局部放电检测仪
GIS局部放电检测仪

德国PDSG公司局部放电试验仪介绍ICMsystem 系列上图为ICMsys8独立8通道局放仪,内含噪讯抑制模块(闸门/Gating)、8个独立局放讯号撷取模块信道、高分辨率模拟-数字转换卡、电源供应器、通讯模块(RS-232 & GBIP)、讯号同步与8信道的试验电压撷取单元。
配置不同的组件可完成下列六大功能:一、工频(AC)、变频、极低频耐压局放。
二、直流(DC)局放三、无线电干扰电压(RIV)测量。
四、IEC认可的选频局放测量(Spectrum)五、GIS或变压器的定位测量。
六、GIS或变压器的极高频(UHF)测量ICMsys4独立4信道局放系统到货点检(内含ICMsys4主机、匹配阻抗x4、前置放大器x5、抑制噪声耦合互感器CT1 x1、标准方波校正讯号产生器x1、同轴电缆相同颜色两条x 各4组、使用手册与专用软件)本系统可分为多种应用,8通道可同时测量变压器的三相高压侧、及低压侧的局部放电(PD)、无线电干扰(RIV)、亦可选购选频的局放测量(Spectrum)、差动抑制噪声的闸门功能(Gate)为标配,根据不同的耦合传感器(选购)也可用来测量极高频的局部放电(UHF),当发现变压器有局放缺陷时,可换装超音波探头,并搭配其专用超音波局部放电定位软件、找出变压器内部的放电位置(请参考下图)。
上图为8通道试验回路示意图下图:以ICMsys4 4通道,应用于干式变压器,三相感应电压局部放电试验屏蔽室内的配置,PD的背景噪讯低于2pc右图:试验电源由发电机输出,经由自耦变及升压变,将试验电源输入到试品变压器的低压侧左图:从高压侧将感应电压讯号接至PD耦合分压器,再经由匹配阻抗将讯号分为局放、试验电压、与频率讯号,再由前放将PD讯号放大输出至ICMsys4的测量接口。
图左:二合一型的100KV分压器和PD耦合测量阻抗图右:亦可搭配现有耦合分压器,PDSG可以提供各种不同的的匹配阻抗与前置放大器上图:局部放电专用试验控制柜,可采用国内生产的工业级计算器与打印机,以方便后续的计算机维修服务,完全避免进口产品维修不易、后送国外原厂的困扰。
局部放电检测仪(mini TEV)判定导则

局部放电检测仪(mini TEV)判定导则一、基本原理电气设备在发生局部放电的过程中,将产生电磁波,电磁波首先传到金属外壳的内表面,然后从金属箱体的内表面通过箱体的连接处或绝缘衬垫等处传播出去,同时产生一个暂态对地电压(TEV)信号,通过设备的金属箱体外表面而传到地下去(如下图所示)。
图一原理图这种(TEV)信号的大小与局部放电的激烈程度及放电点的远近有直接关系。
可以利用专门的耦合探测器进行检测。
这样相应地产生了一门在外部检测不同型号、不同电压等级的设备绝缘状况的先进技术。
为了简单明了,我们用相对的读数(dB),来描述局部放电活动程度。
通过检测局部放电产生的(TEV)信号,不仅可以对运行中的开关柜内的设备局部放电状况进行定量测试,又可通过同一放电源到不同位置的时间差异来对局部放电源进行定位,同时还可以对现场的开关设备的局部放电状况进行在线监测。
二、判断方法(1)比较法由于测量局部放电产生的暂态对地电压(TEV)信号是一种相对的测量方法,在刚开始使用此系列仪器时需对所有的待试设备做一次普测,建立相应的数据库,供设备今后的分析比较用,对某一设备的测试结果可以通过横向比较和纵向比较两种方法。
●横向比较所谓横向比较就是对同类设备的测试结果进行比较,当同类型的某一设备个体的测试结果比其它同类设备的测试果均大时,就可以此设备存在缺陷的可能性,表一为某组10kV XLPE测试结果:表一从表一可以得出电缆头6的测试结果远远地大于其它同类电缆头的测试结果,根据此测量结果,可以得出在电缆头6上发现了放电现象,需采取相应的措施。
●纵向比较所谓纵向比较,就是对同一设备不同时间的测试结果进行分析,从而比较分析得出设备的运行状况,表二是某10kV电流互感器所对应隔室的在不同时间内的测试结果:表二从以上测试结果可以得出,此电流互感器的放电强度逐渐加强,到第十个月,放电强度己达到50dB,需对此电流互感器采取相应的措施。
(2)绘制曲线法因现场干扰在所有设备上作用的一致性,我们也可以通过快速地对开关室内的所有开关柜进行测试,然后记录测试结果,将其绘制成曲线图,若曲线图平缓(如图五),说明开关柜内不存在明显的放电现象,若曲线在某个开关柜处的曲线突出(如图六),说明此开关柜存在一定的放电现象,需用缩短现场测试的周期。
CT9209 局部放电检测仪 使用说明书

CT9209局部放电检测仪使用说明书V2.3杭州高电科技有限公司地址:杭州钱江经济开发区永泰路2号-15#邮编:311107电话:*************传真:*************网站:邮箱:*************尊敬的用户:感谢您购买本公司局部放电巡检仪。
在您初次使用该产品前,请详细阅读使用说明书。
该仪器用于探测中/高压(MV/HV)设备中的局部放电源。
如果没有探测到放电,其并不意味着中高压设备中无放电活动。
放电往往具有潜伏期,绝缘性能也可能会由于局部放电以外的其他原因而失效。
如果检测到与中高压电力系统相连的设备中有相当大的放电,应立即通知对设备负责的相关单位。
警告:始终保持高压部分与仪器、探头和操作人员之间的安全距离。
严格遵守当地安全规则。
附近有雷暴天气时,不得进行测量。
不得在爆炸环境中操作仪器或附件。
使用产品时,请按说明书规范操作。
仪器电池报警后请关机充电。
未经允许,请勿开启仪器,这会影响产品的保修。
自行拆卸厂方概不负责。
存放保管本仪器时,应注意环境温度和湿度,放在干燥通风的地方为宜,要防尘、防潮、防震、防酸碱及腐蚀气体。
仪器运输时应避免雨水浸蚀,严防碰撞和坠落。
本手册内容没有我公司的书面许可,任何部分都不许以任何(电子的或纸质的)形式、方法或以任何目的而进行传播。
目录1.产品概述 (1)2.引用标准 (1)3.测量原理 (1)3.1暂态地电压(TEV) (1)3.2超声波(US) (2)3.3特高频(UHF) (3)3.4高频电流互感器(HFCT) (3)4.技术参数 (5)5.仪器基本操作 (7)5.1仪器开启/关闭 (7)5.2概要信息 (7)5.3系统设置 (8)5.4TEV测量 (9)5.5US测量 (11)5.6UHF测量 (13)5.7HFCT测量 (15)5.8历史记录查看 (17)5.9外同步的使用 (18)5.10传感器的使用 (18)5.11仪器充电 (20)6.检测流程 (20)6.1TEV局部放电检测流程 (20)6.2US局部放电检测流程 (21)6.3声电联合检测 (22)6.4HFCT局部放电检测流程 (23)6.5UHF检测流程 (24)6.6生成报告流程 (25)1.产品概述局部放电是一种脉冲放电,它会在电力设备内部和周围空间产生一系列的光、声、电气和机械的振动等物理现象和化学变化。
局部放电检测仪操作规程

局部放电检测仪操作规程一、校准将空气开关推到闭合位置,转动操作台上的电源锁,接通电源,打开检测仪的电源开关,设备开机,并自动启动检测软件。
调节粗调增益到“0”档位。
将校准信号发生器一端接高压发生器的高压端,一端接地,打开信号发生器并选择合适的校正电荷量档位,一般选择50pC或100pC。
观察显示屏的椭圆放电量指示,和数码管放电量读数器读数,调节粗调增益档位,逐档上升,直至档位“3”,升档过程中应注意放电量读数,若超过本档位的测量范围(120),且显示屏椭圆放电指示过高(高于约2cm),应停止向上升档,并检查是否有异常或干扰过大。
升至档位“3”后,观察放电量读数器读数,并调节细调增益旋钮与校准信号电荷量一致,校准完成后细调增益旋钮不得再调节,除非再次校准。
粗调增益旋钮重新调节到“0”档位,并关闭校准信号发生器,移除连接线。
二、检测将试品正确连接到高压端和接地端。
按下“启动”按钮,连续按“升压”按钮,升压至试品工频耐压值的80%左右,并保持20至30秒,然后按“降压”按钮将电压调节至要求的局放电压值。
观察显示屏椭圆放电量指示和放电量读数器读数,若读数过小,则应调高一档,若读数超过100则应降低一档,最终读数应为放电量读数器读数乘以或除以档位相对应的倍率来确定。
档位“3”倍率为1,相邻档位倍率为10,档位“2”倍率为10,档位“4”倍率为0.1,其他各档位倍率按此类推。
读取放电量数据后,重新将增益粗调旋钮调至档位“0”,逐步降低电压,直至“零位”指示灯亮起,按下“停止”按钮。
用放电棒的导电部位碰触试品高压端进行放电。
在此项完成前禁止任何人员靠近试品以及高压发生器。
三、维护保养使用完毕后,关闭局放检测仪电源,关闭操作台电源锁,将空气开关扳至断开位置。
用防尘布改好操作台。
日常使用应对操作台和高压发生器除尘清洁,并保持干燥。
局部放电检测仪的使用步骤介绍

局部放电检测仪的使用步骤介绍仪器概述局部放电检测仪是一种专业的检测仪器,用于检测电气设备中的局部放电现象。
局部放电是制约电气设备安全运行的一个重要因素,因此在电气设备的维护和运行过程中使用局部放电检测仪是非常必要的。
使用步骤准备工作在使用局部放电检测仪进行检测之前,需要进行一些准备工作:1.检查检测仪的电源和连接线是否正常;2.对待检设备进行清洁,确保检测仪能够接触到所有需要检测的部位;3.选择适当的检测位置,并将检测仪的探头放置在该位置。
连接仪器接好电源线、放电探头及地线,将探头紧贴在被检测器件的表面上,保证电极贴合良好,尤其是被检测设备需要注意其是否接地。
开始检测通电后仪器会自动启动,显示屏会有相关参数的读数。
局部放电检测仪会自动记录局部放电的时间和发生放点的位置,并以声音或者其他方式进行提示。
需要注意的是,局部放电的检测不仅涉及局部放电的检测,还有检测数据的处理及分析,因此使用局部放电检测仪需要进行详细的检测操作及数据处理分析。
停止检测当检测完成后,应及时将探头从被检测器件表面上移除,并关闭电源。
数据分析局部放电检测仪会输出大量的数据,包括放电电容量、零漏电流、设备介质的击穿强度等多个参数。
因此,对局部放电检测数据的分析处理非常关键。
可以通过分析局部放电检测仪的数据,对设备进行运行状态进行分析,有针对性的进行设备维护。
注意事项1.在使用局部放电检测仪进行检测时,需关闭被检测电器的电源,并确保设备处于安全状态;2.执行检测过程中,应保证人员的安全,严格遵循各项规定;3.进行数据分析时,需充分考虑被检测对象的情况,结合其他测试数据进行综合分析。
总结局部放电检测仪是电气设备维护保养的重要工具,使用步骤基本相同,但不同的情况和被检测对象也会出现一些操作细微的差异,因此,在使用前需要仔细阅读检测仪器的说明书,并掌握相关的电学知识,确保在使用过程中能够得到准确的检测结果,从而更好地保护设备运行的安全和稳定。
局部放电测试仪的总体简介

局部放电测试仪的总体简介华天电力专业生产局部放电测试仪(又称局部放电检测系统),接下来为大家分享局部放电测试仪的总体简介。
GB/T 7354—2003《局部放电测量》定义为:导体间绝缘仅被部分桥接的电气放电,这种放电可以在导体附近发生,也可以不在导体附近发生。
DL/T 417—2006《电力设备局部放电现场测量导则》定义为:指设备绝缘系统中部分被击穿的电气设备,这种放电可以发生在导体(电极)附近,也可以发生在其他位置。
一般解释为:在电场的作用下,绝缘的部分区域中发生放电短路现象,称为局部放电。
根据局部放电发生的部位,可以分为内部放电、表面放电和电晕放电三大类。
华天电力的局部放电检测系统符合新的GB7354及IEC-270“局部放电检测试验“标准。
局部放电检测仪适用于各类高压电器设备的局部放电检测试验,具有新型数字滤波及干扰抑制功能,使用户操作和诊断更加简便自如。
可根据客户要求生产单通道和双通道测试,具有正弦、点阵等多种视图显示方式,数字滤波及干扰抑制功能,结合丰富的动态统计分析图谱,使现场干扰能够得到更有效的抑制,用户操作和诊断更加简便。
1、视在放电量在试品两端注入一定电荷量,使试品两端电压的变化量和局部放电时端电压变化量相同,此时注入的电荷量即称为局部放电的视在放电量q,以皮库(pC)表示。
2、局部放电起始电压试验电压从不产生局部放电的较低电压逐渐增加时,在试验中局部放电量超过某一规定值时的最低电压值,即为局部放电起始电压Ui。
3、局部放电熄灭电压试验电压从超过局部放电起始电压的较高值逐渐下降时,在试验中局部放电量小于某一规定值时的最高电压值,即为局部放电熄灭电压Ue。
4、实际电荷在电场作用下,绝缘内部发生放电,使这些空间电荷移动,放电过程中绝缘内部移动的电荷称为实际电荷Qr。
5、重复率局部放电脉冲重复率n,是在一个选定的时间内所测得的每秒钟局部放电脉冲数的平均值。
局部放电检测仪工作原理

局部放电检测仪工作原理
电气设备产生局部放电时,会产生电磁波,电磁波在向外传播时会生成一个暂态的对地电压信号。
这个信号的大小与局部放电的激烈程度及放电点的远近有直接关系。
可以利用专门的探测器进行检测,这种探测器就是局部放电检测仪。
工作原理:
局部放电测试原理是高频脉冲电流测量法(即ERA法)。
试品Ca在试验电压下产生局部放电时,放电脉冲信号经耦合电容Ca送入输入单元,由输入单元拾取得脉冲信号,经低噪声前置放大器放大,滤波放大器选择所需频带及主放大器放大(达到所需幅值与产生零标志脉冲)后,在示波屏的椭圆扫描基线上产生可见的放电脉冲,同时也送至脉冲峰值表显示其峰值。
时间窗单元控制试验电压每一周内脉冲峰值表的工作时间,并在这段工作时间内将示波屏的相应显示区加亮,用它可以排除固定相位的干扰。
试验电压表经电容分压器产生试验电压过零标志讯号,可在示波屏上显示零标脉冲,试验电压大小由数字电压表指示。
标签:
局部放电检测仪
1。
PD-AE手持式超声局部放电检测仪

PD-AE局部放电检测仪介绍1.概述:PD-AE局部放电检测仪用于检测电力变压器、GIS组合电器、中高压开关柜、高压电缆等设备绝缘是否存在局部放电,以及分析局放的严重程度。
通过测量局部放电产生超声波信号脉冲,对脉冲特征进行统计,用多种图谱直观地表达放电信号的幅度、相位、产生频度以及放电的发展趋势,达到测量局部放电信号的特征,并且识别局部放电信号类型的目的。
2.功能介绍:2.1 PD-AE的输入信号选择PD-AE外接2路AE信号进行测量。
2.2 PD-AE统计图谱幅度峰值趋势图将放电脉冲每秒的最大峰值在时间轴上输出,它反映信号每秒最大峰值的变换,可以具备测量的脉冲的高灵敏度。
幅度均值趋势图将放电脉冲每秒的平均幅度在时间轴上输出,它反映信号的平均峰值的变换,可以有效抑制偶发性的干扰脉冲。
Q-Φ-N图放电强度-相位-频度统计图,将单元数据体按),( N Q 的方式进行显示,此数据体本质上是二维函数,一般需要三维方式来显示。
其中放电频度N 按伪彩方式表达,从而在二维平面显示放电的统计特征图形,便于测试和判断放电故障状态和原因。
Q-Φ图:放电强度-相位直方图,根据相应算法将单元数据体映射成一维函数,在二维平面上表达,用直方图显示,便于观察某个相位上的放电强度;Q-N 图:放电强度-频度直方图,根据相应算法将单元数据体映射成一维函数,在二维平面上表达,用直方图显示,便于观察在某个幅度下相应时段内放电的统计次数;2.3 PD-AE特征量鉴于目前PD诊断技术的发展现状,PD-AE作为一种提供用户实际使用的产品,所提供的测量参数必须概念明确、简单实用,以便取得用户的普遍认同。
基于这个原则,在电气PD专家的指导和建议下,采用如下几个特征参数幅度峰值Qp:用于描述放电信号在工频周期内的最大幅度,通常仅用于判断PD信号是否存在,单位mV幅度均值Qm:用于描述工频周期内稳定并最大的信号幅度,是评定放电水平的重要参数,单位mV幅度波动Qv:用于描述放电信号在工频周期内幅度的稳定性特征,单位mV。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PDV5局部放电检测仪目录PDV 5 (1)1 产品概述 (3)2 检测原理 (4)3 仪器操作 (4)4传感器操作 (5)5仪器的功能 (6)5.1 频谱扫描 (7)5.2 启/停测量 (7)5.3结果显示 (7)5.4放电类型识别 (8)5.5抗干扰 (8)5.5.1 主要干扰类型 (9)5.5.2 仪器对干扰的抑制 (9)5.6 数据回读浏览 (9)5.7 自动更新 (10)5.8 数据导出 (10)5.9 帮助 (10)6使用条件 (10)7性能指标 (10)8现场测量方法与注意事项 (11)附录A GIS 局部放电的典型图谱 (14)附录B 干扰信号的典型图谱 (15)附录C 检测数据的要求 (16)附录D 术语和定义 (16)1 产品概述局部放电测量有助于发现以SF6气体作为绝缘介质的气体绝缘金属封闭开关设备(以下简称GIS,包括HGIS和罐式断路器等)内部的多种绝缘缺陷,是诊断GIS健康状态的重要手段。
在GIS制造、安装、运行和检修的各个环节,凡是具备条件的,都应该进行局部放电检测。
为此,我们精心设计了PDV5局部放电检测仪,专门用于定量检测GIS等电力变电设备内部的局部放电的状况,直观分析局部放电的严重程度,衡量设备内部绝缘的劣化程度,使维护人员在变电设备出现绝缘劣化时能够及时发现,采取相应措施,避免设备出现短路等严重故障。
PDV5局部放电检测仪采用目前流行的超高频和超声波检测局部放电的方法,通过外置的UHF天线接收GIS内部局部放电辐射和产生的超高频和超声波信号,能有效检测到设备内部产生的微弱局部放电信号。
PDV5在使用上以超高频为主要检测方法,超声波为辅助检测手段。
PDV5具有如下特点:①单通道设计,可以选择接入超高频传感器或者超声波传感器。
②便携式设计,维护人员能随身携带,并且一个人就能实施局部放电的检测过程。
③操作过程简单,通过仪器上的快捷按键就能轻松完成整个检测,方便现场人员使用。
④在检测过程中自动实时进行局部放电智能化诊断,并且将判断结论显示在仪器界面上,帮助现场工作人员分析局部放电类型。
⑤具备连续检测和存储数据的能力,数据能通过外插U盘的方式导出。
⑥在检测过程中实时显示放电幅度趋势图,Q-N-Φ图(PRPD), 特征棒图,有经验的现场分析人员可以清楚的观测到设备内部产生的局部放电的时域和相域的特征,从而判断局部放电严重程度和类型。
2 检测原理电气设备在使用过程中,绝缘子表面逐步产生缺陷,在局部出现的微小放电的物理状况。
检测局部放电是诊断电力设备绝缘状态的重要办法。
GIS局部放电的起因有如下几种:1.导体上的毛刺或颗粒 4. 自由移动的带电颗粒2.壳体上的毛刺或颗粒 5. 盆式绝缘子上的颗粒3.悬浮屏蔽(接触不良) 6. 盆式绝缘子内部缺陷从能量的角度来看,放电是能量的一个瞬时的爆发,是电能以声能、光能、热能、电磁能,气体形式(臭氧、一氧化二氮)等形式释放出去的一个过程,可采用多种手段进行测量。
目前局部放电的检测手段主要有如下4种:传统检测法(实验室常用,不适合在线)超高频(UHF)检测法(检测灵敏度高,适合现场)超声波(AE)检测法(检测灵敏度高,适合现场)气体分析法(检测灵敏度低,反应速度慢)UHF检测法和AE检测法适合现场检测应用,可以相互补充。
在变电站现场,由于受电磁环境、检测设备和试验电源等条件的限制,通常难以对GIS进行常规的脉冲电流法检测。
实践经验表明,局部放电超高频检测方法具有检测灵敏高和抗干扰能力强的特点,适用于发电厂和变电站现场条件下的GIS局部放电测量。
目前电力行业内已经认可此方法,并且有相应的技术规范。
3 仪器操作步骤一:将UHF天线接入仪器UHF通道输入接口。
步骤二:将AE探头与调理放大器连接后接入仪器AE通道接口。
步骤三:用户佩戴好仪器后,通过上方面板,打开电源开关,系统启动,便可进入测量状态工作。
步骤四:在仪器操作界面上选择测量频段,设置测量参数,启动测量后,通过仪器界面观察局部放电脉冲特征。
注:在环境恶劣的条件下,需对仪器进行相应保护措施,以免对仪器造成损伤。
4传感器操作将UHF传感器靠近运行中的GIS盆式绝缘子与金属法兰的的接缝附近就可以得到信号,不需要对GIS做任何改动,不需停电,不影响GIS的正常运行。
外置的UHF传感器应置于未包裹金属屏蔽的GIS盆式绝缘子外侧或GIS壳体上存在的介质窗处,注意:当GIS盆式绝缘子外包金属屏蔽时,需要对金属屏蔽开窗。
传感器安装不应影响设备美观。
需要使用超声波(AE)传感器时,需要将超声波传感器紧贴GIS壳体表面(为了保证传感器与GIS壳体良好紧密的接触,应在超声波传感器表面涂抹硅胶)并且连接好超声波前置放大器。
传感器布置应保证GIS内部发生在任何位置的局部放电都能够被有效传感,在此前提下,传感器应尽量安装在GIS关键设备附近,包括断路器、隔离开关、电压互感器等。
对于长直母线段测点间隔宜为5-10m。
5仪器的功能5.1 频谱扫描用户在待机状态下按下“频谱扫描”键后,系统自动在400MHz-1600MHz范围内以25MHz-50MHz带宽对每个频段进行扫描,计算出每个频段的信噪比,并自动选择出干扰最小,信噪比最高的频段作为测量的频段。
5.2 启/停测量用户在数据采集前,需要对所需采集数据自定义范围,选择相应的频段,时间范围,脉冲宽度(若不进行选择,系统确认为默认值),选择确定后,点击键盘上的“启动/停止”键,仪器开始进行数据采集,如需停止采集需再次按下“启动/停止”键。
测量结束后,系统会提示用户是否保存测量的数据,用户可根据自身需要,进行选择。
对已经保存的数据,用户在浏览后能够选择是否“删除”。
5.3结果显示趋势图:反应放电幅度(峰值和均值)随时间变化的关系;PRPD图( -q-n图):反应放电幅度,相位,次数的关系,用二维伪彩图的形式表达出来;特征棒图:Qp:表示固定时间尺度下,所有放电脉冲的最大峰值。
Qm:固定时机尺度下,所有放电脉冲的最大峰值。
F1:固定时间尺度下,所有放电脉冲的50Hz的相关性,在相位分布上表现为单峰特征。
F2:固定时间尺度下,所有放电脉冲的100Hz的相关性,在相位分布上表现为双峰特征。
Qp, Qm反映放电幅度的统计特征,F1与F2反映放电相位的统计特征。
反映的统计特征与放电类型密切相关。
相位图:反应放电幅度(峰值和均值)随相位变化的关系5.4放电类型识别在测量过程中,系统对测量的数据实时分析并进行智能判断,并将判断结果自动分类,类别如下:1--悬浮电位放电2--绝缘子内部气隙放电3--绝缘子沿面放电4--尖端毛刺放电5--自由颗粒放电6—外部干扰7--没有明显放电特征系统会自动给出所识别结果的数据和置信度,并在屏幕下方的状态栏中显示出来。
5.5抗干扰现场干扰将降低局部放电检测的灵敏度,甚至导致误报警和诊断错误。
因此,局部放电检测装置应能将干扰抑制到可以接受的水平。
5.5.1 主要干扰类型GIS局部放电特高频检测中主要存在以下几类干扰形式:1)移动通讯和雷达等无线电干扰;2)变电站架空线上尖端放电干扰;3)变电站高电压环境中存在的浮电位体放电干扰;4)照明、风机等电气设备中存在的电气接触不良产生的放电干扰;5)开关操作产生的短时放电干扰。
5.5.2 仪器对干扰的抑制PDV5局部放电检测仪在设计上充分考虑到测量现场复杂的电磁环境,采取了多种抗干扰措施。
选用400M-1600MHz 频段范围的UHF 传感天线,避开架空线上的电晕主能量频段。
采用仪器的频谱扫描功能可以在400M-1600MHz范围内以25MHz或50MHz带宽对每个频段进行扫描,计算出每个频段的信噪比,并自动选择出干扰最小,信噪比最高的频段作为测量的频段。
仪器在采集单元部分采用取得专利的脉冲特征提取技术,可以有效的减少移动通讯或雷达等干扰信号的输入。
5.6 数据回读浏览在测量结束后,PDV5仪器提供前后页翻页浏览数据的功能,用户可以查看整个测量过程不同时刻的数据。
也可以读取已经存储的数据文件来了解一个测量过程不同时刻的数据。
一旦用户在测量结束后保存了数据文件,用户可随时查看测量过程中任何时刻的数据的统计特征和以及原始脉冲数据。
软件提供选择“时间尺度”的功能,可以选择10,30,60秒来进行统计,只需移动趋势图上的透明透明条到想要查看的时间位置后,结合时间尺度来查看数据。
5.7 自动更新当PDV系统中的软件需要升级时,用户可以在U盘根目录的PDVUpdate文件夹中拷入厂家的更新文件后,直接插入PDV5仪器的USB接口,PDV5自动检测文件的版本信息后自动重新启动仪器来更新软件。
5.8 数据导出U盘插入仪器USB接口后,仪器会自动检测到U盘插入,并提示是否导出数据,选择导出后,仪器会把本地存储器上的测量数据文件复制到U盘上。
本仪器最大可支持U盘为8G。
5.9 帮助顶级菜单中“帮助”,进入后将以图形化方式向您展示PDV5仪器的快速指南。
从快速指南中您将了解仪器底部菜单的操作流程。
帮助还向您提供了校准PDV5系统的工具,分别是触摸屏和时钟的校准。
这两项在仪器出厂前已经进行了校准,一般用户不需要再次校准。
但是如果您发现仪器出现触摸屏和时钟的偏差,可以在这里进行校准,可以有效避免硬件的偏差给您的测量过程带来困扰。
6使用条件环境温度:-15℃-65℃标高:海拔3000m以下不结露的最大相对湿度:95%污秽等级Ⅲ级最大风速35m/s7性能指标8现场测量方法与注意事项本仪器为内置式锂电充电电池,在使用仪器前,请确保电量饱和,以免在数据采集过程中出现断电,引起数据丢失。
本仪器为便携式局部放电检测仪,通过配套背带可随身携带。
用户佩戴好仪器后,通过上方面板,打开电源开关,系统进入待机状态,便可开始进入工作状态。
在现场检测时,UHF传感器靠近运行中的GIS盆式绝缘子与金属法兰的的接缝附近,观测是否有局部放电脉冲信号在现场检测时,AE传感器通过吸附或捆扎在设备外壳上,但需要频繁变换检测部位;在局部放电带电检测中,如果检测到放电信号,并确定为GIS内部的局部放电,则可以把所测波形和谱图与典型放电波形和谱图进行比较,确定其局部放电的类型。
局部放电类型识别的准确程度取决于经验和数据的不断积累,目前尚未达到完善的程度。
在实际检测中,当检测结果和检修结果确定以后,应保留波形和谱图数据,作为今后局部放电类型识别的依据。
在局部放电带电检测中,如果检测到放电信号,同时定位结果位于重要设备如断路器、电压互感器、隔离开关、接地刀闸或盆式绝缘子处,则应尽快安排停电检修。
如果放电源位于非关键部位,则应缩短检测周期,关注放电信号的强度和放电模式的变化。
在带电测量过程中,在GIS的高电压位置,如GIS的变压器和线路出线套管,请注意保持传感器及其电缆线和裸露的高压部件的安全绝缘距离,否则可能危及人身安全。