有理数应用题30题(有答案)
初一上期有理数应用题绝对值.整式习题.教师版.

初一有理数应用题卷参考答案与试题解析一.解答题(共30小题)1.某电力检修小组乘汽车从A地出发沿公路检修线路,先向南走了3km到达甲维修点,继续向南走2.5km到达乙维修点,然后向北走了8.5km到达丙维修点,最后回到A地.(1)以A为原点,以向南方向为正方向,用1cm表示1km,在数轴上表示甲、乙、丙三个维修点的位置.(2)甲、丙两个维修点相距多远?(2)本周内哪一天股票价格最高?最高是多少元?(3)已知买进股票需付0.15%的手续费,卖出时需付成交金额0.1%的交易税,如果小王在儿童全价;另一种是不管成人还是儿童一律打八折.两种优惠方式可以任意选一种,已知儿童游乐园的门票是每张30元.(1)如果是两个家长带着两个孩子去,应该选择哪一种优惠方式?一.选择题(共3小题)1.下列各式:,,﹣25,中单项式的个数有a2.在下列式子①2πR;②;③5x+6y>0;④23;⑤4x2﹣5y3中,代数式有①②④⑤,整式有①④⑤,单项式有①④,一次单项式有①,多项式有是一次单项式;②是分式;③5x+6y>3.多项式2﹣xy2﹣4x3y是 4 次 3 项式,它的项数为 3 ,次数是 4 .﹣,则其中单项式有:4xy,,0,m ;其中多项式有x2+x﹣,,2x3﹣3 .,﹣,5.是系数为的六次单项式;多项式是三次三项式,其中二次项系数是;常数项是.是系数为的六次单项式;多项式;常数项是的降幂排列是﹣5x y+2x y﹣3x y+6xy﹣的是三次五项式,把它按降幂排列的结果为﹣32238.当k= 时,x2﹣3kxy﹣y2+2xy﹣2与﹣2x2﹣3xy+5的差中不含xy项..9.将多项式按x的升幕排列为﹣y+2xy﹣x2y .次项:﹣x解:多项式按x11.已知:,,求的值.的值就必须用到已知条件,可以发现将代数式,得到2b﹣2a2=3a,解:∵②,的值为13.已知a=3b,c=5a,求的值.==可以写成解:设成17.计算:已知:,求代数式的值.首先根据条件可得,再利用代入法求式子的值即可.解:∵=,﹣3×(﹣一.选择题(共4小题)1.附加题:4.有理数a、b、c在数轴上的位置如图所示:化简|b|+b+2﹣。
(完整版)有理数加法应用题

有理数应用题一、有理数加减法1)温度问题1、如图是某地方春季一天的气温随时间的变化图象:请根据上图回答:(1)、何时气温最低?最低气温是多少?(2)、当天的最高气温是多少?这一天最大温差是多少?2、某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃。
若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?3.一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是-1ºC,乙此时在山脚测得温度是5ºC,已知该地区每增加100米,气温大约降低0.6ºC,这个山峰的高度大约是多少米?4、已知水结成冰的温度是 0C,酒精冻结的温度是–117℃。
现有一杯酒精的温度为12℃,放在一个制冷装置里、每分钟温度可降低1.6℃,要使这杯酒精冻结,需要几分钟?(精确到0.1分钟)2)时差问题1.下表列出了国外几个大城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)(1)如果现在是北京时间上午8:00,那么东京时间是多少?(2)如果小强在北京时间下午15:00打电话给远在纽约的姑姑,你认为合适吗?试说明你的理由。
3)路程问题1.柳州出租车司机小李,一天下午以白沙客站为出发点,在南北走向的跃进路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,-2,+5,-13, +10,-7,-8,+12,+4,-5,+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发白沙客站多远? 在白沙客站的什么方向?(2)若每千米的价格为3.5元,这天下午小李的营业额是多少?2. 某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、-3、-5、+4、-8、+6、-3、-6、-4、+10。
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?3.李老师在学校西面的南北路上从某点A出发来回检查学生的植树情况,设定向南的路程记为正数.向北的路程记为负数,那么李老师所行路程依次为(单位:百米):+12,-l0,+10,-8,-6,-5,-3.(1)求李老师最后是否回到出发点A?(2)李老师离开出发点A最远时有多少千米? (3)李老师共走了多少千米?4.在一条东西走向的马路旁,有青少年宫、党校、商场、医院四家公共场所.已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处,若将马路近似地看作一条直线,以学校为原点,向东为正方向,用1个单位长度表示100m.(1)在数轴上表示四家公共场所的位置.(2)列式计算青少年宫与商场之间的距离.5.检修组乘汽车,沿公路检修线路,约定向东为正.向西为负,某天自A出发,到收工时,行走记录为(单位:千米):+8、-9、+4、+7、-2、-10、+18、-3、+7、+5 回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?6. 某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行-+-++--驶为负,一天中七次行驶纪录如下。
有理数应用题

1、某商店买进60件羊毛衫,每件进价240元,卖出时每件标价360元,由于销售情况不好,商店决定降价出售,但希望售完后总利润率不低于20%,那么羊毛衫最多降价多少元出售?A. 48元B. 60元C. 72元D. 96元(答案)C2、甲、乙两地相距50km,A骑自行车,B乘汽车,同时从甲城出发去乙城,已知汽车的速度是自行车速度的2.5倍,B中途休息了0.5小时还比A早到2小时,求自行车和汽车的速度。
设自行车的速度是x千米/小时,则下列方程正确的是:A. (50/x) - (50/(2.5x)) = 2.5B. (50/(2.5x)) - (50/x) = 2.5 - 0.5C. (50/x) - (50/(2.5x)) = 2 + 0.5D. (50/x) + 2.5 = 50/(2.5x) + 0.5(答案)C3、某企业前年缴税30万元,今年缴税36.3万元,那么该企业缴税的平均增长率为:A. 10%B. 15%C. 20%D. 22%(答案)A4、一家商店将某件服装按成本价提高30%后,又以8折优惠卖出,结果每件仍获利12元,那么这件商品的成本价为:A. 200元B. 300元C. 400元D. 500元(答案)B5、某车间共有90名工人,每名工人平均每天可加工甲种部件15个或乙种部件8个,应安排加工甲、乙两种部件各多少人,才能使每天加工后每3个甲种部件与2个乙种部件恰好配套?设安排加工甲种部件x人,则下列方程正确的是:A. 15x/8(90-x) = 3/2B. 15x/8(90-x) = 2/3C. 8(90-x)/15x = 3/2D. 8(90-x)/15x = 2/3(答案)B6、某商品的进价为100元,提高40%后标价,则标价为:A. 120元B. 130元C. 140元D. 150元(答案)C7、某工厂计划为地震灾区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m³,一套B型桌椅(一桌三椅)需木料0.7m ³,工厂现有木料302m³。
10道有理数及答案

10道有理数及答案【篇一:有理数应用题30题(有答案)ok】lass=txt>1.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在a处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)a处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a升,这一天上午共耗油多少升? 2.某工厂生产一批零件,根据要求,圆柱体的内径可以有0.03毫米的误差,抽查5个零件,超过规定内径的记作正数,不足的记作负数,检查结果如下:+0.025,﹣0.035,+0.016,﹣0.010,+0.041(1)指出哪些产品合乎要求?(2)指出合乎要求的产品中哪个质量好一些?3.某奶粉每袋的标准质量为454克,在质量检测中,若超出标准质量2克,记作为+2克,若质量低于3克以上的,(2)质量最多的是哪袋?它的实际质量是多少?(3)质量最少的是哪袋?它的实际质量是多少?4.蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+4,﹣3,+10,﹣9,﹣6,+12,﹣10.①求蜗牛最后的位置在点0的哪个方向,距离多远?②在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?③蜗牛离开出发点0最远时是多少厘米?5.某巡警车在一条南北大道上巡逻,某天巡警车从岗亭a处出发,规定向北方向为正,当天行驶纪录如下(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)最终巡警车是否回到岗亭a处?若没有,在岗亭何方,距岗亭多远?(2)摩托车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油?6.某市公交公司在一条自西向东的道路旁边设置了人民公园、新华书店、实验学校、科技馆、花园小区站点,相邻两个站点之间的距离依次为3km、1.5km、2km、3.5km.如果以新华书店为原点,规定向东的方向为正,向西的方向为负,设图上1cm长的线段表示实际距离1km.请画出数轴,将五个站点在数轴上表示出来.7.生活与应用:在一条笔直的东西走向的马路上,有少年宫、学校、超市、医院四家公共场所.已知少年宫在学校东300米,超市在学校西200米,医院在学校东500米.(1)你能利用所学过的数轴知识描述它们的位置吗?(2)小明放学后要去医院看望生病住院的奶奶,他从学校出发向西走了200米,又向西走了﹣700米,你说他能到医院吗?8.东方红中学位于东西方向的一条路上,一天我们学校的李老师出校门去家访,他先向西走100米到聪聪家,再向东走150米到青青家,再向西走200米到刚刚家,请问:(1)如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出聪聪家与青青家的大概位置(数轴上一格表示50米).(2)聪聪家与刚刚家相距多远?(3)聪聪家向西20米所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离?9.小明到坐落在东西走向的大街上的文具店、书店、花店和玩具店购物,规定向东走为正.已知小明从书店购书后,走了100m到达玩具店,再走﹣65m到达花店,又继续走了﹣70m到达文具店,最后走了10m到达公交车站.(1)书店距花店有多远?(2)公交车站在书店的什么位置?(3)若小明在四个店各逗留10min,他的步行速度大约是每分钟35m,小明从书店购书一直到公交车站一共用了多少时间?10.王老师到坐落在东西走向的阜城大街上的文具店、书店、花店和玩具店购物,规定向东为正.已知王老师从书店购书后,走了110m到达玩具店,再走﹣75m到达花店,又继续走了﹣50m到达文具店,最后走了25m到达公交车站牌.(1)书店距花店有多远?(2)公交车站牌在书店的什么位置?(3)若王老师在四个店各逗留10min,他的步行速度大约是每分钟26m,王老师从书店购书一直到公交车站一共用了多少时间?11.已知蜗牛从a点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“﹣”,从开始到结束爬行的各段路程(单位:cm)依次为:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4(1)若a点在数轴上表示的数为﹣3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)若蜗牛的爬行速度为每秒,请问蜗牛一共爬行了多少秒?12.上午8点,某人驾驶一辆汽车从a地出发,向东记为正,向西记为负.记录前4次行驶过程如下:﹣15公里,+25公里,﹣20公里,+30公里,若要汽车最后回到a地,则最后一次如何行驶?已知汽车行驶的速度为55千米/小时,在这期间他办事花去2小时,问他回到a地的时间.13.有一只小虫从某点出发,在一条直线上爬行,若规定向右爬行的路程记为正,向左爬行的路程记为负,小虫爬行各段路程依次记为(单位:厘米):﹣5,﹣4,+10,﹣3,+8.(1)小虫最后离出发点多少厘米?(2)如果小虫在爬行过程中,每爬行一厘米就得到一粒芝麻,问小虫最终一共可得到多少粒芝麻?(3)若小虫爬行的速度始终不变,并且爬完这段路程用了6分钟,求小虫的爬行速度是多少?14.一个小虫从点o出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否能回到出发点o?(2)小虫离开出发点o最远时是多少厘米?(直接写出结果即可.)(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?15.体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩这组女生的达标率为多少平均成绩为多少秒?16.体育课上对七年级(1)班的8名女生做仰卧起坐测试,若以16次为达标,超过的次数用正数表示,不足的次数用负数表示.现成绩抄录如下:+2,+2,﹣2,+3,+1,﹣1,0,+1.问:(1)有几人达标?(2)平均每人做几次?17.一振子从一点a开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位mm):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求停止时所在位置距a点何方向,有多远?(2)如果每毫米需时0.02秒,则共用多少秒?18.出租车司机小李某天下午营运全是在东西走向的人民大道进行的.如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将最后一名乘客送到目的地时,小李距下午出发地点的距离是多少千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升? 19.某储蓄所,某日办理了7项储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入23万元,取出10.25万元,取出2万元,求储蓄所该日现金增加多少万元?20.小明去一水库进行水位变化的实地测量,他取警戒线作为0m,记录了这个水库一周内的水位变化情况(测量(2)与测量前一天比,一周内水库水位是上升了还是下降了?21.在一次食品安检中,抽查某企业10袋奶粉,每袋取出100克,检测每100克奶粉蛋白质含量与规定每100克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g奶粉蛋白质含量为15g)﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5(1)求平均每100克奶粉含蛋白质为多少?(2)每100克奶粉含蛋白质不少于14克为合格,求合格率为多少? 22.某中学定于11月举行运动会,组委会在修整跑道时,工作人员从甲处开工,规定向南为正,向北为负,从开工处甲处到收工处乙处所走的路程为:+10,﹣3,+4,﹣2,+13,﹣8,﹣7,﹣5,﹣2,(单位:米)(1)甲处与乙处相距多远?(2)工作人员离开甲处最远是多少米?(3)工作人员共修跑道多少米?23.为了保护广大消费者的利益,最近工商管理人员在一家面粉店总抽查了20袋面粉,称得它们的重量如下(单位:千克):25、25、24、24、23、24、24、25、26、25、23、23、24、25、25、24、24、26、26、25.请你计算这20袋面粉的总重量和每袋的平均重量,你能找出比较简单的计算方法吗?请你试试,根据你的计算结果,你对这次检查情况有什么看法?(每袋面粉的标准重量为:25千克)24.每袋大米的标准重量为50千克,10袋大米称重记录如图所示.(1)与标准重量比较,10袋大米总计超过多少千克或不足多少千克?(2)10袋大米的总重量是多少千克?25.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+“表示成绩大于15秒.问:(1)这个小组男生的达标率为多少?()(2)这个小组男生的平均成绩是多少秒?26.在体育课上,赵老师对七年级1班的部分男生进行了引体向上的测试,该项目的标准为不低于7个.现在赵老(1)8名男生有百分之几达到标准?(2)他们共做了多少个引体向上?27.公路养护小组乘车沿南北公路巡视维护,某天早晨从a地出发,晚上最后到达b地,约定向北为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,+15,﹣6,﹣8,问b地在a地何方,相距多少千米?若汽车行驶每千米耗油a升,求该天共耗油多少升?【篇二:有理数题目10份】练1.某地某天早晨的气温为220c,中午上升了40c,夜间又下降了100c,那么这天夜间的气温是______0c2.点a在数轴上距原点3个单位长度,且位于原点右侧,若将a点向左移动4个单位长度,再向右移动1个单位长度,此时点a所表示的数是________13.平方得25的数是_______;立方得-27的数是______4.有理数?的倒数是2____,绝对值是______5.某种商品的零售价为a元,顾客以8折(即零售价的80%)的优惠价购买此商品,共付款___元6.绝对值大于1而小于10的所有整数的和是_____________ 7.在数轴上,与表示—2的点的距离是5所有数为_____________ 8.从一个n?n?4?边形的某个顶点出发,分别连结这个顶点与其余各顶点,可以把这个n边形分割成_________个三角形9.某工厂今年的产值是a万元,比去年增加了20%,则去年的产值是10.如图,用图中的字母表示阴影部分的面积是______________ 11.有理数a、b在数轴上的位置如图所示,则下列各式成立的是()a、a+b0b、a-b0c、ab0d、b?a12.将有理数m减小5,然后再扩大3倍,最后的结果是() 11题图13.光明中学共有a个学生,其中男生人数占55%,那么该校女生人数是()aaa、55%ab、45%ac、d、55%1?55%14.下列说法中正确的是()a、?a是正数 b、-a是负数 c、?a是负数 d、?a不是负数15.已知:x=3,y=2,且xy,则x+y的值为()a、5 b、1 c、5或1 d、-5或-1 16.当a0时,化简aaxxa、m?5?3b、3(m-5)c、m-5+3md、m-5+3(m-5)b0 等于()a、1b、-1c、0d、?117.若ab?ab,则必有()a、a0,b0 b、a0,b0 c、ab0 d、ab?018.下列计算中正确的是()1?1?433a、??1????1??1b、???3??9c、?????9d、3?3??1??3?????9?3?19.下列哪个图形经过折叠不能围成一个立方体是()ab cd3?1571?20.—14—(—23)—(—22) 21. ??36????????46918?22.1??1?22??2?2???4?2????1??3???2??2???2??????2??2???3??323.?52????2???1?0.8????22???2??4??????24、(1)3个球队进行单循环赛(参赛的每一个队都与其它所有各队比赛一场),总的比赛场数是多少?4个球队呢?m个球队呢?(代数式表示出来)(2)当m=12时,总共比赛几场?25.股民李明星期五买进某公司的股票1000股,每股16.8元,下表是第二周一至周五每日该股票的涨跌情况(单位:元) (1)星期三收盘时,每股是多少元?本周内最高价每股多少元?最低价每股多少元?(2)若买进股票和卖出股票都要交0.2%的各种费用,现在小明在星期五收盘前将全部股票卖出,他的收益情况如何?26.某民航规定旅客可以免费携带a千克物品,但若超过a千克,则要收一定的费用,费用规定如下:旅客的携带的重量b千克(ba)乘以10,再减去200,就得你应该交的费用。
有理数的应用题

1、某商店进行促销活动,一种商品原价为100元,现打八折销售,则该商品的现价为:A. 20元B. 50元C. 80元D. 120元(答案)C2、某城市冬季某天的温度是-5℃,中午上升了8℃,则中午的温度是:A. -13℃B. 3℃C. -3℃D. 13℃(答案)B3、某学生参加数学竞赛,共有10道题,每做对一道题得10分,不做或做错扣5分,该学生最后得分为70分,则他做对了:A. 6道题B. 7道题C. 8道题D. 9道题(答案)C4、一潜水艇从海面先下潜20米,然后又上升了15米,此时潜水艇的高度是:A. +5米B. -5米C. +15米D. -20米(答案)B5、某公司去年盈利50万元,今年由于改进技术,盈利比去年增加了20%,则今年盈利为:A. 40万元B. 50万元C. 60万元D. 70万元(答案)C6、小明从家出发,先向正东方向走50米,再向正南方向走30米到达学校,如果以家为坐标原点,正东方向为x轴正方向,正北方向为y轴正方向,则学校的坐标为:A. (50, 30)B. (50, -30)C. (-50, 30)D. (-50, -30)(答案)B7、某股票开盘价为10元,上午11时跌了1.5元,下午收盘时又涨了0.5元,则该股票收盘价为:A. 8元B. 8.5元C. 9元D. 10元(答案)C8、某地区海拔高度为-100米,表示该地区:A. 比海平面高100米B. 比海平面低100米C. 与海平面相平D. 无法确定(答案)B9、某班级进行数学测试,满分为100分,及格分数为60分,小明得了75分,则小明的成绩:A. 低于及格线B. 刚好及格C. 高于及格线但低于满分D. 满分(答案)C10、某商品原价为a元,第一次降价10%,第二次又降价10%,则两次降价后的价格为:A. 0.8a元B. 0.9a元C. 0.81a元D. 0.99a元(答案)C。
有理数(压轴必刷30题8种题型专项训练)—2023-2024学年七年级数学上册(人教版)(解析版)

有理数(压轴必刷30题8种题型专项训练)一.正数和负数(共1小题)1.(2022秋•江都区期中)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如表: 高度变化记作 上升4.4km4.4km 下降3.2km﹣3.2km 上升1.1km+1.1km 下降1.5km ﹣1.5km(1)此时这架飞机比起飞点高了多少千米?(2)如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?【分析】(1)根据表格列出算式,计算即可得到结果;(2)求出表格中数据绝对值之和,再乘以2即可得到结果.【解答】解:(1)4.4﹣3.2+1.1﹣1.5=0.8(千米),答:这架飞机比起飞点高了0.8千米;(2)|4.4|+|﹣3.2|+|+1.1|+|﹣1.5|=10.2(千米)10.2×2=20.4升.答:一共消耗了20.4升燃油.【点评】此题考查了有理数的加减混合运算,正数和负数,弄清题意是解本题的关键.二.有理数(共1小题) 2.(2022秋•浏阳市期中)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a ,b ,c 满足abc >0,求的值.【解决问题】解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.z①a ,b ,c 都是正数,即a >0,b >0,c >0时,则;②当a ,b ,c 中有一个为正数,另两个为负数时,不妨设a >0,b <0,c <0,则.综上所述,值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a ,b ,c 满足abc <0,求的值; (2)若a ,b ,c 为三个不为0的有理数,且,求的值.【分析】(1)仿照题目给出的思路和方法,解决(1)即可;(2)根据已知等式,利用绝对值的代数意义判断出a ,b ,c 中负数有2个,正数有1个,判断出abc 的正负,原式利用绝对值的代数意义化简计算即可.【解答】解:(1)∵abc <0,∴a ,b ,c 都是负数或其中一个为负数,另两个为正数,①当a ,b ,c 都是负数,即a <0,b <0,c <0时,则:=++=﹣1﹣1﹣1=﹣3; ②a ,b ,c 有一个为负数,另两个为正数时,设a <0,b >0,c >0,则=++=﹣1+1+1=1. (2)∵a ,b ,c 为三个不为0的有理数,且,∴a ,b ,c 中负数有2个,正数有1个,∴abc >0,∴==1. 【点评】本题主要考查了绝对值的意义、分类讨论的思想方法.能不重不漏的分类,会确定字母的范围和字母的值是关键.三.数轴(共11小题)3.(2022秋•阳新县校级期末)已知在数轴上A ,B 两点对应数分别为﹣4,20.(1)若P 点为线段AB 的中点,求P 点对应的数.(2)若点A、点B同时分别以2个单位长度/秒的速度相向运动,点M(M点在原点)同时以4个单位长度/秒的速度向右运动.①几秒后点M到点A、点B的距离相等?求此时M对应的数.②是否存在M点,使3MA=2MB?若存在,求出点M对应的数;若不存在,请说明理由.【分析】(1)利用中点坐标计算方法直接得出答案即可;(2)①画出图形,设t秒后点M到点A、点B的距离相等,分别表示出AM和BM的长度,建立方程求得答案即可;②利用(2)中的AM和BM的长度,分两种情况:M在AB之间,A在BM之间,结合3MA=2MB建立方程求得答案即可.【解答】解:(1)P点表示的数是=8;(2)①如图,设t秒后点M到点A、点B的距离相等,AM=4t﹣(﹣4+2t)=2t+4,BM=20﹣2t﹣4t=20﹣6t,则2t+4=20﹣6t,z解得t=2,M表示2×4=8.A、B重合时,MA=BM,此时t=6,此时M表示24.②如图①,AM=4t﹣(﹣4+2t)=2t+4,BM=20﹣2t﹣4t=20﹣6t,∵3MA=2MB,∴3(2t+4)=2(20﹣6t),∴t=,∴点M表示×4=;z 如图②,AM =4t ﹣(﹣4+2t )=2t+4,BM =2t+4t ﹣20=6t ﹣20,∵3MA =2MB ,∴3(2t+4)=2(6t ﹣20),∴t =,∴点M 表示×4=. 【点评】此题考查数轴,一元一次方程的实际运用,利用图形,得出数量关系是解决问题的关键.4.(2022秋•鲤城区校级期末)如图,数轴上点A 、C 对应的数分别为a 、c ,且a 、c 满足|a +4|+(c ﹣1)2=0.,点B 对应的数为﹣3,(1)求a 、c 的值;(2)点A ,B 沿数轴同时出发向右匀速运动,点A 速度为2个单位长度/秒,点B 速度为1个单位长度/秒,若运动时间为t 秒,运动过程中,当A ,B 两点到原点O 的距离相等时,求t 的值;(3)在(2)的条件下,若点B 运动到点C 处后立即以原速返回,到达自己的出发点后停止运动,点A 运动至点C 处后又以原速返回,到达自己的出发点后又折返向点C 运动,当点B 停止运动时,点A 随之停止运动,在此运动过程中,A ,B 两点同时到达的点在数轴上表示的数是 .(说明:直接在横线上写出答案,答案不唯一,不解、错解均不得分,少解、漏解酌情给分)【分析】(1)根据非负数的性质列式求解即可得到a 、c 的值;(2)求出AB ,再根据到原点距离相等时,分两种情况:①点A 、B 重合,②点A 在原点的右边,点B 在原点的左边,列出方程求解即可;(3)由(2)可知A ,B 两点第一次同时到达的点为﹣2,A ,B 两点第二次同时到达的点,是在A 点到达C 点返回与B 点相遇的点,A ,B 两点第三次同时到达的点,是在A 点返回到出发点后又折返向点C 运动,与B 点运动到点C 处后返回的相遇点.【解答】解:(1)∵|a+4|+(c ﹣1)2=0,且|a+4|≥0,+(c ﹣1)2≥0,∴a+4=0,c ﹣1=0,∴a =﹣4,c =1;(2)由(1)可知A点表示的数为﹣4,C点表示的数为1,∵点B对应的数为﹣3,∴AB=1,由A,B两点到原点O的距离相等,分两种情况:①点A、B重合,②点A在原点的右边,点B在原点的左边①当点A、B重合时,A、B均在原点的左边,此时A点运动的距离等于B点运动的距离+1,即:2t=t+1,解得:t=1;②当点A在原点的右边,点B在原点的左边时,A、B两点表示的数互为相反数,即:(2t﹣4)+(﹣3+t)=0,解得:t=,综上所述当t=1或t=时,A,B两点到原点O的距离相等;(3)由(2)可知A,B两点第一次同时到达的点,在数轴上表示的数为:﹣2;A,B两点第二次同时到达的点,A点从﹣2到达C点(C点表示1)时,用时1.5秒,此时B点运动1.5个单位长度,到达﹣2+1.5=﹣0.5的位置,A、B之间相距1.5个单位长度,经过1.5÷(1+2)=0.5秒,A、B相遇,此时A、B两点均在原点,即A,B两点第二次同时到达的点在数轴上表示的数为:0;A,B两点第三次同时到达的点,在第二次相遇后,B到C点用时1秒,A点到出发点(表示﹣4的点)用时2秒,此时B点有到达原点,A、B两点再一次相遇用时4÷(2+1)=秒,此时A、B两点均在数轴上表示的数为﹣.综上所述,在此运动过程中,A,B两点同时到达的点在数轴上表示的数是﹣2,0,﹣.故答案为:﹣2,0,﹣.【点评】此题考查了数轴的有关知识,解题的关键是:借助数轴分析A,B两点同时到达的点.5.(2022秋•新城区期中)一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣1,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以100千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣15,+25,﹣10,﹣15,则该货车运送的水果总重量是多少千克?【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;(2)1+3+|﹣6|+|﹣1|+|﹣2|+5=18,答:该货车共行驶了18千米;(3)100×5+50﹣15+25﹣10﹣15=535(千克),答:货车运送的水果总重量是535千克.z【点评】本题考查了正数和负数和数轴,掌握数轴的画法,掌握正负数所表示的意义是解决问题的关键.6.(2022秋•法库县期中)如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为 ;点B表示的数为 ;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离= ;乙小球到原点的距离= ;当t=3时,甲小球到原点的距离= ;乙小球到原点的距离= ;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.【分析】(1)利用绝对值的非负性即可确定出a,b即可;(2)①根据运动确定出运动的单位数,即可得出结论.②根据(I)0<t≤2,(Ⅱ)t>2,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.【解答】解:(1)∵|a+2|+|b﹣4|=0;∴a=﹣2,b=4,∴点A表示的数为﹣2,点B表示的数为4,故答案为:﹣2,4;(2)①当t=1时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动1个单位,此时,甲小球到原点的距离=3,∵一小球乙从点B处以2个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动2个单位,此时,乙小球到原点的距离=4﹣2=2,故答案为:3,2;当t=3时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球3秒钟向左运动3个单位,此时,甲小球到原点的距离=5,∵一小球乙从点B处以2个单位/秒的速度也向左运动,∴乙小球2秒钟向左运动2个单位,此时,刚好碰到挡板,改变方向向右运动,再向右运动1秒钟,运动2个单位,∴乙小球到原点的距离=2.②当0<t≤2时,得t+2=4﹣2t,解得t=;当t>2时,得t+2=2t﹣4,解得t=6.故当t=秒或t=6秒时,甲乙两小球到原点的距离相等.故答案为:5,2.【点评】此题主要考查了数轴,点的运动特点,解本题的关键是抓住运动特点确定出结论.7.(2022秋•宜兴市期中)已知数轴上A,B两点表示的有理数分别为a,b,且(a﹣1)2+|b+2|=0.(1)求a,b的值;(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求c值;(3)小蜗牛甲以1个单位长度/s的速度从点B出发向其左边6个单位长度外的食物爬去,3s后位于点A 的小蜗牛乙收到它的信号,以2个单位长度/s的速度也迅速爬向食物,小蜗牛甲到达后背着食物立即返回,与小蜗牛乙在数轴上D点相遇,则点D表示的有理数是什么?从出发至此时,小蜗牛甲共用去多少时间?【分析】(1)根据几个非负数的和为0的性质得到a﹣1=0,b+2=0,求出a、b的值;(2)分类讨论:点C在点B的左边时或点C在点A的右边,利用数轴上两点间的距离表示方法得到关于c 的方程,解方程求出c的值即可;(3)设小蜗牛乙收到信号后经过t秒和小蜗牛甲相遇,根据题意得到t+2t=1﹣(﹣2)﹣(﹣6)+(6﹣1×3),解方程得t=4,点D表示的有理数是1﹣2×4,小蜗牛甲共用的时间为3+4.【解答】解:(1)根据题意得a﹣1=0,b+2=0,解得a=1,b=﹣2.(2)①当点C在点B的左边时,1﹣c+(﹣2﹣c)=11,解得c=﹣6;②当点C在点A的右边时,c﹣1+c﹣(﹣2)=11,解得c=5;(3)设小蜗牛乙收到信号后经过t秒和小蜗牛甲相遇,根据题意得:t+2t=1﹣(﹣2)﹣(﹣6)+(6﹣1×3),∴t=4,∴1﹣2×4=﹣7,3+4=7.答:点D表示的有理数是﹣7,小蜗牛甲共用去7秒.【点评】本题考查了数轴的三要素:正方向、原点和单位长度.也考查了几个非负数的和为0的性质以及数轴上两点间的距离.8.(2022秋•天河区校级期中)如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0,动点P从A出发,以每秒1个单位的速度向终点C运动,设运动时间为t秒.z(1)求a 、b 、c 的值;(2)若点P 到A 点的距离是点P 到B 点的距离的2倍,求点P 对应的数;(3)当点P 运动到B 点时,点Q 从点A 出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c ﹣10=0,解可得a 、b 、c 的值;(2)分两种情况讨论可求点P 的对应的数;(3)分类讨论:当P 点在Q 点的右侧,且Q 点还没追上P 点时;当P 在Q 点左侧时,且Q 点追上P 点后;当Q 点到达C 点后,当P 点在Q 点左侧时;当Q 点到达C 点后,当P 点在Q 点右侧时,根据两点间的距离是4,可得方程,根据解方程,可得答案.【解答】解:(1)∵|a+24|+|b+10|+(c ﹣10)2=0∴a+24=0,b+10=0,c ﹣10=0解得a =﹣24,b =﹣10,c =10(2)﹣10﹣(﹣24)=14,①点P 在AB 之间,AP =14×=, ﹣24+=﹣,点P 的对应的数是﹣; ②点P 在AB 的延长线上,AP =14×2=28,﹣24+28=4,点P 的对应的数是4;(3)设在点Q 开始运动后第a 秒时,P 、Q 两点之间的距离为4,当P 点在Q 点的右侧,且Q 点还没追上P 点时,3a+4=14+a ,解得a =5;当P 在Q 点左侧时,且Q 点追上P 点后,3a ﹣4=14+a ,解得a =9;当Q 点到达C 点后,当P 点在Q 点左侧时,14+a+4+3a ﹣34=34,a =12.5;当Q 点到达C 点后,当P 点在Q 点右侧时,14+a ﹣4+3a ﹣34=34,解得a =14.5,综上所述:当Q点开始运动后第5、9、12.5、14.5秒时,P、Q两点之间的距离为4.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.9.(2022秋•临平区月考)如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A 点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?【分析】(1)根据中点坐标公式即可求解;(2)此题是相遇问题,先求出相遇所需的时间,再求出点Q走的路程,根据左减右加的原则,可求出﹣20向右运动到相遇地点所对应的数;(3)此题是追及问题,分相遇前两只蚂蚁间的距离为20个单位长度,相遇后两只蚂蚁间的距离为20个单位长度,列出算式求解即可.z【解答】解:(1)M点对应的数是(﹣20+100)÷2=40;(2)A,B之间的距离为120,它们的相遇时间是120÷(6+4)=12(秒),即相同时间Q点运动路程为:12×4=48(个单位),即从数﹣20向右运动48个单位到数28;(3)相遇前:(100+20﹣20)÷(6﹣4)=50(秒),相遇后:(100+20+20)÷(6﹣4)=70(秒).故当它们运动50秒或70秒时间时,两只蚂蚁间的距离为20个单位长度.【点评】此题考查的是数轴上点的运动,还有相遇问题与追及问题.注意用到了路程=速度×时间.10.(2022秋•南安市月考)点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数所表示的点是{M,N}的奇点;数所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?【分析】(1)根据定义发现:奇点表示的数到{ M,N}中,前面的点M是到后面的数N的距离的3倍,从而z得出结论;根据定义发现:奇点表示的数到{N,M}中,前面的点N是到后面的数M的距离的3倍,从而得出结论;(2)点A到点B的距离为80,由奇点的定义可知,分2种情况讨论:①P是{A,B}的奇点;②P是{B,A}的奇点.【解答】解:(1)5﹣(﹣3)=8,8÷(3+1)=2,5﹣2=3;﹣3+2=﹣1.故数3所表示的点是{ M,N}的奇点;数﹣1所表示的点是{N,M}的奇点.故答案为:3;﹣1;(2)∵A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30,∴AB=30﹣(﹣50)=80.分2种情况:①P是{A,B}的奇点,PA=3PB,∴PB=20,P点表示的数为10;②P是{B,A}的奇点,PB=3PA,∴PB=60,P点表示的数为﹣30;故P点运动到数轴上的10或﹣30的位置时,P、A和B中恰有一个点为其余两点的奇点.【点评】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义:奇点表示的数是与前面的点A 的距离是到后面的数B的距离的3倍,列式可得结果.11.(2022秋•魏都区校级月考)操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数 表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.【分析】(1)1与﹣1重合,可以发现1与﹣1互为相反数,因此﹣3表示的点与3表示的点重合;(2)①﹣1表示的点与3表示的点重合,则折痕点为1,因此5表示的点与数﹣3表示的点重合;z②由①知折痕点为1,且A、B两点之间距离为11,则A表示1﹣5.5=﹣4.5,B点表示1+5.5=6.5.【解答】解:(1)∵1与﹣1重合,∴折痕点为原点,∴﹣3表示的点与3表示的点重合.故答案为:3.(2)①∵由表示﹣1的点与表示3的点重合,∴可确定折痕点是表示1的点,∴5表示的点与数﹣3表示的点重合.故答案为:﹣3.②由题意可得,A、B两点距离折痕点的距离为11÷2=5.5,∵折痕点是表示1的点,∴A、B两点表示的数分别是﹣4.5,6.5.【点评】题目考查了数轴上点的对称,通过点的对称,发现对称点的规律,题目设计新颖,难易程度适中,适合课后训练.12.(2022秋•槐荫区校级月考)如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB 的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x>0).(1)当x= 秒时,点P到达点A.(2)运动过程中点P表示的数是 (用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.【分析】(1)直接得出AB的长,进而利用P点运动速度得出答案;(2)根据题意得出P点运动的距离减去4即可得出答案;(3)利用当点P运动到点C左侧2个单位长度时,当点P运动到点C右侧2个单位长度时,分别得出答案.【解答】解:(1)∵数轴上的点A表示的数为6,点B表示的数为﹣4,∴AB=10,∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,z∴运动时间为10÷2=5(秒),故答案为:5;(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动过程中点P表示的数是:2x﹣4;故答案为:2x﹣4;(3)点C表示的数为:[6+(﹣4)]÷2=1,当点P运动到点C左侧2个单位长度时,2x﹣4=1﹣2解得:x=1.5,当点P运动到点C右侧2个单位长度时,2x﹣4=1+2解得:x=3.5综上所述,x=1.5或3.5.【点评】此题主要考查了数轴,正确分类讨论得出PC的长是解题关键.13.(2022秋•和平区校级期中)数轴上点A,C对应的数分别是a,c,且a,c满足:|a+6|+(c﹣1)2=0,点B对应的数是﹣2.(1)填空:a= ,c= ;在数轴上描出点A,B,C;(2)若点M在数轴上对应的数为m,且满足|m﹣1|+|m+6|=15,则m= ;(3)若A,B两点同时沿数轴正方向匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,在运动过程中,点A到点C的距离是点B到点C距离的3倍时,点A对应的数是多少?【分析】(1)根据非负数的性质得出a、c的值,再在数轴上描点即可得;(2)分m<﹣6、﹣6≤m≤1、m>1三种情况去绝对值符号,再解所得方程可得;(3)设运动时间为t,则点A表示的数为﹣6+2t,点B表示的数为﹣2+t,根据点A到点C的距离是点B到点C距离的3倍列出方程|﹣6+2t﹣1|=3|﹣2+t﹣1|,解之可得.【解答】解:(1)∵|a+6|+(c﹣1)2=0,∴a+6=0且c﹣1=0,z解得:a=﹣6、c=1,如图所示:,故答案为:﹣6、1;(2)若m<﹣6,则1﹣m﹣m﹣6=15,解得:m=﹣10;若﹣6≤m≤1时,1﹣m+m+6=5≠15,此情况不存在;若m>1,则m﹣1+m+6=15,解得:m=5;综上,m=﹣10或5,故答案为:﹣10或5;(3)设t秒时,点A到点C的距离是点B到点C距离的3倍,则此时点A表示的数为﹣6+2t,点B表示的数为﹣2+t,则|﹣6+2t﹣1|=3|﹣2+t﹣1|,整理,得:|2t﹣7|=3|t﹣3|,∴2t﹣7=3(t﹣3)或2t﹣7=﹣3(t﹣3),解得:t=2或t=,∴点A表示的数为﹣2或,答:点A到点C的距离是点B到点C距离的3倍,点A对应的数为﹣2或.【点评】本题考查了一元一次方程的应用与数轴,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.四.绝对值(共6小题)14.(2022秋•包河区期末)若不等式|x﹣2|+|x+3|+|x﹣1|+|x+1|≥a对一切数x都成立,则a的取值范围是 .【分析】数形结合.绝对值的几何意义:|x﹣y|表示数轴上两点x,y之间的距离.【解答】解:数形结合.绝对值的几何意义:|x﹣y|表示数轴上两点x,y之间的距离.画数轴易知,|x﹣2|+|x+3|+|x﹣1|+|x+1|表示x 到﹣3,﹣1,1,2这四个点的距离之和.令y=|x﹣2|+|x+3|+|x﹣1|+|x+1|,x=﹣3时,y=11,x=﹣1时,y=7,x=1时,y=7,x=2时,y=9,可以观察知:当﹣1≤x≤1时,由于四点分列在x两边,恒有y=7,当﹣3≤x<﹣1时,7<y≤11,当x<﹣3时,y>11,当1≤x<2时,7≤y<9,当x≥2时,y≥9,综合以上:y≥7 所以:a≤7即|x﹣2|+|x+3|+|x﹣1|+|x+1|≥7对一切实数x恒成立.从而a的取值范围为a≤7.【点评】本题考查绝对值,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.15.(2022秋•深圳校级期中)已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是.【分析】依题意a≤b≤c≤d 原式=(b﹣a)+(c﹣b)+(d﹣c)+(d﹣a)=2(d﹣a)最大,所以d=9,a=1,即可求解.【解答】解:依题意a≤b≤c≤d,则原式=(b﹣a)+(c﹣b)+(d﹣c)+(d﹣a)=2(d﹣a)最大,则d=9,a=1 四位数要取最小值且可以重复,故答案为1119.【点评】此题考查了绝对值的性质,同时要根据低位上的数字不小于高位上的数字进行逻辑推理.16.(2022秋•定远县期中)同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索(1)求|5﹣(﹣2)|= ;(2)同样道理|x+1008|=|x﹣1005|表示数轴上有理数x所对点到﹣1008和1005所对的两点距离相等,则x=(3)类似的|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是 .(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.【分析】(1)5与﹣2两数在数轴上所对的两点之间的距离为5﹣(﹣2)=7;(2)在数轴上,找到﹣1008和1005的中点坐标即可求解;(3)利用数轴解决:把|x+5|+|x﹣2|=7理解为:在数轴上,某点到﹣5所对应的点的距离和到2所对应的点的距离之和为7,然后根据数轴可写出满足条件的整数x;(4)把丨x﹣3丨+丨x﹣6丨理解为:在数轴上表示x到3和6的距离之和,求出表示3和6的两点之间的距离即可.【解答】解:(1)|5﹣(﹣2)|=7;(2)(﹣1008+1005)÷2=﹣1.5;(3)式子|x+5|+|x﹣2|=7理解为:在数轴上,某点到﹣5所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x可为﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(4)有,最小值为﹣3﹣(﹣6)=3.故答案为:7;﹣1.5;﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.【点评】此题主要考查了去绝对值和数轴相联系的综合试题以及去绝对值的方法和去绝对值在数轴上的运用,难度较大,去绝对的关键是确定绝对值里面的数的正负性.17.(2022秋•南城县校级月考)先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看作|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为和,B,C两点间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x为;(3)若点A表示的整数为x,则当x为时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是.【分析】(1)根据数先在数轴上描出点,再根据点得出两点间的距离;(2)根据数轴上两点间的距离公式,可得到一点距离相等的点有两个;z(3)根据到两点距离相等的点是这两个点的中点,可得答案;(4)根据线段上的点到这两点的距离最小,可得范围.【解答】解:(1)如图,点B为所求点.B点表示的数﹣2.5,C点表示的数1,BC的长度是1﹣(﹣2.5)=3.5;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为|x﹣(﹣1)|,如果|AB|=3,那么x为﹣4,2;(3)若点A表示的整数为x,则当x为﹣1,时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是﹣5≤x≤2,故答案为:﹣2.5,1,3.5;|x﹣(﹣1)|,﹣4,2;﹣1;﹣5≤x≤2.【点评】本题考查了绝对值,由数轴上点的关系,得出到一点距离相等的点有两个,到两点相等的点是这两点的中点,到两点距离和最小的点是这条线段上的点.18.(2022秋•隆昌市校级月考)同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|= .(2)若|x﹣2|=5,则x=(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是 .【分析】(1)根据4与﹣2两数在数轴上所对应的两点之间的距离是6,可得|4﹣(﹣2)|=6.(2)根据|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=﹣3或7.(3)因为4与﹣2两数在数轴上所对应的两点之间的距离是6,所以使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),据此求出这样的整数有哪些即可.【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.【点评】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(2)解答此题的关键是要明确:|x﹣a|既可以理解为x与a的差的绝对值,也可理解为x与a两数在数轴上所对应的两点之间的距离.19.(2022秋•花垣县月考)同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:。
含有理数原理的实际应用题
含有理数原理的实际应用题题目一:购物计算假设你去超市购物,购买了以下商品:•牛奶:14元•面包:6元•鸡蛋:12元请计算你购买这些商品的总价格。
解答:不难发现,购物的总价格等于各种商品的价格之和。
我们可以用数学中的加法来表示这个关系。
所以,购物的总价格 = 牛奶的价格 + 面包的价格 + 鸡蛋的价格将每个商品的价格代入公式:购物的总价格 = 14元 + 6元 + 12元 = 32元所以,购买这些商品的总价格是32元。
题目二:温度转换假设现在的室外温度是摄氏30度,要将它转换为华氏温度,请计算。
解答:温度的转换关系有一个转换公式,我们可以使用这个公式来计算。
华氏温度 = 摄氏温度 × 1.8 + 32将摄氏30度代入公式进行计算:华氏温度 = 30 × 1.8 + 32 = 86所以,将摄氏30度转换为华氏温度是86度。
题目三:速度计算假设一辆汽车以每小时60公里的速度行驶,经过3个小时,它行驶了多远?请计算。
解答:速度的计算公式是:距离 = 速度 × 时间将题目中给出的速度和时间代入公式进行计算:距离 = 60公里/小时 × 3小时 = 180公里所以,经过3个小时,汽车行驶了180公里。
题目四:货币兑换假设你去国外旅行,想要将100美元兑换为人民币,汇率是1美元兑换为6.5人民币,请计算你可以得到多少人民币。
解答:货币兑换的计算公式是:兑换获得的货币 = 要兑换的货币 × 汇率将题目中给出的数据代入公式进行计算:兑换获得的人民币 = 100美元 × 6.5人民币/美元 = 650人民币所以,你可以得到650人民币。
题目五:面积计算假设一个正方形的边长是5米,求其面积。
请计算。
解答:正方形的面积计算公式是:面积 = 边长²将题目中给出的边长代入公式进行计算:面积 = 5米 × 5米 = 25平方米所以,这个正方形的面积是25平方米。
有理数应用题经典30题(学生版)
有理数应用题经典30题(学生版)一、题目:有理数应用题经典30题(学生版)1. 均匀缩小小明购买了一副长方形的相框,长和宽的比例是3:2。
如果将宽缩小10%,那么长也需要缩小多少才能保持原来的比例?解析:设原来宽为x,则长为1.5x。
缩小10%后的宽为0.9x,新的长应为1.5x*0.9=1.35x。
所以,长需要缩小15%。
2. 装满水壶一个16升的水壶和一个9升的水壶都是空的。
现在需要得到恰好4升的水,问如何操作才能实现?解析:首先,将9升水壶装满水,再倒入16升水壶中,此时9升水壶中剩余5升水。
然后,倒空16升水壶,将9升水壶中的5升水倒入16升水壶中。
最后,将9升水壶重新装满水,再倒入16升水壶中,此时16升水壶中已经有4升水。
3. 倒水比例小明用相同的速度向两个相同容积的杯子中倒水,第一个杯子先倒水,第二个杯子稍后开始倒水,小明一直保持恒定的速度进行倒水。
如果要使两个杯子中的水量一直保持比例3:5,那么第二个杯子开始倒水的时间点在第一个杯子开始倒水后的多久?解析:设第一个杯子开始倒水后经过t时间,第二个杯子开始倒水。
根据题意可得:水量比例=倒水时间比例。
即3/(3+t) = 5/t,解方程可得t=5/2,所以第二个杯子开始倒水的时间点在第一个杯子开始倒水后的2.5分钟。
4. 数字排列将1、2、3、4、5、6、7、8、9这九个数字分别填入以下的方框中,使得相邻的两个数字之和为偶数。
每个数字只能使用一次。
□□□□□□□□□解析:填入以下数字即可满足条件:1234567895. 数轴运动一只蚂蚁在数轴上从0点开始向右爬,并且每次只能移动1个单位。
如果这只蚂蚁每次以等概率向左或向右爬,那么在第5次移动后,它距离0点的期望距离是多少?解析:蚂蚁在第1次、第3次、第5次移动时一定是在偶数点上,而第2次、第4次移动时一定是在奇数点上。
所以在第5次移动后,它距离0点的期望距离为0。
6. 周长比较一个矩形的长和宽之比是3:2,另一个矩形的长和宽之比是2:3。
有理数的应用题及答案
有理数的应用题及答案一、复习旧知有理数的混合运算及其运用二、新课讲解重难点:有理数的加减法例题1. 某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃。
若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?例题2. 下表列出了国外几个大城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)(1)如果现在是北京时间上午8:00,那么东京时间是多少?(2)如果小强在北京时间下午15:00打电话给远在纽约的姑姑,你认为合适吗?试说明你的理由。
例题3. 某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:+9、-3、-5、+4、-8、+6、-3、-6、-4、+10。
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?考点:有理数的乘除法例题1、某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价完全不相同,若以47元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:请问,该服装店售完这30件连衣裙后,赚了多少钱?例题2、10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:-6,-3,-1,-2,+7,+3,+4,-3,-2,+1与标准重量相比较,10袋小麦总计超过或不足多少千克?10袋小麦总重量是多少千克?易混点:有理数的乘方例题1、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?例题2、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?例题3、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?◆【巩固练习】1、已知水结成冰的温度是0 C ,酒精冻结的温度是–117℃。
【绝对经典】初一数学有理数30题含详细答案
30.a、b、c三个数在数轴上位置如图所示,且|a|=|b|
(1)求出a、b、c各数的绝对值;
(2)比较a,﹣a、﹣c的大小;
(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.
参考答案
1.D
【解析】
【分析】
负数小于0,可将各项化简,然后再进行判断.
3.C
【解析】
【分析】
(25±0.2)的字样表明质量最大为25.2,最小为24.8,二者之差为0.4.
【详解】
解:根据题意得:标有质量为(25±0.2)的字样,
(3)如果点A、C表示的数互为相反数,求点B表示的数.
29.数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为|2﹣3|=1,2与﹣3的距离可表示为|2﹣(﹣3)|=5
(1)数轴上表示3和8的两点之间的距离是_____;数轴上表示﹣3和﹣9的两点之间的距离是_____;
(2)数轴上表示x和﹣2的两点A和B之间的距离是_____;如果|AB|=4,则x为_____;
2.B
【解析】
【分析】
根据有理数的分类逐一作出判断即可.
【详解】
解:A.0既不是正数也不是负数,故A错误;B.整数和分数统称为有理数;故B正确;C.若|a|=|b|,则a=b或a与b互为相反数.故C错误;D.整数包括正整数、0和负整数,故D错误.
【点睛】
本题考查了有理数的分类,掌握有理数的分类是解题的关键.
A.0.2 kgB.0.3 kgC.0.4 kgD.50.4 kg
4.小丽在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示-4的点重合;若数轴上A、B两点之间的距离为10(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数是()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数应用题专项练习30题(有答案)1某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A处,规定向北方向为正, 当天上午连续行驶情况记录如下(单位:千米) :+5,- 4, +3 , - 7, +4, - 8, +2 , - 1 .(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a升,这一天上午共耗油多少升?2•某工厂生产一批零件,根据要求,圆柱体的内径可以有0.03毫米的误差,抽查5个零件,超过规定内径的记作正数,不足的记作负数,检查结果如下:+0.025 , - 0.035, +0.016 , - 0.010, +0.041(1)指出哪些产品合乎要求?(2)指出合乎要求的产品中哪个质量好一些?3•某奶粉每袋的标准质量为454克,在质量检测中,若超出标准质量2克,记作为+2克,若质量低于3克以上的, 则这袋奶粉为不合格,现在抽取10袋样品进行质量检测,结果如下(单位:克)袋号 1 23 4 5 678 910记作-2 03-4 - 3 - 5+4+4 - 6-3(1) 这10袋奶粉中有哪几袋不合格?(2) 质量最多的是哪袋?它的实际质量是多少?(3) 质量最少的是哪袋?它的实际质量是多少?4 •蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数•爬过的各段路程依次为(单位:厘米) :+4, - 3, +10,- 9, - 6, +12 , - 10.①求蜗牛最后的位置在点0的哪个方向,距离多远?②在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?③蜗牛离开出发点0最远时是多少厘米?5 •某巡警车在一条南北大道上巡逻,某天巡警车从岗亭A处出发,规定向北方向为正,当天行驶纪录如下(单位:千米)-10,- 9, +7,- 15, +6, - 5, +4, - 2| | | 1 | 1 | | 1 | 1 | I 1 I 一I I I I r划-10-9 -8-7-6-5-4-3 -2-1 0 1 2 3 4 5 6 7 8 9 10(1)最终巡警车是否回到岗亭A处?若没有,在岗亭何方,距岗亭多远?(2)摩托车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油?6•某市公交公司在一条自西向东的道路旁边设置了人民公园、新华书店、实验学校、科技馆、花园小区站点,相邻两个站点之间的距离依次为3km、1.5km、2km、3.5km .如果以新华书店为原点,规定向东的方向为正,向西的方向为负,设图上1cm长的线段表示实际距离1km .请画出数轴,将五个站点在数轴上表示出来.7.生活与应用:在一条笔直的东西走向的马路上,有少年宫、学校、超市、医院四家公共场所.已知少年宫在学校东300米,超市在学校西200米,医院在学校东500米.(1)你能利用所学过的数轴知识描述它们的位置吗?(2)小明放学后要去医院看望生病住院的奶奶,他从学校出发向西走了200米,又向西走了- 700米,你说他能到医院吗?8东方红中学位于东西方向的一条路上,一天我们学校的李老师出校门去家访,他先向西走100米到聪聪家,再向东走150米到青青家,再向西走200米到刚刚家,请问:(1)如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出聪聪家与青青家的大概位置(数轴上一格表示50米).(2)聪聪家与刚刚家相距多远?(3)聪聪家向西20米所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离?------------------------ A丄--- >刚学+50米刚9. 小明到坐落在东西走向的大街上的文具店、书店、花店和玩具店购物,规定向东走为正.已知小明从书店购书后,走了100m到达玩具店,再走-65m到达花店,又继续走了- 70m到达文具店,最后走了10m到达公交车站.(1)书店距花店有多远?(2)公交车站在书店的什么位置?(3)若小明在四个店各逗留10min ,他的步行速度大约是每分钟35m,小明从书店购书一直到公交车站一共用了多少时间?10. 王老师到坐落在东西走向的阜城大街上的文具店、书店、花店和玩具店购物,规定向东为正.已知王老师从书店购书后,走了110m到达玩具店,再走-75m到达花店,又继续走了- 50m到达文具店,最后走了25m到达公交车站牌.(1)书店距花店有多远?(2)公交车站牌在书店的什么位置?(3)若王老师在四个店各逗留10min ,他的步行速度大约是每分钟26m,王老师从书店购书一直到公交车站一共用了多少时间?11 •已知蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记作+ ”,向负半轴运动记作-\从开始到结束爬行的各段路程(单位:cm)依次为:+7,- 5,- 10,- 8, +9,- 6, +12 , +4(1)若A点在数轴上表示的数为-3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)若蜗牛的爬行速度为每秒丄un■,请问蜗牛一共爬行了多少秒?12.上午8点,某人驾驶一辆汽车从A地出发,向东记为正,向西记为负•记录前4次行驶过程如下:-15公里,+25公里,-20公里,+30公里,若要汽车最后回到A地,则最后一次如何行驶?已知汽车行驶的速度为55千米/小时,在这期间他办事花去2小时,问他回到A地的时间.13•有一只小虫从某点出发,在一条直线上爬行,若规定向右爬行的路程记为正,向左爬行的路程记为负,小虫爬行各段路程依次记为(单位:厘米) :-5,- 4, +10,- 3, +8.(1)小虫最后离出发点多少厘米?(2)如果小虫在爬行过程中,每爬行一厘米就得到一粒芝麻,问小虫最终一共可得到多少粒芝麻?(3)若小虫爬行的速度始终不变,并且爬完这段路程用了6分钟,求小虫的爬行速度是多少?14. 一个小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5, - 3, +10,- 8,- 6, +12,- 10.(1)小虫最后是否能回到出发点O?(2)小虫离开出发点O最远时是多少厘米?(直接写出结果即可. )(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?15 .体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中+”表示成绩大于18秒,-”表示成绩小于18秒.-1 +0.8 0 - 1.2 - 0.1 0 +0.5 - 0.6这组女生的达标率为多少平均成绩为多少秒?16 .体育课上对七年级(1)班的8名女生做仰卧起坐测试,若以16次为达标,超过的次数用正数表示,不足的次数用负数表示.现成绩抄录如下:+2, +2, - 2, +3, +1 , - 1, 0, +1 .问:(1)有几人达标?(2)平均每人做几次?17.一振子从一点A 开始左右来回振动8 次,如果规定向右为正,向左为负,这8 次振动记录为(单位mm ):+ 10,- 9, +8,— 6, +7.5,- 6, +8,—7.( 1 )求停止时所在位置距 A 点何方向,有多远?(2)如果每毫米需时0.02 秒,则共用多少秒?18 .出租车司机小李某天下午营运全是在东西走向的人民大道进行的.如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,- 3, +14,- 11, +10,- 12, +4,- 15, +16,- 18( 1 )将最后一名乘客送到目的地时,小李距下午出发地点的距离是多少千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?19.某储蓄所,某日办理了7项储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入23万元, 取出10.25 万元,取出 2 万元,求储蓄所该日现金增加多少万元?20.小明去一水库进行水位变化的实地测量,他取警戒线作为0m,记录了这个水库一周内的水位变化情况(测量前一天的水位达到警戒水位,单位:m,正号表示水位比前一天上升,负号表示比前一天下降星期一二三四五六日水位变化( m) +0.15 - 0.2 +0.13 - 0.1 +0.14 - 0.25 +0.16(1)这一周内,哪一天水库的水位最高?哪一天的水位最低?最高水位比最低水位高多少?(2)与测量前一天比,一周内水库水位是上升了还是下降了?21 .在一次食品安检中,抽查某企业10 袋奶粉,每袋取出100 克,检测每100 克奶粉蛋白质含量与规定每100 克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g 奶粉蛋白质含量为15g)- 3,- 4,- 5, +1 , +3, +2, 0,- 1.5, +1 , +2.5( 1 )求平均每100 克奶粉含蛋白质为多少?(2)每100 克奶粉含蛋白质不少于14 克为合格,求合格率为多少?22.某中学定于11 月举行运动会,组委会在修整跑道时,工作人员从甲处开工,规定向南为正,向北为负,从开工处甲处到收工处乙处所走的路程为:+10,- 3, +4,- 2, +13,- 8,- 7,- 5,- 2,(单位:米)( 1 )甲处与乙处相距多远?( 2)工作人员离开甲处最远是多少米?( 3)工作人员共修跑道多少米?23•为了保护广大消费者的利益,最近工商管理人员在一家面粉店总抽查了20袋面粉,称得它们的重量如下(单位:千克):25、25、24、24、23、24、24、25、26、25、23、23、24、25、25、24、24、26、26、25•请你计算这20袋面粉的总重量和每袋的平均重量,你能找出比较简单的计算方法吗?请你试试,根据你的计算结果,你对这次检查情况有什么看法?(每袋面粉的标准重量为:25千克)24•每袋大米的标准重量为50千克,10袋大米称重记录如图所示.(1)与标准重量比较,10袋大米总计超过多少千克或不足多少千克?(2)10袋大米的总重量是多少千克?£ * g £ EZES Z •FIJ 4幕7 ft.8 列」25•体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中+表示成绩大于15秒.-0.8 +1 - 1.2 0 - 0.7 +0.6 - 0.4 - 0.1问:(1)这个小组男生的达标率为多少?(达标率二左匹姿)总人敬(2)这个小组男生的平均成绩是多少秒?26 •在体育课上,赵老师对七年级1班的部分男生进行了引体向上的测试,该项目的标准为不低于7个•现在赵老师以能做7个引体向上为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩记录如下:3 - 2 04 - 1 - 3 0 1(1)8名男生有百分之几达到标准?(2)他们共做了多少个引体向上?27•公路养护小组乘车沿南北公路巡视维护,某天早晨从A地出发,晚上最后到达B地,约定向北为正方向,当天的行驶记录如下(单位:千米):+18, - 9, +7,- 14, +15 , - 6,- 8,问B地在A地何方,相距多少千米? 若汽车行驶每千米耗油a升,求该天共耗油多少升?28.某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:公里)依先后次序记录如下:+9、- 3、- 5、+6、- 7、+10、- 6、- 4、+4、- 3、+7( 1 )将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每公里耗油量为0.1 升,则这辆出租车每天下午耗油多少升?29.1 0盒火柴如果以每盒100根为标准,超过的根数记作正数,不足的根数记作负数,每盒数据记录如下:+3,+2,0,- 1,- 2,- 3,+3,- 2,- 2,- 1 ,1 0盒火柴共有多少根?30.某登山队5 名队员以二号高地为基地,开始向海拔距二号高地500 米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米):+150,- 32,- 43,+205,- 30,+25,- 20,- 5,+30,- 25,+75.( 1 )他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)登山时, 5 名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04 升.他们共使用了氧气多少升?参考答案:1. ( 1) •/ +5 - 4+3 -7+4 - 8+2 - 1= - 6,又•••规定向北方向为正,••• A 处在岗亭的南方,距离岗亭 6千米.(2) T |+5|+| - 4|+|+3|+| - 7|+|+4|+| - 8|+|+2|+| - 1|=34,又•••摩托车每行驶1千米耗油a 升,•这一天上午共耗油 34a 升. 2.依据题意产品允许的误差为 ±).03,即(+0.03 -- 0.03)之间.故:(1) 第一、三、四个产品符合要求,即(+0.025, +0.016, - 0.010).(2) 其中第四个零件(-0.010)误差最小,所以第四个质量好些3. ( 1) 4号袋低于标准质量 4克,6号袋低于标准质量 5克,9号袋低于标准质量 6克,质量都低于 3克以上,故4、6、9号袋不合格;(2)表中标注+4克的,超过标准质量 4克,超过准质量最多,是 7, 8号袋,它的实际质量是 454+4=458克; (3) 表中标注-6的,低于标准质量 6克,低于准质量最多,是9号袋,它的实际质量是454 - 6=448克4. ① (+4) + (- 3) + (+10) + (- 9) + (- 6) + (+12) + (- 10),=(-3) + (- 9) + (- 6) + (+4) + (+12) + (+10) + (- 10) = (- 18) + (+16) +0= - 2 (厘米), 所以蜗牛最后的位置在点0西侧,距离点0为2厘米;② |+4|+|— 3|+|+10|+|- 9|+| - 6|+|+12|+| - 10|=4+3+10+9+6+12+10=54 (厘米),所以蜗牛一共得到 54 料芝麻; ③ 如图所示,最远时为 11厘米.⑤ ®① ⑥-5 -4 -3 -2 -1 0 12 3 4 5 6 7 g 9 101V5. (1)- 10- 9+7 - 15+6 - 5+4 - 2= - 24,即可得最终巡警车在岗亭 A 处南方24千米处. (2)行驶路程=10+9+7+15+6+5+4+2=58千米,需要油量=58 >0.2=11.6升,故油不够,需要补充 1.6升6.解:数轴如图所示:人民公园 新华书店科技馆 花园小区-5 -4 " ■3 -2 -16 T*2~34~~5~6~7^买验字校7. (1)超市学校 少年宫医院 (2) (- 200) +700=500米,则他在医院的东 500米,他能到医院& (1)依题意可知图为:(2) •/ |- 100-( - 150) |=50 (m ), •聪聪家与刚刚家相距 50米.(3) 聪聪家向东20米所表示的数是-100+20= - 80. (4) 求数轴上两点间的距离可用右边的点表示的数减去左边的点表示的数 9.如图所示:青青赢亠(1)书店距花店35米;(2)公交车站在书店的西边25米处;(3)小明所走的总路程:100+| - 65|+| - 70|+10=245 (米),245 £5=7 (分钟),7+4X10=47 (分钟),答:小明从书店购书一直到公交车站一共用了47分钟.亠口亠公交文具店]车苗书店花J审iiii玩具店-10090-80-70-60-50-40*30*20-10 10 20 30 40 50 60 70 80 9010(?10. 如图所示:(1)书店距花店35米;(2)公交车站牌在书店的东边10米处;(3)王老师所走的总路程: 110+|-75|+|-50|+25=260 (米),260吃6=10 (分钟),10+4X0=50 (分钟).答:王老师从书店购书一直到公交车站一共用了50分钟.文壬店书店鑼孑花店玩具店.-50 -40 -30-20*10 5 20 30 50 60 70 80 90 1001 {() 12?11. (1)依题意得-3+ (+7) + (- 5) + (- 10) + (- 8) + (+9) + (- 6) + (+12) + (+4) =0,•••蜗牛停在数轴上的原点;(2) ( |+7|+|— 5|+| - 10|+|- 8|+|+9|+|+12|+|+4|+|-6|) 〒=122cm . •••蜗牛一共爬行了122 秒12 .由题意得:-15+25 - 20+30= - 20 ,•••向东记为正,向西记为负,• - 20表示向西行驶20公里;汽车共行驶15+25+20+30+20=110公里,用时为:110弋5=2 , •共用时2+2=4小时,故回到A地的时间为8+4=12点13. ( 1) (-5) + (-4) +10+ (- 3) +8=[ (- 5) + (-4) + (- 3) ]+ (10+8) =- 12+18=6 (厘米).答:小虫最后离出发点6厘米.(2)| - 5|+| - 4|+|10|+| - 3|+|8|=30 .答:小虫最终一共可得到30粒芝麻.(3)由(2)知:小虫共爬行了30厘米,故其爬行速度为:30 - 6=5 (厘米/分钟).答:小虫的爬行速度为5厘米/分钟14. (1) •/ (+5) + (- 3) + (+10) + (- 8) + (- 6) + (+ 12) + (- 10) =5 - 3+10 - 8 - 6+12 - 10,=5+10+12 - 3 - 8 - 6 - 10=27 - 27=0 ,•小虫最后可以回到出发点;(2) +5+ (- 3) =2 ,(+5) +(-3) +(+10) =12,(+5) +(-3) +(+10) + (- 8) =4,(+5) +(-3) +(+10) + (- 8) + (- 6) =-2,(+5) +(-3) +(+10) + (- 8) + (- 6) +12=10;所以,小虫离开出发点0最远时是12厘米;(3)(|+5|+|- 3|+|+10|+|- 8|+| - 6|+|+12|+| - 10|) X2= (5+3+10+8+6+12+10 ) >2=54X2=108,所以小虫共可得108粒芝麻15 .由题意可知,达标的人数为6人,所以达标率6充X00%=75% .十匸亠心「- L+0.8-1.2-0. 1+0.5-0.6 ,平均成绩为:18+ 厂=18+ (- 0.2) =17.8 (秒)16. (1) •/ 16次为达标,超过的次数用正数表示,•达标的人数6人.(2)八名女生所做的总次数是:(16+2) + (16+2) + (16 - 2) + (16+3) + (16+1) + (16 - 1) +16+ (16+1 ) =134,134所以平均次数是=16.7517. (1)根据题意可得:向右为正,向左为负,由8次振动记录可得:10-9+8 - 6+7.5 - 6+8 - 7=5.5,故停止时所在位置在A点右边5.5mm处;(2) 一振子从一点A开始左右来回振动8次,共10+9+8+6+7.5+6+8+7=61.5mm .如果每毫米需时0.02秒,故共用61.5 >0.02=1.23秒18. (1) (+15) + (-3) + (+14) + (- 11) + (+10) + (- 12) + (+4) + (- 15) + (+16) + (- 18) =0 千米;(2) |+15|+|-3|+|+14|+|- 11|+|+10|+|- 12|+|+4|+|- 15|+|+16|+|- 18|=15+3+14+11+10+12+4+15+16+18=118 (千米), 则耗油118>a=118a 公升.答:将最后一名乘客送到目的地时,小李距下午出发地点的距离是0千米;若汽车耗油量为 a 公升/千米, 这天下午汽车共耗油 118a 公升19•根据题意可设:存入为 +”,取出为’-”;则储蓄所该日现金增加量等于(-9.5) + (+5) + (- 8) + (12) + (+23) + (- 10.25) + (- 2) =+10.25 万元. 故储蓄所该日现金增加 10.25万元20. (1 )本周水位依次为 0.15m ,- 0.05m , 0.08m ,- 0.02m , 0.12m ,- 0.13m , 0.03m .故星期一水库的水位最高,星期六水库的水位最低•最高水位比最低水位高0.15m+0.25m=0.4m . (2)上升了,上升了 0.15 - 0.2+0.13 - 0.1+0.14 - 0.25+0.16=0.18m 3-4-5+1+3+2+0-1.5+1+2.510 (2)其中-3,- 4,- 5,- 1.5为不合格,那么合格的有6个,合格率为 22. ( 1) 10- 3+4 - 2+13 - 8 - 7 - 5- 2=10+4+13 - 3 - 2 - 8 - 7 - 5 - 2=27 - 27=0 (米),•••甲处与乙处相距0米,即在原处.(2)工作人员离开甲处的距离依次为: 10, 7, 11, 9, 22, 14, 7, 2, 0 (米),•工作人员离开甲处最远是 22米.(3) 10+3+4+2+13+8+7+5+2=54 (米),•工作人员共修跑道 54 米 23. 以25千克为标准重量,超过 25千克记为正数,不足 25千克记为负数.25 > 20+[0+0+ (- 1) + (- 1) + (- 2) + (- 1) + (- 1) +0+1+0+ (- 2) + (- 2) + (- 1) + (- 1) +1+1+0]=490 (千克),490十 20=24.5 (千克).答:总重量为490kg ,平均重量24.5kg .在今后的抽查中,应严格把关,保护广大消费者的利益24.(1)与标准重量比较, 10袋大米总计超过 1 + 1 + 1.5 - 1 + 1.2+1.3 - 1.3 - 1.2+1.8+1.1=5.4千克;(2) 10袋大米的总重量是 50X10+5.4=505.4千克25.(1 )成绩记为正数的不达标,只有 2人不达标,6人达标.这个小组男生的达标率=6^8=75% ; (2)- 0.8+1 - 1.2+0 - 0.7+0.6 - 0.4 - 0.1= - 1.6 15 - 1.6 吒=14.8 秒 答:(1)这个小组男生的达标率为 75%. (2)这个小组男生的平均成绩是 14.8秒 26. (1) •/ 8名男生有5个人达到标准,即 5吒>00%=62.5% , 8名男生有62.5%达到标准;(2) 10+5+7+11+6+4+7+8=58 或 3 - 2+0+4 - 1 - 3+0+1=2 , 7>8+2=58,他们共做了 58 个引体向上27. ( 1)约定向北为正方向,则向南为负方向,当天的行驶记录相加就是车的现在位置,18- 9+7 - 14+15 - 6- 8=3 (千米),故B 地在A 地北方3千米处.(2)要求该天共耗油多少升要先求该车走了多少路然后冷,即(18+9+7+14+15+6+8 ) X a=77a (升), 故该天共耗油77a 升28. (1) (+9) + (- 3) + (- 5) + (+6) + (- 7) + (+10) + (- 6) + (- 4) + (+4) + (- 3) + (+7)=9 - 3 - 5+6 - 7+10 - 6 - 4+4 - 3+7=9+10 - 3 - 5 - 3=8 ,•将最后一名乘客送到目的地时,出租车离公园8公里,在公园的东方 8公里处. (2) |+9|+|- 3|+| - 5|+|+6|+| - 7|+|+10|+|- 6|+| - 4|+|+4|+| - 3|+|+7=9+3+5+6+7+10+6+4+4+3+7=64 ,•/ 64>0.1=6.4 (升) , •这辆出租车每天下午耗油 6.4升 29. 先求超过的根数:(+3) + ( +2) +0+ (- 1) + (- 2) + (- 3) + (+3) + (- 2) + (- 2) + (- 1) = - 3; 则10盒火柴的总数量为:100 X 0- 3=997 (根).答:10盒火柴共有997根30. (1)根据题意得:150 - 32 - 43+205 - 30+25 - 20 - 5+30+75 - 25=330 米,500 - 330=170 米.(2)根据题意得:150+32+43+205+30+25+20+5+30+75+25=640 米,640 >0.04 >5=128 升.答:(1)他们没能最终登上顶峰,离顶峰害有 170米;(2)他们共使用了氧气 128升 21. (1) + 15=14.6 (g );牛°%。