第十二章 线性回归分析

合集下载

线性回归分析教程ppt

线性回归分析教程ppt

04
线性回归分析的应用
预测与决策
销售预测
通过分析历史销售数据,建立线性回归模型,预测未来销售趋势,为企业的生产和库存管理提供决策 依据。
投资决策
利用线性回归分析评估投资项目的潜在收益和风险,帮助投资者做出明智的决策。
市场细分与定位
市场细分
通过线性回归分析,识别不同消费群体 的特征和需求,将市场细分为不同的子 市场,以便更有针对性地进行营销。
影响预测精度。
数据不平衡
03
在某些情况下,某些类别的样本数量过少,可能导致模型对少
数类别的预测能力不足。
样本选择偏差
过拟合
训练数据集过小或过于特定,导致模型对训练数据过度拟合,而 对新数据预测能力不足。
欠拟合
训练数据集过大或过于复杂,导致模型过于简单,无法捕捉到数 据中的复杂模式。
选择偏差
由于某些原因(如实验设计、数据收集过程等),训练数据可能 存在选择偏差,导致模型预测能力下降。
通过残差分析、决定系数、显著性检 验等统计方法对模型进行检验,评估 模型的拟合效果。
多重共线性问题
多重共线性定义
多重共线性是指线性回归模型中自变量 之间存在高度相关或完全相关的情况。
多重共线性的诊断
通过计算自变量之间的相关系数、条 件指数、方差膨胀因子等方法诊断多
重共线性。
多重共线性的影响
多重共线性会导致模型不稳定、参数 估计不准确、甚至出现完全的多重共 线性。
பைடு நூலகம்
VS
定位策略
基于线性回归分析的结果,确定目标市场 和产品定位,制定有效的市场推广策略。
成本预测与控制
成本预测
通过分析历史成本数据,建立线性回归模型,预测未来的生产成本,为企业制定合理的 价格策略提供依据。

线性回归分析PPT

线性回归分析PPT

分析宏观经济因素对微观 经济主体的影响,为企业 决策提供依据。
评估政策变化对经济的影 响,为政策制定提供参考。
市场分析
STEP 02
STEP 03
评估市场趋势和竞争态势, 为企业战略规划提供支持。
STEP 01
分析消费者行为和偏好, 优化产品设计和营销策略。
预测市场需求和销售量, 制定合理的生产和销售计 划。
参数解释
(beta_0) 是截距项,表示当所有自变量值为0时,因变量的值;(beta_1, beta_2, ..., beta_p) 是斜率项,表示自 变量变化一个单位时,因变量变化的单位数量。
线性回归分析的假设
线性关系
自变量和因变量之间存在线性关系, 即它们之间的关系可以用一条直线近 似表示。
01
02
无多重共线性
自变量之间不存在多重共线性,即它 们之间没有高度的相关性,每个自变 量对因变量的影响是独特的。
03
无异方差性
误差项的方差不随自变量的值变化。
无随机性
误差项是随机的,不包含系统的、可 预测的模式。
05
04
无自相关
误差项之间不存在自相关性,即一个 误差项与另一个误差项不相关。
Part
02
线性回归模型的建立
确定自变量与因变量
01
根据研究目的和数据特征,选择 与因变量相关的自变量,并确定 自变量和因变量的关系。
02
考虑自变量之间的多重共线性问 题,避免选择高度相关的自变量 。
散点图与趋势线
通过绘制散点图,观察自变量与因变 量之间的关系,了解数据的分布和趋 势。
根据散点图的分布情况,选择合适的 线性回归模型,如简单线性回归或多 元线性回归。

第12章-多重线性回归分析

第12章-多重线性回归分析
8
6 因变量总变异的分解
P
(X,Y)

Y
(Y Y) (Y Y)

(Y Y)
Y X

Y
Y
9
Y的总变异分解
Y Y Yˆ Y Y Yˆ
Y Y 2 Yˆ Y 2 Y Yˆ 2
总变异 SS总
回归平方和 剩余平方和
SS回
SS剩
10
Y的总变异分解
病程 (X2)
10.0 3.0 15.0 3.0 4.0 6.0 2.9 9.0 5.0 2.0 8.0 20.0
表 12-1 脂联素水平与相关因素的测量数据
空腹
回归模空型腹 ?
瘦素
脂联 BMI 病程 瘦素
脂联
(X3)

血糖 (X4)
素(Y)
(X1)
(X2)
(X3)
血糖 素(Y) (X4)
5.75 13.6 29.36 21.11 9.0 4.90 6.0 17.28
H 0: 1 2 3 4 0 ,即总体中各偏回归系数均为0; H 1:总体中各偏回归系数不为0或不全为0;
= 0.05。
2 计算检验统计量: 3 确定P值,作出推断结论。
拒绝H0,说明从整体上而言,用这四个自变量构成 的回归方程解释糖尿病患者体内脂联素的变化是有统 计学意义的。
的平方和 (Y Yˆ)2为最小。
只有一个自变量
两个自变量
例12-1 为了研究有关糖尿病患者体内脂联素水平的影响因 素,某医师测定30例患者的BMI、病程、瘦素、空腹血糖, 数据如表12-1所示。
BMI (X1)
24.22 24.22 19.03 23.39 19.49 24.38 19.03 21.11 23.32 24.34 23.82 22.86

12章 多元线性回归

12章 多元线性回归

统计学第十二章 多元线性回归一. 选择题1. 在多元线性回归分析中,t 检验是用来检验( ) A 总体线性关系的显著性 B.各回归系数的显著性 C.样本线性关系的显著性 D .H 0:β1=β2=…βk =02.在多元线性回归模型中,若自变量x i 对因变量y 的影响不显著,那么它的回归系数 βi 的取值( )A.可能为0B.可能为1C.可能小于0 D 可能大于13.在多元线性回归方程 y i ˆ=βˆ0+x 11ˆβ+x 22ˆβ+…+xkkβˆ中,回归系数βˆi表示( ) A.自变量x i 变动1个单位时,因变量y 的平均变动额为βˆiB.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的平均变动额为βˆiC.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的变动总额为βˆiD.因变量y 变动1个单位时,因变量x i 的变动总额为βˆi4.设自变量的个数为5个,样本容量为20。

在多元回归分析中,估计标准误差的自由度为( )A.20B.15C.14D.18 5.在多元回归分析中,通常需要计算调整的多重判定系数R a2,这样可以避免的值()A. 由于模型中自变量个数的增加而越来越接近1B. 由于模型中自变量个数的增加而越来越接近0C. 由于模型中样本容量的增加而越来越接近0D. 由于模型中样本容量的增加而越来越接近16.在多元线性回归分析中,如果F检验表明线性关系显著,则意味着()A.在多个变量中至少有一个自变量与因变量之间的线性关系显著B.所有的自变量与因变量之间的线性关系都显著C.在多个变量中至少有一个自变量与因变量之间的线性关系不显著D.所有的自变量与因变量之间的线性关系都不显著7.在多元线性回归分析中,如果t检验表明回归系数βi不显著,则意味着()A.整个回归方程的线性关系不显著B.整个回归方程的线性关系显著C.自变量x i与因变量之间的线性关系不显著D.自变量x i与因变量之间的线性关系显著8.设多元线性回归方程为Yˆ=βˆ0+x11ˆβ+x22ˆβ+…+xkkβˆ,若自变量x i的回归系数βˆi的取值接近0,这表明()A.因变量y对自变量ix的影响不显著B.因变量y对自变量ix的影响显著C.自变量ix对因变量y的影响不显著D.自变量x对因变量y的影响显著i9.一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(a=0.05)根据上表计算的判定系数为()A. 0.9229B. 1.1483C. 0.3852D. 0.851610. 一家出租汽车公司为确定合理的管理费用,需要研究出租车四级每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的估计标准误差为()A. 306.18B. 17.50C. 16.13D. 41.9311. 一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的用于检验线性关系的统计量F=()A. 306.18B. 48.80C. 5.74D. 41.9312.一家产品销售公司在30个地区设有销售分公司。

第十二章 线性回归分析

第十二章  线性回归分析

回归是回归分析中最基本、最简单的一种,
回归方程
一、直线回归方程的一般表达式为
ˆ a bX Y

(12 1)
ˆ Y 为各X处Y的总体均数的估计。
回归方程的应用
一、线性回归的主要用途 1.研究因素间的依存关系 自变量和应变 量之间是否存在线性关系,即研究一个或多个 自变量对应变量的作用,或者应变量依赖自变 量变化而变化的规律。
否存在实际意义。 3.两变量间存在直线关系时,不一定
表明彼此之间就存在因果关系。
4.建立回归方程后,须对回归系数
进行假设检验。
5. 使用回归方程进行估计与预测时,
一般只适用于原来的观测范围,即自变量
的取值范围,不能随意将范围扩大。
6. 在线性回归分析时,要注意远离
群体的极端值对回归效果的影响。
表12-1 12只大白鼠的进食量(g)与体重增加量(g)测量结果
序号 (1) 1 2 3 4 5 6 7 8 9 10 11 12 合计
X 进食量(g)
(2) 305.7 188.6 277.2 364.8 285.3 244.7 255.9 149.8 268.9 247.6 168.8 200.6 2957.9 (Σ X)
目前,“回归”已成为表示变量 之间某种数量依存关系的统计学术语, 并且衍生出“回归方程”“回归系数”
等统计学概念。如研究糖尿病人血糖
与其胰岛素水平的关系,研究儿童年 龄与体重的关系等。
两相关变量的散点图
一、直线回归的概念
目的:研究应变量Y对自变量X的数量依 存关系。
特点:统计关系。 X值和Y的均数的关系,
不同于一般数学上的X 和Y的函数 关系。
为了直观地说明两相关变量的线性 依存关系,用表12-1第(2)、(3)

线性回归分析

线性回归分析

线性回归分析线性回归是一种用来建立和预测变量间线性关系的统计分析方法。

它可以帮助我们了解变量之间的相互影响和趋势,并将这些关系用一条直线来表示。

线性回归分析常被应用于经济学、社会科学、自然科学和工程等领域。

一、概述线性回归分析是一个广泛使用的统计工具,用于建立变量间的线性关系模型。

该模型假设自变量(独立变量)与因变量(依赖变量)之间存在线性关系,并通过最小化观测值与模型预测值之间的误差来确定模型的参数。

二、基本原理线性回归分析基于最小二乘法,通过最小化观测值与模型预测值之间的残差平方和来确定模型的参数。

具体来说,线性回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε,其中Y是因变量,X1到Xn是自变量,β0到βn是回归系数,ε是误差项。

回归系数表示自变量对因变量的影响程度。

三、应用步骤进行线性回归分析时,通常需要以下几个步骤:1. 收集数据:获取自变量和因变量的样本数据。

2. 建立模型:根据数据建立线性回归模型。

3. 评估模型的准确性:通过计算残差、决定系数等指标来评估模型的准确性。

4. 进行预测和推断:利用模型对未知数据进行预测和推断。

四、模型评价指标在线性回归分析中,有几个常用的指标用于评价模型的准确性:1. R平方值:R平方值表示因变量的变异性能够被模型解释的比例,数值范围为0到1。

R平方值越接近1,表示模型对数据的拟合程度越好。

2. 残差分析:进行残差分析可以帮助我们判断模型是否符合线性回归的基本假设。

一般来说,残差应该满足正态分布、独立性和等方差性的假设。

五、优缺点线性回归分析有以下几个优点:1. 简单易懂:线性回归模型的建立和解释相对较为简单,无需复杂的数学知识。

2. 实用性强:线性回归模型适用于很多实际问题,可以解决很多预测和推断的需求。

然而,线性回归分析也存在以下几个缺点:1. 假设限制:线性回归模型对于变量间关系的假设比较严格,不适用于非线性关系的建模。

12章多重线性回归与相关

12章多重线性回归与相关

一、自变量筛选的标准与原则
2.残差均方缩小与调整决定系数增大 MS残=SS残/(n-p-1) MS残缩小的准则可以看做是在SS残缩小准则的基础上 增加了(n-p-1)-1因子,该因子随模型中自变量个数 p的增加而增加,体现了对模型中自变量个数增加而 施加的“惩罚”。 调整决定系数Ra2越大越好,与MS残等价。
包含汽车流量、气温、气湿与风速这四个自变量的回
归方程可解释交通点空气NO浓度变异性的78.74%
2.复相关系数R (multiple correlation coefficient)
定义为确定系数的算术平方根,
R SS回 SS总
表示变量Y与k个自变量的线性相关的密切程度。 对本例R=0.8837,表示交通点空气NO浓度与汽车流量、
表12-5 空气中NO浓度与各自变量的相关系数与偏相关系数
自变量 车流X1 相关系数 0.80800 偏相关系数 0.6920 偏相关系数P值 0.0005
气温X2
气湿X3 风速X4
0.1724
0.2754 -0.67957
0.47670
-0.00218 -0.59275
0.0289
0.9925 0.0046
第十二章
第一节 第二节 第三节 第四节
多重线性回归与相关
多重线性回归的概念与统计描述 多重线性回归的假设检验 复相关系数与偏相关系数 自变量筛选
一、整体回归效应的假设检验(方差分析)
表12-2 检验回归方程整体意义的方差分析表
变异来源 回归模型
残差 总变异
SS
0.0639 6 0.0172 7 0.0812 3
风速
(X4) 2.00 2.40 3.00 1.00 2.80 1.45 1.50 1.50 0.90 0.65 1.83 2.00

第十二章 回归分析

第十二章 回归分析
第十二章 回归分析
回归分析
如果我们将存在相关的两个变量,一个作为自变 量,另一个作为因变量,并把两者之间不十分稳 定的、准确的关系,用数学方程式来表达,则可 利用该方程由自变量的值来估计、预测因变量的 估计值,这一过程称为回归分析。 相关表示两个变量之间的双向相互关系,回归表 示一个变量随另一个变量做不同程度变化的单向 关系。
• 线性回归的基本假设
– – – – 线性关系 正态分布 独立性假设 误差等分散性假设
• 回归方程的建立
– 步骤:1)作散点图;2)设直线方程;3)选定具体方 法,计算表达式中的a和b;4)将a和b代入表达式,得 到回归方程。 – 方法:1)平均数法;2)最小二乘法。 • 最小二乘法:在配置回归线时,回归系数b的确定原则是 使散布图上各点距回归线上相应点的纵向距离平方和为最 小,这种求b的方法即最小二乘法。
• 回归分析与相关分析的关系
– 理解: • 同属相关分析; • 对称设计与不对称设计。 – 回归系数与相关系数的关系 • 相关系数是两个回归系数的几何平均数。
第二节 一元线性回归方程的检验
• 估计误差的标准差
某一X值相对应的诸Y 值,是以Y的平均数YX 为中 ˆ 心呈正态分布的。而与某一X值相对应的回归值 Y 就是与该X值相对应的那些诸Y值的平均数YX的估 ˆ 计值。由 Y 估计YX 会有一定的误差。误差大小 与X值相对应的诸Y值分布范围有关,范围大,误 差大,估计的准确性、可靠性小,范围小,误差小, 估计的准确性、可靠性大。 ˆ 我们需要一个用来描述由Y 估计YX 时误差大小的 指标,即估计误差的标准差。平均数与标准差未知, 样本的无偏估计量为:

a YX Y bYX X
• 列回归方程式(见教材)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章 线性回归分析
双变量计量资料:每个个体有两个变量值 总体:无限或有限对变量值 样本:从总体随机抽取的n对变量值 (X1,Y1), (X2,Y2), …, (Xn,Yn) 目的:研究X和Y的数量关系 方法:回归与相关
简单、基本——直线回归、直线相关
历史背景:
英国人类学家 F.Galton首次在《自然遗传》 一书中,提出并阐明了“相关”和“相关系数” 两个概念,为相关论奠定了基础。其后,他和 英国统计学家 Karl Pearson对上千个家庭的身 高、臂长、拃长(伸开大拇指与中指两端的最
215.6 (ΣY)
X2
(4)
93452.49 35569.96 76839.84 133079.04 81396.09 59878.09 65484.81 22440.04 72307.21 61305.76 28493.44 40240.36 770487.13
( X 2 )
Y2
(5)
556.96 216.09 368.64 767.29 357.21 259.21 295.84 166.41 334.89 313.29 187.69 243.36 4066.9
目前,“回归”已成为表示变量 之间某种数量依存关系的统计学术语, 并且衍生出“回归方程”“回归系数” 等统计学概念。如研究糖尿病人血糖 与其胰岛素水平的关系,研究儿童年 龄与体重的关系等。
第一节 两相关变量的散点图
一、直线回归的概念
目的:研究应变量Y对自变量X的数量依 存关系。
特点:统计关系。 X值和Y的均数的关系, 不同于一般数学上的X 和Y的函数 关系。
b lXY 2681.6 0.0648 lXX 41389.4
a Y bX 17.97 (0.0648)(246.49) 2.00
5.列出回归方程(回归直线绘制见图 12-
YˆY ˆ2 .002 .00 .00 64 8X0.0648X
X X
此直线必然通过点( , )且Y 与纵坐标轴相交
1.回归系数的方差分析
理解回归中方差分析的基本思想, 需要对应变量Y 的离均差平方和lYY 作分 解如图 12-4 所示.
(Y 2 )
XY (6)
7214.52 2772.42 5322.24 10104.96 5392.17 3939.67 4401.48 1932.42 4920.87 4382.52 2312.56 3129.36
55825.2 (ΣXY)
30
25
体重增加量(g),Y
20
15
10
5
130
180
230
第二节
回归方程
一、直线回归方程的一般表达式为
Y ˆabX (121)
Y ˆ 为各X处Y的总体均数的估计。
二、直线回归方程的求法
➢残差(residual)或剩余值,即实测值Y与假定 回归线上的估计值 Y ˆ 的纵向距离 Y Yˆ 。
➢求解a、b实际上就是“合理地”找到一条 能最好地代表数据点分布趋势的直线。
由图12-1可见,体重增加量有随进食 量增加而增大的趋势,且散点呈直线趋势, 但并非12个点都在直线上 ,此与两变量间 严格的直线函数关系不同,称为直线回归
(linear regression),其方程叫直线回归方程,以 区别严格意义的直线方程。
回归是回归分析中最基本、最简单的一种, 故又称简单回归。
大长度)做了测量,发现:
儿子身高(Y,英寸)与父亲身高(X,
英寸)存在线性关系:

Y ˆ也即33 高.73 个 子0.父51 代6X 的子代在成年之后的身
高平均来说不是更高,而是稍矮于其父代水
平,而矮个子父代的子代的平均身高不是更
矮,而是稍高于其父代水平。Galton将这种
趋向于种族稳定的现象称之“回归”。
例12-2 (续例12-1) 根据表121数据,对大白鼠的体重增加量进行 回归分析。
解题步骤
1.由原始数据及散点图(图 12-1) 的观察,两变量间呈直线趋势,故作下 列计算。
2.计算 X 、Y 的均数 X 、Y 。 3.计算离均差平方和 lXX 、lYY 与离 均差积和 lXY 。
4.求回归系数 b和截距 a。
为了直观地说明两相关变量的线性 依存关系,用表12-1第(2)、(3) 列中大白鼠的进食量和体重增加量 的数据在坐标纸上描点,得图12-1所 示的散点图(scatter plot)。
例12-1 用某饲料喂养12只大白鼠, 得出大白鼠的进食量与体重增加量 如表12-1,试绘制其散点图。
表12-1 12只大白鼠的进食量(g)与体重增加量(g)测量结果
序号 (1) 1 2 3 4 5 6 7 8 (g)X (2)
305.7 188.6 277.2 364.8 285.3 244.7 255.9 149.8 268.9 247.6 168.8 200.6
2957.9 (ΣX)
体重增加量(g) Y (3)
23.6 14.7 19.2 27.7 18.9 16.1 17.2 12.9 18.3 17.7 13.7 15.6
原则:最小二乘法(least sum of squares),即可 保证各实测点至直线的纵向距离的平方和最小
blXY lXX
(XX)(YY) (XX)2
aYbX
(12-2)
(12-3)
式 中 lX Y 为 X 与 Y 的 离 均 差 乘 积 和 :
lX Y (X X ) ( Y Y ) X Y ( X n ) ( Y )( 1 2 6 )
于截距 。如a果散点图没有从坐标系原点开
始,可在自变量实测范围内远端取易于读
数的 值代入X回归方程得到一个点的坐标,
连接此点与点( , )也可绘出回Y 归直线。
第三节 回归系数的假设检验
建立样本直线回归方程,只是完成 了统计分析中两变量关系的统计描述, 研究者还须回答它所来自的总体的直线 回归关系是否确实存在,即是否对总体 有 0?
280
330
380
进食量(g),X
图 12-1 12只大白鼠进食量与体重增重量散点图
在定量描述大白鼠进食量与体重增 加量数量上的依存关系时,习惯上将进 食量作为自变量(independent variable), 用X表示;体重增加量作为应变量 (dependent variable),用Y表示。
相关文档
最新文档