聚氨酯
聚氨酯是什么材料

聚氨酯是什么材料聚氨酯是一种重要的聚合物材料,具有优异的物理性能和化学性能,被广泛应用于建筑、汽车、家具、鞋材、涂料等领域。
聚氨酯的种类繁多,包括聚醚型、聚酯型、聚醚酯型等,每种类型都有其独特的特点和用途。
本文将介绍聚氨酯的基本性质、制备方法、应用领域以及未来发展趋势,以便读者对聚氨酯有更深入的了解。
聚氨酯是一种由异氰酸酯和多元醇经过聚合反应而成的聚合物材料。
它具有优异的耐磨性、耐油性、耐溶剂性和耐老化性,同时还具有较好的弹性和韧性。
这些优秀的性能使得聚氨酯在各个领域都有着广泛的应用。
聚氨酯的制备方法多种多样,主要包括预聚体法、直接合成法和溶液聚合法。
其中,预聚体法是将异氰酸酯和多元醇预先聚合形成聚氨酯预聚体,再通过加热或加入催化剂进行交联反应得到最终的聚氨酯制品。
直接合成法则是直接将异氰酸酯和多元醇混合反应得到聚氨酯。
溶液聚合法则是将异氰酸酯和多元醇溶解在溶剂中,再通过加热或加入催化剂进行聚合反应。
聚氨酯在建筑领域中被广泛应用于保温材料、密封材料和涂料等方面。
由于其优异的隔热性能和耐候性,聚氨酯保温材料被广泛应用于建筑物的保温和节能。
此外,聚氨酯密封材料也被广泛应用于建筑物的密封和填缝,具有优异的耐候性和耐腐蚀性。
在汽车领域,聚氨酯被用作汽车座椅、缓冲材料和车身涂料等,具有良好的舒适性和耐磨性。
在家具和鞋材领域,聚氨酯也被广泛应用于软垫、填充材料和涂料等,具有良好的弹性和耐磨性。
未来,随着科学技术的不断发展,聚氨酯材料将会在更多领域得到应用。
例如,聚氨酯在医疗器械、航空航天和新能源领域的应用将会更加广泛。
同时,绿色环保的聚氨酯制备方法也将会得到更多的关注和研究。
综上所述,聚氨酯作为一种重要的聚合物材料,具有广泛的应用前景和发展空间。
通过不断的研究和创新,相信聚氨酯将会在更多领域展现出其优异的性能和应用价值。
聚氨酯简介

聚氨酯的性能
• 聚氨酯的性能取决于链的化学组成,长度,刚性,
交联程度以及连段间的相互作用 • 线性结构的聚氨酯具有热塑性、强度高、伸长率大 、回弹性好、耐磨、耐油、耐老化、耐低温等性能 好的优点,制成的薄膜制品耐油、易热封,又无毒 、无异味,可用于食品包装。由于强度高、耐油脂 因此仅用0.025毫米厚的聚氨酯即可满足金属防锈 包装的要求。 • 体型结构的聚氨酯是热固性的强度很高、弹性极佳 、化学稳定性好等,多用于生产硬聚质泡沫塑料、 弹性体、粘合剂及涂料等。
全球聚氨酯发展现状
2001年到2006年,世界聚氨酯产能年平均增长率为4%,消费量年平均增长率 为3.4%。2006年世界聚氨酯的产品产量达1165万吨,聚氨酯消耗量达979万吨。
美国是世界上最大的聚氨酯生产国,其产 量占世界的40%左右,也是最大的聚氨酯 消费国
中国聚氨酯发展现状
20世纪90年 代至新世纪初,聚 氨酯弹性体的适用 范围进一步扩大, 产品品种及产量稳 步增长,原材料、 新技术、先进设备 正在协调配套生产 成为新世纪初的一 个朝阳产业。
•
三、交联的影响 聚氨酯弹性体基本上属于具有线性分子特征的热塑性树脂,但也可由多 官能团扩链剂或脲基等方式引入一定程度的交联。适当交联可以改善材料的 物理机械性能,提高聚氨酯的耐水性和耐候性。但也有研究表明,高交联度导 致处于橡胶态的聚氨酯弹性体模量下降,原因是硬链段微区里的交联会阻碍 链段的最佳堆砌和降低玻璃态或次晶微区的含量。 • 四、微相分离结构的影响 聚氨酯的特殊性能来源于其明显的微相分离结构,不同大分子链的硬段 聚集成晶区,起到了物理交联的作用,提高了体系的强韧性、耐温性和耐磨性 能。硬段微区与软段基质存在氢键等形式的结合,因此起到活性填料的作用, 是材料强韧化的根源。影响聚氨酯微相分离的因素很多,包括软硬嵌段的极 性、分子量、化学结构、组成配比、软硬段间相互作用倾向及热力史、样品 合成方法等。相互分离的微相中也存在链段之间的混合,从而导致软段玻璃 化温度的提高和硬段玻璃化温度的减小,缩小了材料的使用温度范围,并使材 料耐热性能下降 • 五、氢键的影响 聚氨酯弹性体在硬段与硬段之间和硬段与软段之间都能形成氢键,室温 下聚氨酯分子中大约75%~95%的NH基都形成了氢键。氢键的作用在于能使聚 氨酯耐受更高的使用温度,使聚氨酯弹性体在较高温度时可以保持橡胶态时 的模量。
聚氨酯pu是什么材料

聚氨酯pu是什么材料聚氨酯(PU)是一种非常重要的聚合物材料,它在我们日常生活和工业生产中扮演着重要的角色。
聚氨酯是一种独特的材料,具有许多优异的性能和广泛的应用领域。
本文将对聚氨酯的定义、特性、用途和制备方法进行较为全面的介绍,希望能够帮助读者更好地了解这一材料。
首先,让我们来了解一下聚氨酯的基本定义。
聚氨酯是一类由异氰酸酯和多元醇经过聚合反应而成的高分子材料。
它的分子结构中含有酯键和脲键,这种特殊的结构赋予了聚氨酯许多独特的性能。
聚氨酯可以通过改变原料的种类和比例来调节其硬度、弹性、耐磨性等性能,因此具有很强的灵活性和可塑性。
聚氨酯具有许多优异的性能,使得它在各个领域都有着广泛的应用。
首先,聚氨酯具有优异的耐磨性和耐腐蚀性,因此常被用于制作密封件、管道、阀门等耐磨耐腐蚀的零部件。
其次,聚氨酯具有良好的弹性和吸震性能,因此常被用于制作汽车零部件、鞋底、运动器材等。
此外,聚氨酯还具有优异的绝缘性能和耐候性,因此常被用于制作绝缘材料、建筑密封材料等。
总之,聚氨酯在汽车、建筑、家电、医疗、运动器材等领域都有着广泛的应用。
那么,聚氨酯是如何制备的呢?一般来说,聚氨酯的制备过程主要包括预聚体的合成和聚合反应两个步骤。
首先,异氰酸酯和多元醇在一定的条件下发生缩聚反应,形成预聚体。
然后,通过控制反应条件(如温度、压力、催化剂等),使预聚体发生聚合反应,最终形成聚氨酯。
在实际生产中,可以根据需要选择不同种类和比例的原料,以获得具有不同性能的聚氨酯材料。
总的来说,聚氨酯是一种具有优异性能和广泛应用领域的重要材料。
它的制备过程复杂,但通过合理选择原料和控制反应条件,可以获得具有不同性能的聚氨酯材料。
相信随着科学技术的不断发展,聚氨酯材料将会在更多领域得到应用,并为人类社会的发展做出更大的贡献。
聚氨酯是什么材质

聚氨酯是什么材质聚氨酯是一种多功能的高分子材料,其特殊的化学结构和优异的性能使得它广泛应用于各个领域。
它由部分异氰酸酯与部分聚醚、聚酯或聚醇等聚合反应生成,可以形成泡沫、胶粘剂、弹性体和涂料等不同形态。
聚氨酯的制备过程根据不同的应用领域和要求有所不同。
通常情况下,通过将异氰酸酯与聚醇在一定的温度和压力下反应,生成聚氨酯。
该反应是一种聚合酯化反应,所以也被称为聚酯型聚氨酯制备方法。
除了聚醇和异氰酸酯外,可以使用一些助剂来改变聚氨酯的性能,如催化剂、稳定剂和增容剂等。
聚氨酯材料具有许多独特的性能和特点。
首先,聚氨酯具有较高的耐磨性和耐腐蚀性,在不同的环境条件下都能保持较长的使用寿命。
其次,聚氨酯有较好的耐温性能,可以在宽温度范围内保持其物理和化学性质的稳定性。
此外,聚氨酯还具有较高的弹性模量和刚度,可以用于制造各种弹性体和结构件。
聚氨酯还有很多其他的特性,因此得到了广泛的应用。
首先,聚氨酯是一种优良的绝缘材料,具有较低的热导率和电导率,因此可以用于制造电气绝缘件。
其次,聚氨酯具有较好的粘附性能,可以与许多不同的材料粘合,例如金属、塑料、玻璃等。
此外,聚氨酯还具有优异的阻燃性能和耐候性能,可以在恶劣的环境中长时间使用而不受影响。
在建筑和装饰领域中,聚氨酯被广泛应用于泡沫材料的制备。
聚氨酯泡沫材料具有优异的隔热性能和抗压性能,可以用于建筑物的保温和隔音。
此外,由于聚氨酯材料具有较低的密度和良好的成型性能,因此可以制作出各种形状和尺寸的泡沫材料,满足不同场合的需求。
在汽车和交通工具制造领域中,聚氨酯广泛用于制造座椅和缓冲材料。
由于聚氨酯具有较好的弹性和柔软度,可以提供良好的座椅舒适性和减震效果。
此外,聚氨酯还可以制作各种密封件和橡胶支撑件,用于汽车和交通工具的密封和减振。
总之,聚氨酯是一种多功能的高分子材料,具有优异的性能和特性,因此在各个领域都得到了广泛应用。
它的制备方法多样化,可以根据不同需求进行调整和改进。
防水材料聚氨酯

防水材料聚氨酯
聚氨酯(Polyurethane)是一种常见的防水材料,具有以下特性:
1. 强大的粘接能力:聚氨酯材料能够与多种其他材料牢固粘接,例如混凝土、钢铁、木材等,有效防止水分从接缝渗透。
2. 弹性和耐久性:聚氨酯具有良好的弹性,能够在材料遭受压力或变形时回复原状,并且能够长期保持弹性,不易老化和损坏。
3. 耐化学腐蚀:聚氨酯对多种化学物质具有较强的抗腐蚀能力,能够在恶劣的环境下使用,不易被酸碱等物质侵蚀。
4. 高强度和耐磨性:聚氨酯具有较高的强度和耐磨性,能够经受一定的外力和磨损,不易破裂或磨损,能够长期使用。
5. 超低温性能:聚氨酯具有良好的低温柔韧性,即使在极低的温度下,材料依然能够保持柔韧性和防水性能。
6. 施工简单方便:聚氨酯材料施工简单方便,可以通过刷涂、涂覆、喷涂等方式进行,不需要额外的复杂工具和设备。
聚氨酯材料常用于各种防水领域,包括建筑防水、船舶防水、地下室防水、屋顶防水等。
在建筑防水中,聚氨酯涂膜被广泛应用于屋面、地下室、浴室等区域的防水工程,有效地防止水分渗透,提高建筑物的耐久性和使用寿命。
总之,聚氨酯作为一种优秀的防水材料,具有粘接能力强、耐久性好、抗化学腐蚀等特性,广泛应用于各种防水场合,为建筑、工程和船舶等提供可靠的防水保护。
聚氨酯简介

聚氨酯简介聚氨酯为大分子链中含有氨酯型重复结构单元的一类聚合物,全称为聚氨基甲酸酯,英文全称为 Polyurethane,简称 PU或 PUR。
PU是由多异氰酸酯与聚醚型或聚醋型多元醇在一定比例下反应的产物, 最早于 1937年由德国公司合成。
它不像 PE、PP 那样具有十分清楚的结构,而通常指含有特定基团的一类 聚合物。
因两种合成单体的种类及组成不同,可分成线型的热塑性 PU和体型的热固性 PU两类。
PU可分 成弹性体和泡沫塑料两大类,以前一直以泡沫塑料为主,目前弹性体的发展速度十分迅速,用途也越来越 厂。
聚氨酯的合成原料及方法1、PU 合成用原料(1)异氰酸酯 主要品种有:甲苯二异氰酸酯 (TDl),分 2,4 和 2,6 两种异构体,混合比例为 80/20(TDI80)和 65/35(TDI65)两种,可用于软质到硬质泡沫制品;二苯基甲烷二异氰酸酯 (MDl),用于半 硬和硬质泡沫制品;多亚甲基对苯基多异氰酸酯(PAPI),它含有三官能度,可用于热固型的硬质泡沫、混 炼及浇铸 PU制品。
(2)多元醇 一般不指直接用多元醇,而用末端含有羟基的低聚物,有聚醚多元醇和聚酯多元醇两种。
聚醚多元醇为多元醇、多元胺或其他含有活泼氢的有机化合物与氧化烯烃开环聚合而成,它具有粘度 低、弹性大等优点,常用于软质 PU中。
聚酯多元醇由有机多元酸与多元醇经缩聚反应而成,二元酸与二元醇合成的线型聚酯多元醇主要用于 软质 PU,二元酸与三元醇合成支型聚醋多元醇主要用于硬质 PU。
聚酯多元醇的粘度大,不如聚醚型应用 广,常用于绝缘、耐油、耐热、尺寸稳定及力学性能高的 PU制品。
(3)添加剂A、催化剂作用为加速聚合反应,有胺类和锡类两类;胺类如三乙烯二胺、N烷基吗啡淋等,有机锡 类如二月桂酸二丁基锡;一般两者协同加入。
B、发泡剂用于发泡制品,具体有水、液态二氧化碳、氟氯烷烃、氢氯氟烃、氢氟烃、戊烷、及环戊 烷等。
聚氨酯介绍

的应用越来越广。MDI的化学结构主要为4,4-MDI,此外还包括2,4-MDI和 2,2-MDI。其沸点、凝固点见下表:
聚氨酯介绍
聚氨酯及塑料
聚氨酯为大分子链中含有氨酯型重复结构单 元的一类聚合物,全称为聚氨基甲酸酯,简称PU 或PUR。是由多异氰酸酯与聚醚型或聚酯型多羟 基化合物在一定比例下反应的产物。一般分为热 塑性和热固性两大类;或分为弹性体和泡沫塑料 两大类。
2
聚氨酯的合成原理 1. 聚氨酯(Po1yurethane, PU)的发展
8
1.芳香族多异氰酸酯 聚氨酯树脂中90%以上属于芳香族多异氰酸酯。与芳基相连的异氰酸 酯基对水和羟基的活性比脂肪基异氰酸酯基团更活泼。基于TDI的聚氨酯 由于高的苯环密度,其力学性能也较脂肪族多异氰酸酯的聚氨酯更为优 异。以下是一些常用的产品。 (1)甲苯二异氰酸酯(tolulene diisocyanate,TDI) 甲苯二异氰酸酯是最早开发、应用最广、产量最大的二异氰酸酯单体; 根据其两个异氰酸酯(—NCO)基团在苯环上的位置不同,可分为2,4-甲 苯二异氰酸酯(2,4-TDI,简称2,4-体)和2,6-甲苯二异氰酸酯(2,6-TDI, 2,6-体)。
10
O O C NH
H2N
CH3 O
NH C O hv
CH3 O
NH C O [O]
[O] HN
H3C O O C HN
NN
CH3 O
NH C O
CH2 O
NH C O
11
聚氨酯共聚物结构

聚氨酯共聚物结构
聚氨酯(简称PUR和PU)是由氨基甲酸酯连接的有机单元组成的聚合物。
这些有机单元由异氰酸酯、小分子多元醇及其他扩链剂组成。
聚氨酯的分子结构示意图如下:
由异氰酸酯、小分子多元醇及其他扩链剂组成的硬段,在常温下玻璃化转变温度高于室温,分子链的构象不易改变;而由低聚物多元醇等组成的软段,在常温下玻璃化转变温度远远低于室温,分子链较为柔顺,呈现无规卷曲状态,分子链的构象容易改变。
聚氨酯的硬段赋予聚氨酯一定的强度和耐热性,软段赋予聚氨酯的应变和耐低温性。
硬段由于极性较强,相互作用力较大,与软段的热力学不相容性,促使聚氨酯的硬段与软段自发分离,硬段可以形成独立的微区,软段可以形成独立的微区,同时,硬段与软段会出现部分嵌合现象,这种特殊的结构称为“微相分离”,这种结构使得聚氨酯具有优异的力学性能、耐化学性能、耐磨性、耐低温性和粘附性等特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚氨酯/多壁碳纳米管复合材料电纺丝支架对成纤维细胞生长的促进*摘要:应用电纺丝方法制备纤维直径为300~500 nm 的多壁碳纳米管/聚氨酯复合材料,以无纺膜材料作为细胞支架,选择在促进组织修复和再生中起重要作用的成纤维细胞株作为实验细胞。
通过扫描电镜对多壁碳纳米管/聚氨酯无纺膜及聚氨酯无纺膜的微观形貌进行表征;通过细胞黏附实验、增殖实验以及细胞骨架发育观察,探讨无纺膜的微观纳米拓扑结构及多壁碳纳米管的复合对细胞的作用;并进一步采用双层细胞培养装置,分析多壁碳纳米管/聚氨酯无纺膜通过细胞通讯途径对在其他材料上生长的细胞生长行为的影响。
实验结果表明,无纺膜中的纳米纤维网络结构和多壁碳纳米管成分不仅能够显著促进细胞的黏附和增殖,而且有利于细胞的迁移和聚集;另外,生长在多壁碳纳米管/聚氨酯无纺膜支架上的细胞可能通过旁分泌方式将某些生物大分子分泌到细胞外液中,经局部扩散作用于在其他材料上生长的细胞,促进其增殖。
因此,多壁碳纳米管/聚氨酯纳米纤维无纺膜为细胞提供了接近天然细胞外基质的人造微环境,显示了该支架在引导组织修复和再生中的应用潜力。
0 引言组织工程支架在细胞生长和组织形成过程中起着重要作用,构建具有类似天然细胞外基质结构和功能的生物材料支架,为细胞提供理想的体外生长环境,是引导组织再生与修复的重要物质基础。
现有多种技术可用于制备三维多孔结构来满足这一条件,如沥滤[1]、相分离[2-3] 及自组装等[4-5],其中静电纺丝技术是一种简单、经济的新型构建细胞生长支架的技术,利用该技术能够连续制备纳米级或亚微米级超细纤维,显示了在仿生天然细胞外基质方面的独特优势。
迄今为止,已经有多种生物材料用电纺技术被制备为纳米纤维支架,包括生物及合成聚合物,如胶原[6]、壳聚糖[7]、聚已酸内酯及聚苯乙烯等[8-9。
实验系统地分析了纳米纤维结构及多壁碳纳米管成分对细胞生长和分泌的影响,结果显示纳米纤维结构和多壁碳纳米管成分均可显著增强细胞黏附、增殖、迁移,其原因可能是两者可以促进细胞分泌功能,从而构建更有利于细胞生长的微环境。
聚氨酯/碳纳米管复合材料的制备及其对血小板黏附的抑制作用*摘要通过原位聚合的方法将官能化碳纳米管引入聚氨酯中制备了聚氨酯/ 碳纳米管复合材料(P U/ M W N T s), 并对其物理学性能和生物学功能进行了研究。
通过差示扫描量热法和拉伸性能测试对材料的基本性能进行了研究;通过血小板黏附实验评价了复合材料的生物学性能。
结果表明, PU/M WN T s 材料的玻璃化温度升高、力学性能得到了提高, 碳纳米管(CN T s)的加入使复合材料显示出与聚氨酯基体材料不同的血小板吸附行为, 尽管M W N T s 的增加明显促进了纤维蛋白原的吸附, 但PU/ M WN T s 表现出对血小板黏附和活化有抑制作用。
碳纳米管(CN Ts)是一种具有特殊结构的管状石墨晶体, 通常情况下碳纳米管的径向尺寸为纳米级、轴向尺寸为微米级,它们是由单层或多层石墨片围绕中心按一定的螺旋角卷曲而成的无缝近一维纳米级管。
由于碳纳米管具有大的长径比、大的比表面积、特殊的电学性质、超高的力学性能、磁学性能和场发射特性等特征, 自1991 年Iijima发现碳纳米管以来[ 1] , 其广阔的应用前景引起了各国科学家的研究兴趣[ 2 -9] 。
聚氨酯(PU)弹性体具有优异的机械性能和化学性能, 其组织相容性好, 耐微生物,易于加工, 并能采用常规方法灭菌, 因而适用于医疗环境。
从20 世纪50 年代开始, 聚氨酯作为一类生物医用材料,其应用日益广泛, 如人工心脏瓣膜、人工肺、人工皮肤、人工血管等方面的应用尤其受到关注。
尽管聚氨酯弹性体是公认的血液相容性相对较好的高分子生物医用材料, 但是其血液相容性还不够理想, 当其作为异体植入生物体内时, 仍可能产生凝血及血栓现象。
因此, 对聚氨酯进行改性以提高其生物相容性成为国内外学者研究的重要课题之一。
虽然聚合物很早就被用作医用材料, 但现有高分子生物材料极少能同时兼顾到生物相容性和与体内力学性能相匹配这 2 个基本要求。
聚合物/碳纳米管复合材料(Polymer/ carbon nanotubes composites)近年来引起了国内外研究者的广泛关注和极大兴趣。
目前, 已有研究证实聚合物/碳纳米管复合材料能够在机械、热、光、和电学等性能上得到大幅度提高和改善[ 10] , 因此人们尝试将CN Ts及其与聚氨酯类材料复合得到的聚氨酯/碳纳米管复合物(PU/CN Ts)用于生物医用材料,使CN Ts在这个与人类生命健康密切关联的领域进一步发挥重要作用[11] 。
本研究通过原位聚合法成功地合成出PU/MWN Ts复合材料,相关性能测试表明该复合材料的力学性能得到了显著提高。
在10%的血浆蛋白中,Fg的吸附量随着MWN T s在复合材料中比例的增加而提高。
血小板粘附实验表明M WN Ts的引入显著抑制了血小板在材料表面的黏附和激活。
上述结果表明,经过M WN Ts改性的PU材料不仅力学性能得到显著提高,而且生物相容性也得到很好的改善,因此在心脑血管系统的临床应用方面具有潜在应用价值。
聚氨酯碳/纳米管复合材料力学及电性能研究随着科技的迅猛发展, 对广泛用作各种电子产品及生活用品的高分子材料的性能要求也越来越高,高分子纳米复合材料是适应这一要求的必然趋势之一[ 1] 。
各种纳米材料对高分子材料的功能化起着决定性作用,而碳纳米管(CNTs)的出现成为材料改性的理想材料之一。
CNTs是由单层或多层石墨片卷曲而成的纳米级管[ 2] ,直径为纳米级而长径比可达 1 000之多, 且有很高的弹性模量和弯曲强度,耐酸碱和高温,电导率优于铜[ 3] , 可作为增强剂和起导电、电磁屏蔽等作用的填料使用[ 3 ~5] ,因而引起材料界一股研究碳纳米管的热潮。
CNTs具有很大的比表面积, 很容易团聚,使其对材料的改性达不到理想的效果。
笔者采用超声分散和原位聚合的方法合成了聚氨酯(PUR) /CNTs复合材料,以期达到良好的分散效果,并对其力学性能和电性能进行了研究。
CNTs具有优于铜的导电性,可以取代金属填料用来制备有机复合导电材料。
因为CNTs 与有机物的相容性优于金属,故材料的性能更加稳定,而且质量更轻,同时CNTs高达 1 000的长径比可以极大地降低复合材料的渗滤阈值, 这是其它填料无法达到的。
图3示出CNTs 含量与PUR /CNTs复合材料体积电阻率的关系曲线。
从图3可以看出, 当CNTs 质量分数为0. 5%时, 材料从绝缘体转变为半导体[ 11] ,可用作抗静电材料。
若使用铝粉, 要达到这一效果需加入40%以上;若使用乙炔黑则需加入20% ~30%。
随着CNTs含量的增加, 材料的体积电阻率不断降低,但无法达到很低的值,这有两方面的原因:一方面是因为CNTs的增稠作用很明显,当其粒子分散到一定的程度后,超声波的作用较难发挥,因而无法达到理想的分散状态;另一方面则是由于CNTs含量还不够高, 无法在PUR基体中形成较完善的导电通路, 用渗流作用[ 12] 解释则是导电粒子相互接触并形成较完善的导电通路时产生强导电作用,当导电填料体积分数小于临界值(渗滤阈值) 时,载流子通道被绝缘体“堵塞”。
量达到临界值时才能相互连接而形成导电通路, 其体积电阻率才能大幅度降低。
3 结论(1)在超声分散的条件下, 碳纳米管能够达到良好的分散。
(2)碳纳米管的分散效果对于材料改性起很关键的作用,延长分散时间可明显提高材料的力学性能。
质量分数为2%的碳纳米管经超声分散30 m in 时所制复合材料的各项力学性能达到最大值, 与PUR相比, 其拉伸强度提高11. 6%, 拉伸弹性模量提高11. 3%,断裂伸长率提高10. 4%。
(3)碳纳米管质量分数为0. 5%时,复合材料的导电性能明显提高,可用作抗静电材料。
4)碳纳米管作为一种功能性填料既能显著提高聚合物的导电性,又能作为一种增强材料使用,颇有发展前景。
水性聚氨酯(WPU)除具有溶剂型聚氨酯的许多优良性质外, 还具有不燃、环境友好、易加工等优点。
近年来, 水性聚氨酯的研发备受重视[ 1 ~3] 。
但纯WPU 的强度不高和抗静电性能差[ 4] 等限制了其应用。
碳纳米管具有优异的电学和力学性能, 以碳纳米管作填料与聚氨酯复合可将两者的优点集于一体, 能有效改善聚氨酯的力学性能和导电性。
针对溶剂型聚氨酯/碳纳米管复合材料, 国内外学者已开展了相关研究[ 5 , 6] 。
然而, 碳纳米管在水性聚合物中的分散问题尚未得到很好解决, 有关水性聚氨酯/碳纳米管复合材料的研究迄今鲜有报道。
本文首先采用原位聚合法获得兼具良好水分散性和导电性的聚邻氨基苯磺酸修饰碳纳米管(PASANT), 再用PASANT 对WPU 共混改性, 以期制备出具有良好力学性能和导电性的水性聚氨酯/聚邻氨基苯磺酸修饰碳纳米管(WPU/PASANT)复合材料。
聚氨酯/碳纳米管复合材料在涂料中的研究进展摘要:聚氨酯/碳纳米管(PU/CNTs)复合材料由于综合了聚氨酯材料和碳纳米管的双重优点,成为新型功能材料,具有广泛的应用前景。
简要介绍了聚氨酯/碳纳米管复合材料的3 种制备方法,同时介绍了其在水性涂料、紫外光固化涂料、风电涂料、导电涂料和船舶涂料等领域的应用。
0 引言涂料工业在国民经济发展中发挥了重要作用,已成为人民生产、生活不可或缺的基本物质。
作为配套行业,涂料工业虽然不像支柱产业那样引人关注,但为支柱产业的发展提供了重要保障。
目前涂料产业高速发展,新技术、新产品层出不穷,竞争也日益激烈。
随着科技的进步,我国涂料研究水平有所提高,特别是纳米材料及其技术的应用为我国中高档涂料的研发提供了契机。
纳米材料是粒径为1~100 nm 的材料,这种尺寸上量的变化,使纳米材料既不同于微观的原子、分子,也不同于宏观状态的材料,具有表面界面效应、量子尺寸效应、隧道效应、介电限域效应以及特殊的光学性能等。
纳米复合建筑涂料是指将纳米材料作为一种颜填料加入到传统建筑涂料组分之中,利用纳米材料特殊的物理化学性能,赋予涂料优良的耐候性、耐擦洗性、耐沾污性、抗菌性和自清洁性等功能。
用纳米材料作为功能性组分制备具有高耐候性、高耐沾污性、抗菌自洁等特殊功能的纳米复合建筑涂料,已成为当今建筑涂料研究的热点。
将纳米材料应用到涂料工业中,已为开发高档次、功能性涂料提供了一条新的途径[1-4]。
聚氨酯(PU)材料是一类以多异氰酸酯与多元醇反应制得的共聚物,具有高弹性、高弹性模量、良好的挠曲性以及耐磨、耐候、耐油脂、耐溶剂等优良性能,且产品形态多样,成型工艺简便,广泛应用于建筑涂料、机电、船舶、车辆、航空、轻工、纺织等领域。