的分级补偿方案。就地平衡原则。配电网无功补偿时,应注重遵守就地平衡原则,提高补偿质量的同时,降低给配电网正常运行的影响。 210kV配电网运行现状分析 目前,城市和农村中10kV配电网的覆盖率非常高,但是在运行过程中,10KV配电网却存在许多问题,比如供电能力不足、损耗过大,不能解决这些问题和矛盾,就会影响正常的经济和生活,以下对10kV配电网的运行情况进行分析。 2.110kV配电网出现的问题 目前,10kV配电网在实际运行过程中,出现的主要问题包括:(1)10kV配电网运行设备落后,不能满足实际工作和生活中所需的电力要求,超负荷运行的情况频频出现,因此10kV配电网电能损耗特别大。(2)10kV配电网到达用户端的的电压很低,原因是供电线路过长、线路设计不合理。(3)10kV配电网的网点单一,变电所位置不合理。 2.210kV配电网电能损失大的原因 实际运行过程中,10kV配电网存在的问题包括:无功损耗大、电压低、线路损耗过高、电网容量低等,以上问题会引起10kV配电网的线路和设备电力损耗,使生产和生活都造成不便,电力企业效益受到影响。 310kV配电网无功补偿技术的应用方式 无功补偿技术在配电网中应用,可以使线路损耗大大降低,是一种高效节能的配电网施工方法。目前无功补偿技术在配电网中的应用方式包括:(1)变电站集中配网;(2)低压分散无功补偿;(3)用户终端分散补偿以及杆上无功补偿。 3.1变电站集中补偿 要想使输电网降低线路的损耗,供电网络无功功率取得平衡,可以对变电站进行集中补偿。集中补偿方法需要的设备有:并联形式的电容器、同步调相机和静止补偿器等。变电站采用集中补偿方法的作用是,对输电网和输电线路的功率因数进行改善,选择集中补偿,补偿需要的设备要安装在变电站的主干线路上。集中补偿的优势为,设备安装在变电站内,管理方便、设备维护方便,缺点是降低线路损耗的效果不明显。 3.2低压分散无功补偿 低压分散无功补偿技术,指的是变压器电压低的一侧安装补偿设备,对电容器采用分散固定容量补偿,它能够避免电容器并联集中补充方式由于容量太大导致涌流太大的问题,同时还能增强配电网输供电能力,有效降低损耗,节能明显。分散补偿的优点是,电压负荷比较低时,可以减少变压器运行组数,避免补偿过量,同时设备应用简单,可以节省经济成本。缺点是操作需要人工进行投切,如果操作人员出现操作失误,就会发生补偿过量或者补偿不足的情况。 3.3无功功率就地补偿 无功功率就地补偿指的是,把电力感应负载和电容器实施并联,这样就可以同电机运行和停止一起同步,电机在停止运行后,可以对电容器直接供电,这样就不用其他的供电方式。实际运行过程中,电机的无功由电容器直接供给。采用此种方法,优点是能量交换距离非

船舶结构可靠性分析

大连海洋大学 船舶结构可靠性分析Analysis of the reliability of the ship structure 船舶结构可靠性分析研究综述 研究领域:船舶与海洋工程(专硕) 姓名:邓英杰 学号: 2015085223012

船舶结构可靠性分析研究综述 摘要:结构可靠性理论是60年代后才发展起来的一门新兴学科,作为结构强度理论与计算结构力学的一个新分支,具有工程实践和船舶安全评价的重大意义。本文就船舶结构可靠性分析近代的发展做了总结性的综述,从载荷、承载能力、可靠性分析方法三个角度出发,并对其今后的研究方向提出了建议。 关键词:船舶结构;可靠性;船舶安全评价;分析方法 1 前言 传统的船舶结构强度计算方法采用的是确定性方法,将船体载荷和材料力学特性等诸多因素都看做是确定性的单值量,这与实际不符,传统的确定性设计已不能满足现代船舶发展的需求,而采用概率统计的方法相比之下更为合理,进而诞生了船舶结构可靠性分析这一学科。 1969年,挪威学者Nordenstrom【1】发表船舶结构分析里程碑的一篇文章,率先将波浪载荷和船舶总纵强度的承载能力看做是随机分布的变量,进而分析船体的失效概率。1972年,美国学者对船体总纵强度的概率模型进行了系统的专题研究,船舶结构可靠性分析理论得到了进一步的发展。 上个世纪80年代中期,船舶可靠性分析方法已经建立了起来。目前,世界各大船级社都在制定以可靠性分析为基础的船舶结构设计规则。

2 载荷 对于船舶结构,静水载荷和波浪载荷是两种主要的载荷形式。 波浪载荷的理论计算是基于上个世纪50年代末的切片理论建立起来的。80年代后期,人们对波浪载荷的研究增加了许多新的内容。S.G.Stiansen【2】提出了波浪载荷的概率模型,研究了低频相应和高频效应的概率组合问题;美国学者 C.G.Soares 从当时的技术水平出发,提出了一个船舶波浪载荷效应的可靠性分析标准模式。该方法的创新性在于,在线性切片理论计算船体波浪弯矩的基础之上,将高频载荷以经验性影响因子的形式与低频波浪弯矩组合。 在早期, 波浪载荷计算中应用的大多是线性理论。随着研究的深入和实践经验的增加, 波浪载荷的非线性性质引起了人们的关注。大量的实船测量和船模试验表明, 行驶在汹涛中的高速舰船, 由于船体的非直舷, 以及底部砰击、外张砰击和甲板上浪等因素的影响, 导致舰船的运动, 特别是波浪载荷呈明显的非线性。这时, 在规则波中的运动不再具有简谐性质, 中垂波浪弯矩幅值明显大于中拱时的幅值。加突出的是, 由于底部砰击和外张砰击, 使船体剖面内出现高频振动弯矩。这种弹性振动是一种瞬态响应, 在高海况下, 两者迭加而成的中垂合成弯矩幅值将远大于线性理论的计算结果。 为了计算砰击振动弯矩,一种被称为“两步走”的方法被广泛使用,即先在刚体假设下计算船体运动和作用在其上的水动力,

配电网无功补偿

配电网无功补偿 发表时间:2018-04-16T09:30:22.227Z 来源:《电力设备》2017年第31期作者:田金文展瑞磊段其岳 [导读] 摘要:随着社会进步、科技的发展,电力企业在如何更好地满足用户不断提高的用电需求同时,还要对用户电网进行更全面的管理、监控,提高供用电的安全可靠性,保证用户设备和配电网的安全运行,降低能量损耗。 (国网阳谷县供电公司山东聊城 252300) 摘要:随着社会进步、科技的发展,电力企业在如何更好地满足用户不断提高的用电需求同时,还要对用户电网进行更全面的管理、监控,提高供用电的安全可靠性,保证用户设备和配电网的安全运行,降低能量损耗。在这个过程中,将有各种新技术、新设备发展起来,未来的无功补偿技术将会更加合理和经济有效。 关键词:无功功率产生;无功补偿现状;发展趋势 一、配电网无功功率的产生 在交流电力系统中,发电机在发有功功率的同时也发无功功率,它是主要的无功功率电源;运行中的输电线路,由于线间和线对地间的电容效应也产生部分无功功率,称为线路的充电功率,它和电压的高低、线路的长短以及线路的结构等因素有关。电能的用户(负荷)在需要有功功率的同时还需要无功功率,其大小和负荷的功率因数有关;由此可见,无功功率在输、配电线、变压器中的流动会增加有功功率损耗,产生电压降落。 二、低压配电网无功补偿的含义及现状 低压配电网中的无功补偿是对低压配电网中的无功功率进行补偿的措施,旨在提高低压配电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善低压配电网的供电环境。低压配电网中的无功补偿通过选择合适的补偿方法和补偿装置,可以最大限度的减少低压配电网的损耗,使电网质量提高,减少电压波动和降低谐波,从而提高电压稳定性和电能质量。 目前低压电网无功补偿普遍采取在配电房集中补偿、分散就地补偿和个别补偿三种方式。无功信号的采集使用单相信号,利用三相电容器进行三相共补:现在控制信号采集一般在单相上进行,这种方式不能满足三相负荷量在同一时间不同变化要求。三相共补偿方式适用于负荷主要是使用三相负载的地方,如工业开发区的工业用电。多采用集中补偿和就地补偿,即随机补偿。但对于当前的负载主要为居民用户,由于电源接入点不同和用电负荷不同,三相负荷很可能不平衡,各相无功需量也不同,采用这种补偿方式会在不同程度上出现过补或欠补。无功控制物理量多用电压、功率因数、无功电流,投切方式为:循环投切、编码投切。这种策略没有考虑电压的平衡关系与区域的无功优化。使用电容器容量大,且由多个电容器并列分组进行循环投切,投切开关多采用交流接触器,其缺点是响应速度较慢,在投切过程中会对电网和交流接触器的接点产生冲击涌流,影响电网质量降低交流接触器使用寿命。现价段低压配电网的无功补偿都不具备配电监测功能,依靠人为操作普遍存在时效性差的缺点,从而影响它的经济性和全安性。 三、无功补偿的作用 (一)提高用电户的功率因数,提高用电设备的利用率,降低用电成本; (二)装设静止无功补偿器还能改善电网的电压波形,减小谐波分量和解决负序电流问题。对电容器、电缆、电机、变压器等还能避免高次谐波引起的附加电能损失和局部过热。 (三)减少供电网络的有功损耗,提高线路的供电能力; (四)合理地控制电力系统的无功功率流动,从而提高电力系统的电压水平,改善电能质量,提高了电力系统的抗干扰能力; (五)在动态的无功补偿装置上,配置自动补偿调节器,可以改善电力系统的动态性能,提高输电线的输送能力和稳定性; 四、无功补偿发展方向 为适应当前社会发展,满足用电户负荷类型的要求和用电负荷的需求,提高补偿精度,减少欠补偿和过补偿情况发生,要做好低压电网的无功补偿从以下方法进行: (一)补偿方式 1、固定补偿与动态补偿相结合 随着新技术,新设备的应用和发展,负载类型越来越复杂,电网对无功要求也越来越高,用电户要求的供电可靠性不断提高,因此单纯的固定补偿已经不能满足要求,新的动态自动无功补偿技术能较好地适应负载变化。 2、稳态补偿与快速跟踪补偿相结合 稳态补偿与快速跟踪补偿相结合的补偿方式是未来发展的一个趋势。主要是针对大型的钢铁冶金等企业,工艺复杂、用电量大、负载变化快、波动大,充分有效地进行无功补偿,不仅可以提高功率因数、降损节能,而且可以充分挖掘设备的工作容量,充分发挥设备能力,提高工作效率,提高产量和质量,经济效益大。 3、三相共补与分相补偿相结合 随着人们的生产水平不断提高,大量的家用电器进入家庭,且多为单相用电设备,电网中三相不平衡的情况越来越多,导致控制开关跳闸情况频发,三相共补同投同切已无法解决三相不平衡的问题,而全部采用单相补偿则投资较大,目前还不能普及。因此根据负载情况充分考虑经济性的共分结合方式在新的经济条件下日益广泛应用。 (二)采用先进的投切开关种类 1、过零触发固态继电器 其特点是动态响应快,在投切过程中对电网无冲击、无涌流,寿命较长,但有一定的功耗和谐波污染,目前运用比较普遍。 2、无涌流电容投切器 无涌流电容投切器是无触点开关在电压过零时投入电容器,然后转接到专用接触器下运行,优点无涌流、不发热、节能、安全、寿命长。目前正在逐步推广应用,是无功补偿设备的发展趋向。 3、智能复合开关 复合开关投切装置工作原理是先由可控硅在电压过零时投入电容器,然后再由磁保持交流接触器触点并联闭合,可控硅退出,电容器在磁保持继电器触点闭合下运行,既实现了快速投切,又降低了功耗。目前主要由于成本及可靠性原因应用较少。

浅谈变压器低压侧无功补偿容量的选择分析

浅谈变压器低压侧无功补偿容量的选择分析[摘要]为了提高功率因数,减少电能损耗,应对某些配电变压器在低压侧安 装补偿电容器进行无功补偿。采取配变低压侧补偿和用户端就地补偿相结合的补偿方式,可以在提高功率因数的同时,减少低压线路损耗,取得最佳的经济效益。本文中,就从无功补偿的节电原理入手,对变压器低压侧无功补偿容量的选择进行分析探讨。 【关键词】无功补偿;变压器;容量选择分析 引言 电网改造中,在配电变压器的低压侧可以安装一个一定容量的补偿电容器,这个电容器可以起到无功补偿的作用,不仅可以提高电网的功率因数,减少电网中电能的损耗,还可以增强供电能力,起到了无功补偿的作用。 就目前的观点来看,有人认为安装的配电变压器容量的补偿容量比较小,不能完全补偿低压侧所有的无功负荷。笔者以为,这种观点是一种误解。因为配变低压侧无功补偿,仅仅是用来减少变压器自身或者配电网方面的功率损耗的,它并不能减少向负荷输送的无功功率,这是因为向负荷输送的无功功率要经过低压线路的电抗或电阻,因此,配电线路上的功率损耗并不能减少。根据以上分析,配电低压侧的无功补偿容量的选择是无用过大的,过大反而是一种浪费。并起不到多大作用。采取用户端就地补偿和配变低压侧补偿组合的方式无疑是最佳的结合方式。 1、节电原理分析 在电网中,发电机、变压器等电力负荷基本都属于感性负荷,这些设备在运行的时候是需要无功功率的。如果在电网中安装无功补偿设备,就等于给这些感性负荷提供了它们所消耗的无功功率,减少了电网向这些感性负荷提供无功功率,降低了线路和变压器等设备在输送电能过程中的损耗。 2、无功补偿的意义及具体实现方式 2.1就无功补偿的意义而言,笔者以为可以从以下几个方面阐述: ⑴对无功功率进行补偿后,电网中的有功功率的比例常数无疑得到了提高; ⑵电网中,进行无功补偿后,减少了相关的投资成本,减少了发电、供电设备的设计容量。特别是对改建或者新建的工程项目,可以考虑采用无功补偿的办法,减少其设计容量,达到投资成本的控制问题;

配电变压器低压侧无功补偿容量选择

配电变压器低压侧无功补偿容量选择 为了提高功率因数,减少电能损耗,增强供电能力,在农网改造中,应对100kVA及以上配电变压器在低压侧安装 容量为配变额定容量8%左右的补偿电容器进行无功补偿。但许多人认为按配电变压器容量的8%配置补偿容量太 小,不足以补偿低压侧所有的无功负荷,配变高压侧功率因数提高不大。其实,这是一种误解,因为配变低压侧无 功补偿,作用仅限于减少变压器本身及以上配电网的功率损耗,凡是向负荷输送的无功功率,由于仍然要经过低压 线路的电阻和电抗,配电线路上产生的功率损耗并未减少。所以,配变低压侧无功补偿容量选择过大是无益的。而 只有采取配变低压侧补偿和用户端就地补偿相结合的补偿方式才可以在提高功率因数的同时,减少低压线路损耗, 取得最佳的经济效益。 配变低压侧补偿容量过大不但不经济,而且在变压器空载运行时,或者负荷较轻时,还会造成过补偿,使功率 因数角超前、无功功率向电力系统倒送和电源电压升高。 功率因数角超前的坏处是: (1)电容器与电源仍有无功功率交换,同样减少电源的有功出力。 (2)网络因传输容性无功功率,仍会造成有功损耗。 (3)白白耗费了电容器的设备投资。 另外,如补偿电容过大,当电源缺相时有可能发生铁磁谐振过电压,烧毁电容器和变压器。 所以,配变低压侧补偿容量过大不但不经济,而且还会影响设备的安全运行。 根据以上分析,配变低压侧集中无功补偿根据功率因数的需求选择不科学,补偿容量不应过大。为了防止发生 过补偿现象,配变低压侧无功补偿原则为:其补偿容量不应超过配变的无功功率。 变压器总的无功功率:Qb=Qb0+QbH·(S/Se)2 Qb=[I0%/100+Ud%/100·(S/Se)2]·Se(1) 式中Qb0-变压器空载无功功率,kvar QbH-变压器满载无功功率,kvar I0%-变压器空载电流百分数

分析关于10kv配电网的无功补偿技术

分析关于10kv配电网的无功补偿技术 发表时间:2016-12-15T14:50:03.223Z 来源:《电力设备》2016年第19期作者:徐铭达 [导读] 10kv配电网是城市电力系统的重要组成部分,对促进城市经济发展具有重要的作用。 (大庆市实验中学高三(5)班 163316) 摘要:10kv配电网是城市电力系统的重要组成部分,对促进城市经济发展具有重要的作用。而无功补偿作为提高供电设备的使用效率,减少变配电设备的投资,同时减少了用电户电费支出,取得了良好经济效益的重要举措,其主要取决于配电网无功潮流分布是否趋于合理,这不仅关系到电力系统供电质量的优劣,而且还会影响到配电网运行的安全可靠性。 关键词:10kv;配电网;无功补偿技术 引言:近年来,随着我国经济的快速发展,配电网得到了快速的建设,但其中一些问题也逐渐凸显出来,如:设备投运率较低,进行无功补偿的设备较少,无功功率分布的不合理等等,这些都会供电企业和用户都带来了巨大的损失,因此,在目前电力短缺的情况下,解决好配电网无功补偿问题,对电网的安全和降损节能有着重要的意义。文章对配电网无功补偿技术相关问题进行了探讨。 1、无功补偿的作用分析 配电网中存在大量的感性负荷,较容易出现功率因素偏低的现象,如不采取合理的功率因素补偿,将会造成不良影响。配电线路的无功补偿装置通过检测线路的功率因数和电压,自动投切电容器,从而改善功率因数,减少线路损耗、提高电压质量。主要表现在:第一,减少线路损耗。线路有功功率损耗算式为:Px=R(P2+Q2)/U2,减少无功功率输送将使功率损耗大大降低。第二,提高电网输送能力。根据视在功率与有功功率的关系:P=Scos¢,在视在功率一定时,功率因数越高,所输送的有功越大。第三,减少电压损失。当采用无功补偿后,使输送的无功功率Q减少,从而使电压损失减少,改善了电压质量。 2、10kV配网无功补偿技术简介 配网线路的无功补偿技术全称为无功功率补偿,其是一种能够降低线路损耗,降低过大投资,能够实现获得高回报的一种配电网施工的技术方案。配网无功补偿技术主要有变电站集中配网方式,低压分散无功补偿方式和无功功率就地补偿三种方式。 2.1变电站集中补偿方式 要降低输电网线路的电能损耗,平衡供电网络的无功功率,可以在变电站部门集中的进行补偿,这中补偿方式的主要装置包括并联形式的电容器、同步调相机以及静止的补偿器等装置,在变电站使用该种方式的主要作用是改善输电网和输电线路上的功率因数,采用这种补偿集中补偿的方式,相应的装置应该连接到变电站的主干线路之上,这种方式的优点在于设备在变电站内,管理相对容易、设备维护和更换较为方便,其缺点是降低配电网的线路损耗作用较小。 2.2低压分散无功补偿 电网运行过程中采用这项技术,是在变压器的电压较低的一侧安装相应的装置,对电容器进行分散的固定容量的补偿,这种补偿方式克服了电容器并联的集中补偿方式中容量较大时的涌流过大的问题产生,并且能够有效的增大配电网输电和供电的能力,更好的降低线路损耗,节能效果良好。这种方式的优点在于能够在电压负荷较低时,可以相应的停运变压器的组数,防止过量的补偿,此外,这种方式使用的设备相对较为普遍,经济节约,投资回报较为的快速。缺点是需要人工频繁的投、切,这个过程中一旦工作人员操作不当或者掌握的时机不合适时,就会造成过量补偿或者补偿不够的现象。 2.3无功功率就地补偿 这种补偿方式主要是将电力等感应负载旁和电容器进行直接的并联,与电机的运行与停止一起同开、同停,当电机停止工作之后,电机直接对电容器进行供电,而不再需要其他的供电方式供电。在实际的工作过程中,电机所需要的无功由电容器直接供给,这种方式的优点在于能量交换的距离相对较短,可以在很大程度上降低线路电能的损耗。在相同的运行条件,线路损耗和电流的大小呈正比,因此,采用无功功率就地补偿,降低损耗的效果最好,投资与产出效益比最高。 3、10KV线路无功补偿技术的应用 3.1确定最佳补偿度、安装位置的方法 现阶段10kV线路中的无功补偿装置采用的一般是固定投入,以最大限度地减少配电线路的电能损耗作为出发点,确保无功补偿装置能够获得最佳效果,在分散补偿电容器线路位置的安装方面应该尽可能合理,一般来说无功补偿线路线路上安装电容器组数越多,相应的也就会受到越好的降损效果,值得注意的是所安装的电容器装置一般会受到成本的限制,从提高电容器组的补偿效益,减少无功补偿装置安装的投资方面考虑,布置的电容器组的点数不能够过多,一般按1——3个考虑即可。 3.2分散补偿容量确定方法 对于10kV线路上安装的补偿并联电容器容量的确定,应该全面考虑线路布局,坚持最佳降损的原则,并且通过计算进行确定。一般可按各条分支线的负荷电流来计算补偿容量。 如果10KV线路负荷均匀分布或者是接近均匀分布:需要安装1组电容器的时候,一般来说分散补偿容量应该线路平均无功功率的2/3;需要安装2组电容器的时候,一般来说每组的分散补偿容量应该为线路平均无功功率的2/5;需要安装3组电容器的时候,一般来说每组的分散补偿容量应该为线路平均无功功率的2/7;坚持最小网损的原则,那么每条10kV线路所需补偿的总容量应按一定比侧分配。需要安装1组电容器时,容量比为1/3:2/3;需要安装2组电容器时,容量比为1/5:2/5:2/5;需要安装3组电容器时,容量比为1/7:2/7:2/7:2/7。 在实际10kV线路中,大多数时候线路负荷分布不均匀,所以说在进行分散补偿容量确定的时候,需要考虑实际线路负荷的分布情况,并且灵活运用上述方法进行分散补偿容量的确定。 3.3补偿位置的确定 在10KV配电网中,无功补偿装置的安装位置决定着降低无功电流的效果是否理想,正确的确定无功补偿装置的位置能够最大限度的发挥无功补偿装置的补偿效果。在具体安装位置的选择上,应当秉承着就近原则,以降低主输电线上的无功电流为目的,就近平衡无功电

电力通信网可靠性分析评估方法研究

电力通信网可靠性分析评估方法研究 发表时间:2020-04-08T08:24:06.037Z 来源:《防护工程》2020年1期作者:路阳 [导读] 本文首先介绍了电力通信网可靠性的基本概念,并对通信网可靠性的分类进行了对比分析,之后对电力系统各类业务对通信网络可靠性的要求进行了分析,并对电力通信网络可靠性的几个方面进行分析,最后指出了通信网络可靠性管理中存在的问题。 国网太原供电公司山西太原 030000 摘要:本文首先介绍了电力通信网可靠性的基本概念,并对通信网可靠性的分类进行了对比分析,之后对电力系统各类业务对通信网络可靠性的要求进行了分析,并对电力通信网络可靠性的几个方面进行分析,最后指出了通信网络可靠性管理中存在的问题。 关键词:电力通信网;可靠性;分析;评估; 1电力通信网络可靠性的基本概念和分类 国标GB3187-1994对于产品可靠性的定义是:“产品在规定条件下的规定的时间内,完成规定功能的能力”。但是通信网不同于一般商品,对其可靠性没有统一的定义。有的学者认为通信网可靠性的定义是当遭受自然或者人为破坏力时,电力通信网在规定时间和规定条件下实现规定功能的能力;有的学者认为通信网可靠性的定义是系统在规定的时间内和满足规定实现的功能要求的前提下,运行过程中实现通信功能的概率;有的学者认为电力通信网可靠性的定义为以规定的业务需求和服务标准为前提,电力通信网对电力系统提供不间断通信连接能力的量度;还有的学者为通信网可靠性的定义应为当通信网持续运行过程时,实际完成规定的通信功能的能力。 电力通信网络的可靠性分类包括通信网的可用性、通信网的生存性以及通信网的抗毁性。 1.1通信网的可用性 可用的定义是无论何时需要通信系统工作时,系统均处于可使用的状态。可用性主要是说在通信网的某个网路部件无效的情况下可以实现既定功能要求的概率,综合了网络系统的维修性和可靠性,是基于业务性能的一种可靠性测度。在通信网的可用性方面的一些研究方法是将网络比作流程图,基于通信网的生存性和抗毁性,同时考虑通信业务的性能方面,将通信网在任何时候都可用的概率当做评价通信网可靠性的一个指标;还有一部分是以电力通信网运行的历史数据作为依据,对电力通信网络在实际运行过程中的可靠性进行评估。这两种方法都对通信网的可靠性方面以可用性的方式进行了描述。可用度是通信系统可用性常用的衡量方式,可以较好地对通信网的业务能力进行描述。 在业务性能方面,Barberis等还给出了网络吞吐量超过给定阈值L的概率,即通信网络的可用性指标。在可用性指标方面,还有基于电力通信网络的数据传输时延和路由选择策略对业务性能的影响等方面的研究,使得该项研究变得更有意义。 在电力通信网络可用性中,对于一年中停机时间的计算常用可用性的百分数来表示。对于一年中停机时间的定义是在一年之内,电力通信网络系统由于各类故障而进行维修导致的无法正常工作的时间总和。以分钟为计量单位,计算公式如下: 其中,T停为年停机时间,T为一年的总分钟数,λ为可用性百分比 还有一种是使用百万小时故障时间数来表示通信网络的可用性,其定义为以一百万个小时的运行时间为标准,统计在这段时间里通信网络发生故障的时间数。百万小时故障时间数主要应用于现成的通信网络系统,可以解决年停机时间方式无法查到的可用性问题,还可以测出整个通信网络的停机时间和在这一百万小时内通信网络的运行状态。 1.2 通信网的生存性 通信网络的生存性是指在考虑网络部件可靠性的同时,通信网络当遭受随机破坏导致网络链路或者网络节点存在一定概率失效时仍可完成预先设定的功能的概率,是一种考虑通信网络部件存在随机失效时的可靠性[19],主要是以整体网络连通性为研究对象,分析网络拓扑结构和随机破坏对电力通信网络可靠性的影响。 1.3 通信网的抗毁性 通信网的抗毁性主要是体现当遭受人为外力破坏的情况下通信网络仍可完成预定功能的概率,表示通信网遭到破坏的困难程度,其定义为中断部分节点通信需要破坏的链路最小值。抗毁性概念源于图论,其测度指标用连通度和粘聚度来表示。 2 电力通信网络可靠性研究方法 对于可靠性的研究始终离不开对影响因素的研究,电力通信网络可靠性对于通信技术服务电网以提升电网可靠性有重要意义。电力通信网关系着电力公司生产调度、数据交换、行政管理、业务承载等各个部门的正常运行,一旦电力通信网络发生长时间故障或破坏,可能

城区供电公司关于规范柱上配电变压器无功补偿箱施工安装的实施细则

附件 城区供电公司关于规范柱上配电变压器无功补偿箱施工安装的实施细则 第一章总则 第一条为进一步规范城区供电公司低压无功补偿箱的施工工艺,确保新投运无功补偿箱的施工质量,全面降低无功补偿箱及其接线的故障率,特制定本实施细则。 第二条本实施细则适用于城区公司范围内的所有工程,有关无功补偿箱及其连接线缆的施工应严格执行本规定。 第二章无功补偿箱箱体安装 第三条柱上变压器低压无功自动补偿装置的设备规范、主要元部件、组装应满足《低压无功补偿装置及运行监测系统通用订货技术条件》(—)。 第四条补偿箱安装托架宜紧贴变台槽担上端、担头向上翘起,角铁背板固定应牢固。无安装托架的补偿箱应使用横担以及角戗作为补偿箱托架,横担安装位置应高于变压器槽钢。 第五条补偿箱接地引线应采用截面不小于的黑色绝缘线,接地引线与补偿箱连接用螺栓应紧固,接地引线与变

台接地引线连接采用绑扎法,绑扎应整齐紧密,绑扎长度不应小于; 第三章补偿箱用及二次线施工 第六条补偿箱用电流互感器(以下简称补偿箱)应配套选用户外穿芯式电流互感器。 第七条补偿箱应安装于变台低压刀闸负荷侧的担上,变比应根据变压器二次额定电流确定,二次侧接线端子应向下且必须采取防水措施。 第八条补偿箱二次线应选用芯铜芯内层聚氯乙稀绝缘、黑色外护套具有耐气候耐日光性能的电缆,接线前线芯两端应做好相别、极性标记,连接牢固,经检查无误后,装好接线端子防水盖; 第九条补偿箱二次电缆应沿担引至电杆,再沿电杆向下引入补偿箱内。电缆缆身端头处、转弯处及直线段每隔应采用直径铁线与电杆绑扎一圈,缆身应横平竖直,不应沿杆扭斜,电缆与端子连接处应预留返水弯。 第十条伸入补偿箱内的二次电缆应加以固定,芯线接于端子排对应的接线端子上,接线前应进行核相,确保接线正确。 第四章补偿箱电源电缆施工 第十一条补偿箱电源电缆应选用铜芯内层聚氯乙稀绝缘、黑色外护套具有耐气候耐日光性能的四芯统包电缆,

基于无功补偿技术在配电网中的应用

基于无功补偿技术在配电网中的应用 【摘要】当今时代是科学技术大爆炸的时代,随着科技的不断创新和完善,人们的日常生活中出现路越来越多的电器,电器种类的多样化和创新为丰富人们的生活做出了卓越的贡献。随着越来越多的电器投入到生活当中,导致配电网的负荷也随之加大,所以,我们有必要对配电网中的电能进行有效的处理。在降低电压损耗、改善电压质量等方面,配电网的无功功率补偿起着十分重要的作用,而且它还是节省能源的一种有效手段。所以,笔者今天将在这里针对无功补偿技术在配电网中应用的相关问题展开分析,希望所得的结果可以引起大家的重视和思考,并为相关领域提供参考。 【关键词】无功补偿技术配电网应用 对于无功补偿技术的应用,可以将配电网的功率因数有效地提升起来,而且它还能够改善配电网中的电压质量,拒绝大量无功远距离输送,最终实现降低电能损耗、减少发电费用的目标。在配电网中,其负荷大部分都是感性负荷,所以其变压器基本上都是感性的,正因为如此,配电网中的有功功率就有可能会比无功功率小。如果配电网的综合发电负荷是100%的话,电网的无功需求就可能超过120%,发电机功率因数也会比0.8大,如此一来,仅仅凭借发电机所提供的无功补偿是根本不能够满足配电网的无功需求的[1]。而远距离传输还有可能导致无功损耗的产生,造成有功损耗,从而使电压降过大,由此可见,必须有效地将无功的远距离传输避免,所以在配电网中应用无功补偿技术就显得十分必要。 1 我国电网的现状 最近这几年来,随着电器产品种类的增多,我国的供电量正在与日俱增,可与此同时,我国电网建设的速度却表现出滞后现象,而网络损耗的情况也渐渐凸显出来,这一问题已经引起了电力相关部门的重视。随着研究的不断深入,大家越来越多地认识到电力部门减少供电成本最有效的突破口就是降低配电网的损耗,这同时也是供电部门在以后的日子里增加供电量的重要手段之一。而且有专业人士做出合理的估算,以降低电网损耗来提升供电量,成本仅仅是兴建电厂成本的四分之一或五分之一,这种方法是非常可行的[2]。 就当前来说,电网损耗在我国基本上可以分为三个级别:第一个级别是220kV或是220kV以上的电压等级网损;第二个级别是110kV和35kV的网损;第三个级别是10kV的网损。这三部分网损量的比例是1.5:1.1:2.5,三者中,10kV配网的降损潜力是最大的。 2 现行配电网无功补偿存在的问题 2.1 补偿方式存在不合理 目前来说,很多部门还是把无功补偿的出发点放在了用户的这一侧的,一般

相关文档
最新文档