大学物理下册第三版课后答案16电磁感应
大学物理_电磁感应和电磁波及习题解答

d
-
a
-
17-4(感生) B=0I/2r
I(t)
ds=Ldr a b a b I t L I t 1 t L dr dr 2r a 2 a r
L d a
d t dt
对r,I(t)是常数
L a b ln wI 0 cos wt 2 a
b
补充题 在半径为R的圆筒内,有方向与轴线平行 的均匀磁场B,它以dB/ dt=1.0×10-2T/s 的变化率减小。P点离轴线的距离r=5.0cm, 如图所示,试问电子在各点处可获的加速度 的大小和方向如何? 解:轴对称
E dl E 2r d dB dB r 2 S dt dt dt
自感电动势:
自感系数:
L
d m 0 dt
判别自感电动势和 自感电流的方向与 一般情况相同。
反映线圈自身特性
d d LI dI L L dt dt dt
例1.N 匝的螺线管长l,截面积为 S,绕在铁心上,求自感系数。 解:螺线管内部的磁感应强度:
B nI
1 K 2
L R
*解释:K接通1时,电池和线圈充当 灯泡的电源(电池对L充电); K接通2时,线圈充当灯泡的电源 (L向灯泡放电)。
电感器储能
WL dq d Idt dt LIdI
dq I dt
d dt
LI d LdI
1 2 LI 2
二、磁场的能量 电感器所储能量只能分布在磁场中 长直螺线管
以O为圆心,OP为半径作圆
P
Ek
o
r dB E 2 dt
r dB 2 E dl 2 dl cos 2 dt 0 0
大学物理第三版下册答案(供参考)

习题八8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题8-1图示(1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷2220)33(π4130cosπ412aq qaq'=︒εε解得qq33-='(2)与三角形边长无关.题8-1图题8-2图8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强.解: 如8-7图在圆上取ϕRddl=题8-7图ϕλλddd Rlq==,它在O点产生场强大小为20π4d d RR E εϕλ=方向沿半径向外 则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E s取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-= 1σ面外, n E )(21210σσε+-= 2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功. 解: 如题8-16图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势. 解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O 8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qrr q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势;(3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4rrQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4r r Q E r Qr D ε ==外(2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Qr r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容.解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== 习题九9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r mT9-11 氢原子处在基态时,它的电子可看作是在半径a =0.52×10-8cm 的轨道上作匀速圆周运动,速率v =2.2×108cm ·s -1.求电子在轨道中心所产生的磁感应强度和电子磁矩的值.解:电子在轨道中心产生的磁感应强度3004aav e B πμ ⨯= 如题9-11图,方向垂直向里,大小为134200==a evB πμ T 电子磁矩m P在图中也是垂直向里,大小为242102.92-⨯===eva a T e P m π 2m A ⋅ 题9-11图 题9-12图9-12 两平行长直导线相距d =40cm ,每根导线载有电流1I =2I =20A ,如题9-12图所示.求:(1)两导线所在平面内与该两导线等距的一点A 处的磁感应强度;(2)通过图中斜线所示面积的磁通量.(1r=3r =10cm,l=25cm).解:(1) 5210104)2(2)2(2-⨯=+=dIdIBAπμπμT方向⊥纸面向外(2)取面元rlS dd=6121110102.23ln31ln23ln2])(22[1211-+⨯=πμ=πμ-πμ=-πμ+πμ=⎰l Il Il IldrrdIrIrrrΦWb9-13 一根很长的铜导线载有电流10A,设电流均匀分布.在导线内部作一平面S,如题9-13图所示.试计算通过S平面的磁通量(沿导线长度方向取长为1m的一段作计算).铜的磁导率μμ=.解:由安培环路定律求距圆导线轴为r处的磁感应强度⎰∑μ=⋅lIlBd222RIrrBμπ=∴22RIrBπμ=题 9-13 图磁通量602)(1042-===⋅=Φ⎰⎰πμπμIdrRIrS dB RsmWb题9-15图9-15 题9-15图中所示是一根很长的长直圆管形导体的横截面,内、外半径分别为a ,b ,导体内载有沿轴线方向的电流I ,且I 均匀地分布在管的横截面上.设导体的磁导率0μμ≈,试证明导体内部各点)(b r a << 的磁感应强度的大小由下式给出:r a r a b IB 22220)(2--=πμ解:取闭合回路r l π2= )(b r a <<则 ⎰π=⋅lr B l B 2d2222)(a b Ia r I ππππ--=∑∴ )(2)(22220a b r a r I B --=πμ 9-16 一根很长的同轴电缆,由一导体圆柱(半径为a )和一同轴的导体圆管(内、外半径分别为b ,c )构成,如题9-16图所示.使用时,电流I 从一导体流去,从另一导体流回.设电流都是均匀地分布在导体的横截面上,求:(1)导体圆柱内(r <a ),(2)两导体之间(a <r <b ),(3)导体圆筒内(b <r <c )以及(4)电缆外(r >c )各点处磁感应强度的大小解: ⎰∑μ=⋅LI l B 0d(1)a r < 2202RIr r B μπ=202R IrB πμ=(2) b r a << I r B 02μπ=rIB πμ20=(3)c r b << I bc b r I r B 0222202μμπ+---= )(2)(22220b c r r c I B --=πμ (4)c r > 02=r B π0=B题9-16图题9-17图题9-21图9-21 边长为l =0.1m 的正三角形线圈放在磁感应强度B =1T 的均匀磁场中,线圈平面与磁场方向平行.如题9-21图所示,使线圈通以电流I =10A ,求: (1)线圈每边所受的安培力; (2)对O O '轴的磁力矩大小;(3)从所在位置转到线圈平面与磁场垂直时磁力所作的功.解: (1) 0=⨯=B l I F bcB l I F ab⨯= 方向⊥纸面向外,大小为866.0120sin ==︒IlB F ab NB l I F ca⨯=方向⊥纸面向里,大小866.0120sin ==︒IlB F ca N(2)IS P m =B P M m⨯= 沿O O '方向,大小为221033.443-⨯===B l I ISB M m N ⋅(3)磁力功 )(12ΦΦ-=I A∵ 01=Φ B l 2243=Φ ∴221033.443-⨯==B l IA J9习题十10-1 一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小.解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V 10-2 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题10-2图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α 当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i, 题10-2图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j,则αΦcos 2π22B R m=∵ B 与i 夹角和B 与j夹角相等,∴ ︒=45α则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV方向与cbadc 相反,即顺时针方向.题10-4图10-4 如题10-4图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压 N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ 0cos d ln 02a bMN a bIv a bvB l a bμεππ+--==<+⎰所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln20πμ M 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln20πμ 题10-5图10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量;(2)线圈中的感应电动势. 解: 以向外磁通为正则 (1)]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r Iab b ad d m +-+=-=⎰⎰++μμμΦ(2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε10-6 如题10-6图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题10-6图解: )cos(2π02ϕωΦ+=⋅=t r B S B m∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε ∴ RBfr R I m22π==ε 10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.10-8 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B 中,B 的方向与回路的法线成60°角(如题10-8图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lvkt Blvt S B mΦ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题10-8图10-9 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题10-9图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题10-9图(a)题10-9图(b) 在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题10-10图10-10 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图10-10所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高?解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题10-11图10-11 如题10-11图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向. 解:在金属杆上取r d 距左边直导线为r ,则ba b a Iv r r a r Iv l B v ba ba BAAB -+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμε∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln0πμ 题10-12图10-12 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题10-12图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=-- ∴ tB R R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →10-13 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势. 解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅= Φ∴ tB R R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题10-13图题10-14图∴ 题10-15图 10-15 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2aaIa r r Ia μμΦ∴ 2ln π2012aI M μΦ==10-16 一矩形线圈长为a =20cm ,宽为b =10cm ,由100匝表面绝缘的导线绕成,放在一无限长导线的旁边且与线圈共面.求:题10-16图中(a)和(b)两种情况下,线圈与长直导线间的互感.解:(a)见题10-16图(a),设长直电流为I ,它产生的磁场通过矩形线圈的磁通为2ln π2d 2πd 020)(12Ia r r Ia S B bb S μμΦ⎰⎰==⋅= ∴ 6012108.22ln π2-⨯===a N I N M μΦ H (b)∵长直电流磁场通过矩形线圈的磁通012=Φ,见题10-16图(b) ∴ 0=M题10-16图题10-17图10-20 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能.解:在R r <时 20π2R I B r μ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l )则 ⎰⎰===R R m I R r r I r r w W 00204320π16π4d d 2μμπ。
大学物理学第三版修订版下册第章标准答案(赵近芳)

大学物理学第三版修订版下册第章答案(赵近芳)————————————————————————————————作者:————————————————————————————————日期:习题1111.1选择题(1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流()(A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。
[答案:B](2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。
[答案:A](3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式221LI W m=()( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。
[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。
[答案:C]11.2 填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。
[答案:磁力](2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。
[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。
[答案:端点,221l B ω;中点,0]11.3一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B ϖ垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V11.4 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题11.4图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i ϖ, 题11.4图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j ϖ,则αΦcos 2π22B R m=∵ B ϖ与i ϖ夹角和B ϖ与j ϖ夹角相等,∴ ︒=45α 则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV方向与cbadc 相反,即顺时针方向.题11.5图11.5 如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v ϖ方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则 (1) ]ln [lnπ2d π2d π2000dad b a b Ilr l rIr l rIab bad dm +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7 如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解: )cos(2π02ϕωΦ+=⋅=t r B S B m ϖϖ ∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε ∴ RBfr R I m22π==ε11.8 如题11.8图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题11.8图解: AB 、CD 运动速度v ϖ方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεϖϖϖBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰μεϖϖϖ∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεεV方向沿顺时针.11.9 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场Bϖ中,B ϖ的方向与回路的法线成60°角(如题11.9图所示),B ϖ的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向. 解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m ϖϖΦ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题11.9图11.10 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B ϖ的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题11.11图11.11 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题11.12图11.12 如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v ϖ平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则 ba b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμεϖϖϖ ∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln 0πμ题11.13图11.13 磁感应强度为B ϖ的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=-- ∴ tBR R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →11.14 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅=ϖϖΦ∴ tBR R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15 如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示方向.试求:(1)ab 两端的电势差;(2)cd 两点电势高低的情况.解: 由⎰⎰⋅-=⋅l S t B l E ϖϖϖϖd d d d 旋知,此时旋E ϖ以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E ϖ与ab 垂直∴ ⎰=⋅ll 0d ϖ旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc ϖϖ旋ε∴ 0<-c d U U 即d c U U >题11.16图11.16 一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==11.17两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H11题11.18图11.18 一矩形截面的螺绕环如题11.18图所示,共有N 匝.试求:(1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少? 解:如题11.18图示(1)通过横截面的磁通为⎰==b a ab NIh r h r NIln π2d π200μμΦ 磁链 ab IhN N ln π220μΦψ== ∴ ab hN I L ln π220μψ== (2)∵ 221LI W m = ∴ a b h I N W m ln π4220μ=11.19 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能.解:在R r <时 20π2R I B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l )则 ⎰⎰===RR m I R rr I r r w W 00204320π16π4d d 2μμπ。
10.电磁感应 大学物理习题答案

0I ldr 2r
B 2l 2 cos 2 t mR
) , v max
Hale Waihona Puke mgR sin 。 B 2 l 2 cos 2
感生电动势 10-7 一长直导线中通有交变电流 I=5.0sin100πt A,在与其相距 d=5.0cm 处放有一矩形线圈,共 100 匝, 线圈长 l=4.0cm,宽 a=2.0cm,如图 10-7 所示。求 t 时刻: (1)线圈中的磁通链数是多少?(2)线 圈中的感生电动势是多少? 解: (1)取矩形线圈的回路方向为顺时针方向,在距长直电流为 x 处取宽为 dx 的小面元
大学物理练习册—电磁感应
法拉第电磁感应定律 10-1 如图 10-1 所示,一半径 a=0.10m,电阻 R=1.0×10 3Ω 的圆形导体回路置于均匀磁场中,磁场方向与 回路面积的法向之间的夹角为π/3,若磁场变化的规律为
B(t ) (3t 2 8t 5) 10 4 T
求: (1)t=2s 时回路的感应电动势和感应电流; (2)最初 2s 内通过回路截面的电量。 解: (1) B S BS cos
若 C 线圈匝数增加 N 倍,则 M N
52
大学物理练习册—电磁感应
10-12 一长直导线旁,共面放置一长 20cm、宽 10cm、共 100 匝的密绕矩形线圈,长直导线与矩形线圈的 长边平行且与近边相距 10cm,如图 10-12 所示。求两电路的互感系数。 解:在距长直导线 r 处,取一面元 dS ldr ,则 d BdS
0 R2 I 2( R 2 l 2 ) 3 2
A
R r C l 图 10-11
M
0R2 I 0R 2 r 2 BS r 2 I I 2( R 2 l 2 ) 3 2 I 2( R 2 l 2 ) 3 2 NR 2 r 2 BS 02 2 32 I 2( R l )
大学物理学第三版答案16电磁感应.docx

习题1616・1・如图所示,金属圆环半径为/?,位于磁感应强度为P的均匀磁场中,圆环平面与磁场方向垂直。
当圆环以恒定速度▽在环所在平面内运动时,求环中的感应电动势及环上位于与运动方向垂直的直径两端〃间的电势差。
解:(1)由法拉第电磁感应定律考虑到圆环内的磁通量不变,所以,环中的感dtr u ——(2)利用:8ah= £ (vxB)-dl ,有:£ah = Bv・2R = 2BvR。
【注:相同电动势的两个电源并联,并联后等效电源电动势不变】16-2.如图所示,长直导线屮通有电流/ = 5.0/1,在与其相距d = 0.5cm 处放有一矩形线圈,共1000匝,设线圈长/ = 4.0cm ,宽a = 2.0cm。
不计线圈口感,若线圈以速度v = 3.0cm/s沿垂直于长导线的方向向右运动,线圈中的感生电动势多大?解法一:利用法拉第电磁感应定律解决。
首先用[fp•〃二工/求出电场分布,易得:则矩形线圈内的磁通量为:rh s = -N有:dxdt八=1.92x107 V。
2 兀(d + a)解法二:利用动生电动势公式解决。
由击j〃二“0工/求出电场分布,易得:“()/ 17tr考虑线圈框架的两个平行长直导线部分产生动生电动势,近端部分:®=NBJv,远端部分:E2=NB2I V,吗丄—丄”心2兀 ' d d + a 27ld(d 十= l・92xlOP。
16・3・如图所示,长直导线屮通有电流强度为/的电流,长为/的金属棒必与长直导线共面且垂直于导线放置,其。
端离导线为d,并以速度E平行于长直导线作匀速运动,求金属棒中的感应电动势£并比较4、5的电势大小。
解法一:利用动生电动势公式解决:d£ = (yxBydl如力,171 r"o" dr“0以[〃 + /------ ——= -------- In -----17C r 2兀 d由右手定则判定:u(l>u ho解法二:利用法拉第电磁感应定律解决。
电磁学部分题解-大学物理第三版

εi = εL +εbcao = 0
∴ εbcao 1 5 2 = ε L = BωL = BωR2 2 2
O点电势高
《精选》P137页第22题 精选》P137页第 题 页第22
如图,两导线电流方向相反,求直导线 如图,两导线电流方向相反, CD中的动生电动势 εi CD中的动生电动势 建立坐标如图
+ + + +
d
《精选》P114页第10题 精选》P114页第 题 页第10 (1)B板不接地时,VAB = ? ) 板不接地时 板不接地时, (2)B板接地时, VAB = ? 板接地时, ′ 板接地时 解:(1)B板不接地时 ) 板不接地时 σ 而 EAB = 2 V = E ⋅d
AB AB
A
µ0ih B= 2πR
4、关于电荷作机械运动形成电流产生磁场或磁矩的计算 《精选》P126页第30题 精选》P126页第30题 页第30 表面均匀带电的圆筒绕中心轴线 旋转, 旋转,求圆筒内部的 B 该带电圆筒绕轴线旋转,等效一个长直螺线管 该带电圆筒绕轴线旋转, 圆筒表面(轴线方向) 圆筒表面(轴线方向)单位长度带电量 圆筒以 旋转,单位长度的等效电流(电流密度) ω 旋转,单位长度的等效电流(电流密度) ω j= q′ = ωRσ 2π
《精选》P134页第10题 精选》P134页第10题 页第10 半径为L的圆盘在均匀磁场中匀速转动, 半径为L的圆盘在均匀磁场中匀速转动,则
a
ω
c o d a
b
1 Va −Vo = − BωL2 即 o 端电势高 2 Va −Vb = 0 因不切割磁力线
Va −Vc =Vao +Voc
1 1 1 2 2 = − BωL + Bω(d − L) = − Bωd(2L − d) 2 2 2
大学物理第9章 电磁感应和电磁场 课后习题及答案

第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。
大学物理第14章思考题解

大学物理第14章思考题解《大学物理学》(下册)思考题解第14章电磁感应14-1 在电磁感应定律i d dtΦ=-?中,负号的含义是什么? 如何根据负号来判断感应电动势的方向?答:电磁感应定律i d dtΦ=-中的负号来自于楞次定律。
由于磁通量Φ变化而引起感应电动势i ?变化、从而产生感应电流,这个电流的磁场将阻碍原磁通量Φ的变化。
例如原磁通量Φ正在增加,所激发的感应电动势的感应电流的感应磁场将阻碍这个Φ增加。
14-2 如题图所示的几种形状的导线回路,假设均匀磁场垂直于纸面向里,且随时渐减小。
试判断这几种形状的导线回路中,感应电流的流向答:14-3 将一磁铁插入一个由导线组成的闭合电路线圈中,一次迅速插入,另一次缓慢插入。
问:(1)两次插入时在线圈中的感生电荷量是否相同? (2)两次手推磁铁的力所做的功是否相同?(3)若将磁铁插入一个不闭合的金属环中,在环中间发生什么变化?答:始末两态的磁通1Φ、2Φ不变,所以 (1) 感生电荷量12 q RΦ-Φ=,与时间、速度无关,仅与始末两态的磁通有关,所以两次插入线圈的感生电荷量相同。
(2)从感应电流作功考虑,W I t =??,定性地判断:两种情况下I t q ?=不变,12d dttΦ-ΦΦ=?=-?分子不变分母有区别,所以两次手推磁铁的力,慢慢插入的作功少,快速插入的作功多。
(3) 若将磁铁插入一个不闭合的金属环中,在环的两端将产生感应电动势。
14-4 让一块很小的磁铁在一根很长的竖直钢管内下落,若不计空气阻力,试定性说明磁铁进入钢管上部、中部和下部的运动情况,并说明理由。
答:把小磁铁看作磁矩为m的磁偶极子,下落至钢管口附近时,由于钢管口所围面积的磁通量发生了变化,管壁将产生感生电动势和感生电流,感生电流将激发感生磁场'1B ,由于磁矩m 自己产生的磁感B 在管口产生的磁通正在增加,根据楞次定律,它所激发的感生磁场'1B 将阻碍这个增加,因此,' 1B 与B 反方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题16GG 上传16-1.如图所示,金属圆环半径为R ,位于磁感应强度为B的均匀磁场中,圆环平面与磁场方向垂直。
当圆环以恒定速度v在环所在平面内运动时,求环中的感应电动势及环上位于与运动方向垂直的直径两端a 、b 间的电势差。
解:(1)由法拉第电磁感应定律i d dtεΦ=-,考虑到圆环内的磁通量不变,所以,环中的感应电动势0i ε=; (2)利用:()aab bv B dl ε=⨯⋅⎰,有:22ab Bv R Bv R ε=⋅=。
【注:相同电动势的两个电源并联,并联后等效电源电动势不变】16-2.如图所示,长直导线中通有电流A I 0.5=,在与其相距cm 5.0=d 处放有一矩形线圈,共1000匝,设线圈长cm 0.4=l ,宽cm 0.2=a 。
不计线圈自感,若线圈以速度cm/s 0.3=v 沿垂直于长导线的方向向右 运动,线圈中的感生电动势多大?解法一:利用法拉第电磁感应定律解决。
首先用0lB dl I μ⋅=∑⎰ 求出电场分布,易得:02I B rμπ=, 则矩形线圈内的磁通量为:00ln22x axI I l x al dr r xμμππ++Φ=⋅=⎰, 由i d Nd t εΦ=-,有:011()2i N I l d xx a x dtμεπ=--⋅+ ∴当x d =时,有:041.92102()i N I l a v V d a μεπ-==⨯+。
解法二:利用动生电动势公式解决。
由0lB dl I μ⋅=∑⎰ 求出电场分布,易得:02I B rμπ=, 考虑线圈框架的两个平行长直导线部分产生动生电动势, 近端部分:11NB l v ε=, 远端部分:22NB lv ε=,则:12εεε=-=00411() 1.921022()N I N I al v l v V d d a d d a μμππ--==⨯++。
16-3.如图所示,长直导线中通有电流强度为I 的电流,长为l 的金属棒ab 与长直导线共面且垂直于导线放置,其a 端离导线为d ,并以速度v平行于长直导线作匀速运动,求金属棒中的感应电动势ε并比较U a 、U b 的电势大小。
解法一:利用动生电动势公式解决:()d v B dl ε=⨯⋅02I v d r rμπ=⋅,∴02d ldv Idr rμεπ+=-⎰0ln 2v I d l d μπ+=-,由右手定则判定:U a >U b 。
解法二:利用法拉第电磁感应定律解决。
作辅助线,形成闭合回路''abb a ,如图,S B d S Φ=⋅⎰ 02d l d I y dr rμπ+=⎰0ln 2I y d l d μπ+=, ∴d dt εΦ=-00ln ln22I Iv d l d y d l d dt dμμππ++=-⋅=-。
由右手定则判定:U a >U b 。
16-4.电流为I 的无限长直导线旁有一弧形导线,圆心角为120, 几何尺寸及位置如图所示。
求当圆弧形导线以速度v平行于长直 导线方向运动时,弧形导线中的动生电动势。
解法一:(用等效法)连接AO 、OB ,圆弧形导线与AO 、OB 形成闭合回路,闭合回路的电动势为0,所以圆弧形导线电动势与 AOB 直导线的电动势相等。
200()ln 222R AOR Iv I v v B dl d x x μμεππ=⨯⋅=-=-⎰⎰,500225()ln 224R OBR Iv Iv v B dl d x x μμεππ=⨯⋅=-=-⎰⎰,∴05ln 22AB AO OBIv μεεεπ=+=-。
解法二:(直接讨论圆弧切割磁感应线)从圆心处引一条半径线,与水平负向夹角为θ,那么,00022(2cos )2(2cos )I I I B x R R R μμμππθπθ===--,再由()v B dl ε=⨯⋅⎰有:AOBAOBθsin d B Rd v εθθ=⋅⋅,∴2030sin 2(2cos )IRv d R πμεθθπθ=-⋅-⎰05ln 22Iv μπ=-。
16-5.电阻为R 的闭合线圈折成半径分别为a 和a 2的两个圆,如图所示,将其置于与两圆平面垂直的匀强磁场内,磁感应强度按0sin B B t ω=的规律变化。
已知cm 10=a ,T 10220-⨯=B ,rad/s 50=ω,Ω=10R ,求线圈中感应电流的最大值。
解:由于是一条导线折成的两个圆,所以,两圆的绕向相反。
2220(4)3cos i d d Ba a a B t dt dtεπππωωΦ=-=--⋅+=, ∴203cos ia B t I R Rεπωω== A πR ωB a πI 32202max1042.910501021.035--⨯=⨯⨯⨯⨯==。
16-6.直导线中通以交流电,如图所示, 置于磁导率为μ 的介质中, 已知:0sin I I t ω=,其中ω、0I 是大于零的常量,求:与其共面的 N 匝矩形回路中的感应电动势。
解:首先用0lB dl I μ⋅=∑⎰ 求出电场分布,易得:02I B xμπ=, 则矩形线圈内的磁通量为:0000ln sin ln222d adI I l I l d a d al dr t r d dμμμωπππ+++Φ=⋅==⎰, ∴00cos ln 2N I l d d aN t dt dμεωωπΦ+=-=-。
16-7.如图所示,半径为a 的长直螺线管中,有0d d >tB的磁场,一直导线弯成等腰梯形的闭合回路ABCDA ,总电阻为R ,上底为a ,下底为a 2,求:(1)AD 段、BC 段和闭合回路中的感应电动势;(2)B 、C 两点间的电势差C B U U -。
解:(1)首先考虑OAD ∆,212OAD S a ∆==,∴24OAD d dB dBS a d t d t d tε∆Φ=-=-⋅=-⋅感1,而DA lAOODADDAE d l E d l E d l E d l E d l εε=⋅=⋅+⋅+⋅=⋅=⎰⎰⎰⎰⎰涡涡涡涡涡感1∴2AD d Bd tε=⋅; 再考虑OBC ∆,有效面积为2123OAD S a π=⋅扇,∴26dBa d tπε=-⋅感2, 同理可得:26BC dBa d tπε=⋅;那么,梯形闭合回路的感应电动势为:2(64BC AD dBa d tπεεε=-=-⋅,逆时针方向。
(2)由图可知,AB CD a ==,所以,梯形各边每段a 上有电阻5Rr =,回路中的电流:2(64a d BI R R d tεπ==-⋅,逆时针方向;那么,2225B C BC BC dBU U I r I R a dtεε-=⋅-=⋅-=-⋅。
16-8.圆柱形匀强磁场中同轴放置一金属圆柱体,半径为R ,高为h , 电阻率为ρ,如图所示。
若匀强磁场以d Bk dt=(0k k >,为恒量) 的规律变化,求圆柱体内涡电流的热功率。
解:在圆柱体内任取一个半径为r ,厚度为dr ,高为h 的小圆柱通壁,有:2l d B E dl r dtπ⋅=⋅⎰ 涡,即:22d B r k r dt εππ=⋅=涡, 由电阻公式lR S ρ=,考虑涡流通过一个d r 环带,如图,有电阻:2rR hdrπρ=,而热功率:22223()22k r k h d P i R r d r r hd rπππρρ===,∴2243028R k h k h R P r dr ππρρ==⎰。
16-9.一螺绕环,每厘米绕40匝,铁心截面积2cm 0.3,磁导率0200μμ=,绕组中通有电流mA 0.5,环上绕有二匝次级线圈,求:(1)两绕组间的互感系数;(2)若初级绕组中的电流在s 10.0内由A 0.5降低到0,次级绕组中的互感电动势。
解:已知4040000.01n ==初匝,2N =次,50200810μμπ-==⨯,42310S m -=⨯。
(1)由题意知螺绕环内:B nI μ=,则通过次级线圈的磁链: N BS N nI S ψμ==次次次,∴54428104000310 6.0310M N nS H I ψμπ---===⨯⨯⨯⨯⨯=⨯次初; (2)42506.0310 3.02100.1I MV t ε--∆-==⨯⨯=⨯∆初次。
16-10.磁感应强度为B 的均匀磁场充满一半径为R 的圆形空间B ,一金属杆放在如图14-47所示中位置,杆长为2R ,其中一半位于磁场内,另一半位于磁场外。
当0d Bdt>时,求:杆两端感应电动势的大小和方向。
解:∵ac ab bc εεε=+,而:Oababd dtεΦ=-扇形, ∴abε=2[]d R B dt -=, Obcbc d dtε∆Φ=-=22[]1212d R R d B B dt dt ππ--=,∴ac ε=2]12R d Bdtπ; ∵0d Bdt>,∴0ac ε>,即ac ε从a c →。
16-11.一截面为长方形的螺绕环,其尺寸如图所示,共有N 匝,求此螺绕环的自感。
解:如果给螺绕环通电流,有环内磁感应强度:012()2N I B R r R rμπ=<<则SB d S Φ=⋅⎰⎰,有:210201ln22R R N I h R N Ih dr r R μμππΦ=⋅⋅=⎰利用自感定义式:L I ψ=,有:L =2021ln 2N h R R μπ。
16-12.一圆形线圈A 由50匝细导线绕成,其面积为4cm 2,放在另一个匝数等于100匝、半径为20cm 的圆形线圈B 的中心,两线圈同轴。
设线圈B 中的电流在线圈A 所在处激发的磁场可看作匀强磁场。
求: (1)两线圈的互感;(2)当线圈B 中的电流以50A/s 的变化率减小时,线圈A 中的感生电动势的大小。
解:设B 中通有电流I ,则在A 处产生的磁感应强度为:002242B B B B BN I N I B R R R μμππ=⋅=(1)A 中的磁通链为:02A B A A A A BN N IN BS S R μψ==⋅。
则:02A B AABBN N S M I R μψ==,∴7476410501004102010 6.281020.2M H ππ----⨯⋅⋅⋅⨯==⨯=⨯⋅。
(2)∵0646.281050 3.14102A B A A B N N S d d IV d t R dtμψ--=⋅=⨯⋅=⨯,∴43.1410A V ε-=⨯。
16-13.如图,半径分别为b 和a 的两圆形线圈(b >>a ),在0=t 时共面放置,大圆形线圈通有稳恒电流I ,小圆形线圈以角速度ω绕竖直轴转动,若小圆形线圈的电阻为R ,求:(1)当小线圈转过90时,小线圈所受的磁力矩的大小;(2)从初始时刻转到该位置的过程中,磁力矩所做功的大小。