历届“希望杯”全国数学邀请赛高二数学精选100题详析(4)

合集下载

历届“希望杯”全国数学邀请赛100题精选(高二)

历届“希望杯”全国数学邀请赛100题精选(高二)

历届“希望杯”全国数学邀请赛100题精选(高二) 题一、已知y x a b b y b b a x b a ,,,,0则--=-+=<<的大小关系是 .(第十一届高二第一试第11题)题二、设c b a >>N n ∈,,且11n a b b c a c+≥---恒成立,那么n 的最大值为 ( ) A 、2 B 、3 C 、4 D 、5 (第十一届高二第一试第7题)题3、设实数y x n m ,,,知足a n m =+22,b y x =+22,那么ny mx +的最大值为 ( ) A 、21()b a + B 、2122b a + C 、222b a + D 、ab (第十一届高二培训题第5题)题4、关于1≤m 的一切实数m ,使不等式221(1)x m x ->-都成立的实数x 的取值范围是 . (第十三届高二培训题第63题) 题5、当0x a <<时,不等式2)(1122≥-+x a x 恒成立,那么a 的最大值是________. (第十一届高二培训题第45题)题6、已知()⎪⎭⎫ ⎝⎛∈=2,0,log sin πθθx x f ,设⎪⎭⎫ ⎝⎛+=2cos sin θθf a ,()θθcos sin ⋅=f b ,⎪⎭⎫ ⎝⎛+=θθθcos sin 2sin f c ,那么c b a 、、的大小关系是 ( ) A 、b c a ≤≤ B 、a c b ≤≤ C 、a b c ≤≤ D 、c b a ≤≤(第八届高二第一试第10题)题7、已知21=a ,不等式49321log <⎪⎭⎫⎝⎛-x a 的解是 .(第三届高二第二试第13题) 题8、不等式t x x +≥-21 的解集是∅ ,实数t 的取值范围(用区间形式)是 .(第一届高二第一试第18题)题9、不等式03422≥+---x x x 的解集是 ( )A 、⎥⎦⎤⎢⎣⎡++255,253B 、⎥⎦⎤⎢⎣⎡+-255,253 C 、⎪⎪⎭⎫⎢⎣⎡+∞+⎥⎦⎤ ⎝⎛+∞-,255253, D 、⎥⎦⎤⎢⎣⎡+-253,255 (第十三届高二第二试第8题)题10、不等式199920003224>-+-x x 的解集是 . (第十一届高二培训题第41题) 题11、使不等式x a x arccos 2>-的解是121≤<-x 的实数a 的取值范围是( ) A 、21π- B 、3222π- C 、6522π- D 、π-21 (第十一届高二第一试第6题)题12、已知b a ,是正数,而且1996199619981998b a b a +=+,求证222≤+b a .(第十届高一培训题第74题)题13、设1x ,2x ,3x ,1y ,2y ,3y 是实数,且知足1232221≤++x x x ,证明不等式)1)(1()1(2322212322212332211-++-++≥-++y y y x x x y x y x y x .(第十届高二第二试第22题)题14、已知0x y z >、、,而且2222222111x y z x y z ++=+++, 求证:2111222≤+++++z z y y x x . (第一届备选题) 题15、求所有的正实数a ,使得对任意实数x 都有22sin 22cos ≤+x x a a(第十一届高二第二试第23题)题16、函数()()122222>-+-=x x x x x f 的最小值为 ( ) A 、-1 B 、1 C 、-2 D 、2 (第七届高一培训题第2题)题17、已知,,x y z R +∈,且1231x y z ++=,那么23y z x ++的最小值是 ( ) A 、5 B 、6 C 、8 D 、9(第十一届高二第二试第9题、高二培训题第14题)题18、设b a y x ,,,为正实数,b a ,为常数,且1=+yb x a ,那么y x +的最小值为_______. (第十一届高二培训题第36题)题19、若是1=++c b a_______.(第八届高二第一试第19题)题20、若10<<c b a 、、,而且2=++c b a ,那么222c b a ++的取值范围是 ( ) A 、43⎡⎫+∞⎪⎢⎣⎭,B 、423⎡⎤⎢⎥⎣⎦,C 、423⎡⎫⎪⎢⎣⎭,D 、4,23⎛⎫ ⎪⎝⎭ (第九届高二第一试第10题)题21、假设0,>y x ,且12=+y x ,那么⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=y y x x u 411的最小值是 . (第一届高二第一试第20题)题22、已知+∈R b a ,,且1=+b a ,那么1111a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是 . (第八届高二培训填空题第6题) 题23、设R y x ∈,,且221x y +≤,那么xy y x ++的最大值是 ,最小值是 .(第六届高二培训解答题第2题、第八届高二第一试第23题)题24、假设223x xy 3y 20-+=,那么228x 23y +的最大值是 .(第十三届高二培训题第68题)题25、函数xx x y sin 1cos sin ++=的最大值是____. (第九届高二培训题第43题) 题26、函数1212y sin x cos x =+的值域是 . (第十一届高二培训题第46题)题27、设+∈N n ,那么|2001||1950||1949|-+⋯+-+-n n n 的最小值是 .(第九届高二培训题第53题)题28、6110s =+++,那么s 的整数部份是 ( )A 、1997 B、1998 C 、1999 D 、2000(第八届高二第二试第10题)题 29、求函数4803224+++-=x x x y 的最小值和取最小值时x 的值(第十三届高二培训题第81题) 题30、函数223223x x x x y -+++-=的最大值是 ,最小值是 .(第十四届高二第二试第16题) 题31、已知+∈R z y x 、、,求函数()222,,xy yz u x y z x y z +=++的最大值. (第九届高二培训题第61题)题32、已知a,b R ∈,且a b 10++=,那么()()2223a b -+-的最小值是 .(第十届高二培训题第44题)题33、实数x ,y 知足方程94622--=+y x y x ,那么y x 32-的最大值与最小值的和等于_______. (第十届高二第二试第17题) 题34、线段AB 的端点坐标是A (-1,2),B (2,-2),直线y=kx+3与线段AB 相交的充要条件是 ( ) A 、125≤≤-k B 、251≤≤k C 、125≤≤-k 且k ≠0 D 、125≥-≤k k 或 (第八届高二培训题第2题)题35、过点()1,1P 且与两条坐标轴围成面积为2的三角形的直线的条数是 .(第十届高二第一试第18题)题36、某工厂安排甲、乙两种产品的生产.已知每生产1吨甲产品需要原材料A 、B 、C 、D 的数量别离为1吨、2吨、2吨、7吨;每生产1吨乙产品需要原材料A 、B 、D 的数量别离为1吨、4吨、1吨.由于原材料的限制,每一个生产周期只能供给A 、B 、C 、D 四种原材料别离为80吨、80吨、60吨、70吨.假设甲、乙产品每吨的利润别离为2百万元和3百万元.要想取得最大利润,应该在每一个生产周期安排生产甲产品 吨,期望的最大利润是 百万元.(第十三届高二第一试第25题)题37、点M ()00,y x 是圆()0222>=+r r y x 内圆心之外的一点,那么直线200r y y x x =+与该圆的位置关系是 ( )(A )相切 (B )相交 (C )相离 (D )相切或相交(第七届高二第一试第5题) 题38、过圆016222=+-++y x y x 与圆0176622=+--+y x y x 的交点的直线方程是 . (第二届高二第二试第15题) 题39、假设实数x 、y 适合方程014222=+--+y x y x ,那么代数式2+x y 的取值范围是 . (第九届高二第一试第17题)题40、圆()1122=-+y x 上任意一点()y x P ,都使不等式0≥++c y x 成立,那么C 的取值范围是 ( )A 、(]0,∞-B 、)+∞C 、1,)+∞D 、[1)+∞ (第七届高二第一试第10题)题41、E 、F 是椭圆22x y 142+=的左、右核心,l 是椭圆的准线,点P l ∈,那么EPF ∠的最大值是 ( )A 、15°B 、30°C 、45°D 、60° (第十三届高二培训题第21题)题42、椭圆()012222>>=+b a by a x 的两核心是1F 、2F ,M 为椭圆上与1F 、2F 不共线的任意一点,I 为21F MF ∆的内心,延长MI 交线段1F 2F 于点N ,那么IN MI :的值等于 ( )A 、b aB 、c aC 、c bD 、a c (第十三届高二培训题第19题) 题43、过椭圆左核心F 作直线交椭圆于B A 、两点,假设3:2:=BF AF ,且直线与长轴的夹角为4π,那么椭圆的离心率为 ( ) A 、51 B 、52 C 、53 D 、52 (第十一届高二第一试第8题) 题44、若是点A 的坐标为(1,1),1F 是椭圆459522=+y x 的左核心,点P 是椭圆上的动点,那么1PF PA +的最小值为_________________.(第十一届高二培训题第66题) 题45、设1F 、2F 是椭圆的两个核心,假设椭圆上存在点P ,使oPF F 12021=∠,那么椭圆离心率e 的范围是______. (第十二届高二第一试第20题)题46、1F 、2F 是椭圆2214x y +=的两个核心, P 是椭圆上任意一点,那么21PF PF ⋅的最小值是____. (第七届高二第一试第19题)题47、21,F F 是椭圆()012222>>=+b a by a x 的核心,P 是椭圆上的一点,且︒=∠9021PF F ,那么21PF F ∆的面积是 . (第四届高二第一试第30题)题48、椭圆12222=+by a x 的内接三角形的最大面积是___. (第九届高二第二试第20题) 题49、Rt △ABC 中,AB=AC ,以C 点为一个核心作一个椭圆,使那个椭圆的另一个核心在边AB 上,且椭圆过A ,B 两点.求那个椭圆的离心率. (第二届高二第二试第21题)题50、设点1F 是椭圆12322=+y x 的左核心,弦AB 过该圆的右核心2F ,试求AB F 1∆的面积的最大值. (第六届高二第二试`第21题)题51、Let point M move along the ellipse 18922=+y x ,and point F be its right focus, then for fixed point P(6,2) ,then maximum of 3|MF|-|MP| is ,where the coordinate of M is . (ellipse 椭圆;focus 核心;coordinate 坐标)(第十四届高二第二试第18题)题52、已知双曲线k y x =-22关于直线x-y=1对称的曲线与直线x+2y=1相切,那么k 的值等于 ( )A 、32B 、34C 、45D 54 (第十五届高二培训题第19题) 题53、21,F F 是双曲线3322=-y x 的左、右核心,B A ,两点在右支上,且与2F 在同一条直线上,那么11F A F B +的最小值是____________. (第四届高二第二试第15题)题54、方程()()|3|2222+-=-+-y x y x 表示的曲线是 ( ) A 、直线 B 、椭圆 C 、双曲线 D 、抛物线(第十二届高二培训题第23题) 题 55、已知1≥x ,那么动点A ⎪⎭⎫ ⎝⎛-+x x x x 1,1与点B (1,0)的距离的最小值是_________.(第七届高二第一试第23题)题56、抛物线2x y =上到直线02=++y x 的距离最小的点的坐标是________.(第九届高二培训题第27题)题57、在抛物线x y 42=上恒有两点关于直线3+=kx y 对称,那么k 的取值范围是 .(第十五届高二培训题第71题)题58、抛物线x y 42=的一条弦的倾斜角是α,弦长是α2csc 4,那么这种弦都通过必然点,该定点是 . (第十三届高二培训题第73题) 题59、长为)1(<l l 的线段AB 的两头在抛物线2x y =上滑动,那么线段AB 的中点M 到x 轴的最短距离等于 . (第13届高二第二试第20题) 题60、动圆M 过定点A 且与定圆O 相切,那么动圆M 的中心的轨迹是 ( )A 、圆B 、圆,或椭圆C 、圆,或椭圆,或双曲线D 、圆,或椭圆,或双曲线,或直线(第三届高二第二试第10题) 题61、设直线n m ,都是平面直角坐标系中椭圆72x +32y =1的切线,且n m ⊥,m 、n 交于点P ,那么点P 的轨迹方程是 . (第十二届高二培训题第47题) 题62、已知曲线C 上任意一点到定点A (1,0)与定直线4=x 的距离之和等于5.关于给定的点()0,b B ,在曲线上恰有三对不同的点关于点B 对称,求b 的取值范围.(第十二届高二第二试第23题)题63、已知k ∈R ,关于x,y 的方程y 4+4y 3+(2x+2kx-kx 2)y 2+8xy+(4kx 2-2kx 3)=0表示一组曲线,其中有一条是固定的抛物线,试讨论k 值与曲线形状的关系. (第三届高二第二试第21题) 题64、已知点)0,1(A 和直线3:=x l ,动点M 到A 的距离与到l 的距离之和为4.(1)求M 点的轨迹T ;(2)过A 作倾斜角为α的直线与T 交于P ,Q 两点,设||PQ d =,求)(αf d =的解析式.(第十二届高二培训题第78题)题65、已知定点M (-3,0),P 和Q 别离是y 轴及x 轴上的动点,且使MP ⊥PQ ,点N 在直线PQ 上,分有向线段的比为23-. (1)求动点N 的轨迹C 的方程;(2)过点T (-1,0)作直线l 与轨迹C 交于两点A ,B ,问在x 轴上是不是存在一点D ,使△ABD 为等边三角形;假设存在,求点的坐标;假设不存在,请说明理由.(第十五届高二培训题第80题)D ABE C FG P 题66、已知异面直线a 与b 所成角为θ,P 为空间一点,过点P 作直线l 使l 和a ,b 所成角相等,此等角记为(()0,90⎤ββ∈⎦,那么直线l 的条数组成的集合为 .(第十五届高二培训题第38题)题67、空间给定不共面的D C B A ,,,四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面α:D C B A ,,,中有三个点到α的距离相同,另一个点到α的距离是前三个点到α的距离的2倍,如此的平面α的个数是 ( )A 、15B 、23C 、26D 、32 (第三届高一第二试第6题) 题68、O 为空间一点,射线OA 、OB 、OC 交于点O ,∠AOB=∠BOC=60︒,∠COA=90︒,那么二面角A-OB-C 的平面角的余弦函数值是________. (第五届高一第一试第15题) 题69、在四面体ABCD 中,面BAC 、CAD 、DAB 都是以A 为极点的等腰直角三角形,且腰长为a .过D 作截面DEF 交面ABC 于EF ,假设EF ∥BC ,且将四面体的体积二等分,那么面DEF 与面BCD 的夹角等于________. (第十三届高二第二试第19题)题70、如图,四边形ABCD 是矩形,⊥PA 面ABCD ,其中4,3==PA AB .假设在PD 上存在一点E ,使得CE BE ⊥.试求AD 的范围,及有且只有一个知足条件的点时,二面角A BC E --的大小. (第十四届高二培训题第78题) 题71、△ABC 是边长为1的正三角形,PA ⊥平面ABC ,且PA=46,A 点关于平面PBC 的对称点为A ’,求直线A ’C 与AB 所成角的余弦值. (第九届高一第二试第22题) 题72、已知正方体的棱长为a ,它的体对角线和与它不共面的面对角线之间的最小距离等于________. (第十五届高二培训题第49题) 题73、点P 在ABC ∆所在的平面α外,,PA PB PC α⊥==3tan ,2PBC ∠=则A 到平面PBC 的距离的最大值是_________.(第二届高一第一试第30题) 题74、如图,ABCD-EFGH 是单位正方体,P 是AF 上的动点,那么GP+PB 的最小值是 . (第十二届高一第一试第20题) 题75、以四个全等的正三角形为面拼合成的空间图形叫正四面体.正三角形边长叫正四面体的棱长.设正四面体棱长为1. 求互为异面的正三角形的中线(所在直线)间的距离. (可利用下面的结论:正四面体ABCD 中,A 到面BCD 的A B CD EF GH P距离为d ,面BCD 的面积为S ,那么四面体ABCD 的体积V=sd 31) (第八届高一培训解答题第3题)题76、四面体ABCD 中,R Q P ,,别离在棱DA CD BC ,,上,且,2,2QD CQ PC BP ==,RA DR =则B A ,两点到过R Q P ,,的平面的距离之比为_____.(第十届高一培训题第38题)题77、在棱长为2的正四面体内任取一点P ,P 到四面体四个面的距离别离记为1PP ,2PP ,3PP ,4PP ,那么=+++4321PP PP PP PP ____. (第三届高二第一试第16题) 题78、某水准仪是封锁的正四面体,体内装有水,当正四面体的一个面放置于水平地面时, 体内水面高度为体高的12,现将它倒置,现在水的高度是体高的 . (第十一届高一第一试第20题)题79、正四面体SABC ,点M 、E 、F 别离在棱SA ,AB ,BC 上,且2===FCBF EA BE MA SM .过M 、E 、F 三点的平面将四面体分成两部份,这两部份的体积比为____(取较小部份与较大部份的体积之比) (第十三届高二培训题第75题) 题80、正四面体的侧面三角形的高线中,其“垂足”不在同一侧面上的任意两条所成角的余弦值是 ( )31)(A 21)(B 32)(C 43)(D (第十二届高二第二试第3题) 题81、过正方体ABCD —A 1B 1C 1D 1的棱AB 、BC 的中点E 、F 作一个截面,使截面与底面ABCD 所成的角为450,那么此截面的形状为 ( )A 、 三角形或五边形B 、三角形或六边形C 、六边形D 、三角形或四边形(第六届高一第二试第5题)题82、正方体1111D C B A ABCD -中,E 为AB 的中点,F 为1CC 的中点,异面直线EF 与1AC 所成角的余弦值是 ( )A 、32B 、322 C 、43 D 、63 (第十五届高二第二试第9题) 题83、多面体表面上三个或三个以上平面的公共点称为多面体的极点,用一个平面截一个n 棱柱,()N n n ∈≥,3截去一个三棱锥,剩下的多面体极点的数量是 ( )A 、12,12+-n nB 、22,12,2,12++-n n n nC 、22,12,12++-n n nD 、22,12++n n (第四届高一第二试第10题) 题84、在长方体1111D C B A ABCD --中,1,,()AB a BC b CC c a b c ===>>, 过1BD 的截面的面积为S ,求S 的最小值,并指出当S 取最小值时截面的位置(即指出截面与有关棱的交点的位置). (第五届高一第二试第22题) 题85、从凸四边形ABCD 的对角线交点O 作该四边形所在平面的垂线段SO ,使3SO =,假设22,S AOD S BOC V a V b --==.当S ABCD V -最小时,ABCD 的形状是____.(第十四届高二培训题第67题)题86、正三棱柱ABC —A 1B 1C 1底面的边长和高都是2cm ,过AB 作一个截面,截面与底面ABC 成600角,那么截面的面积是 .(第六届高一第一试第30题) 题87、如图,正三棱柱ABC —A 1B 1C 1的所有棱长都相等,D 是AA 1的中点,那么BC 1与CD 所成的角是 ,面BCD 与面CDB 1所成二面角等于 .(第十一届高二第一试第22题)题88、如图,设111C B A ABC -是直三棱柱,AC AB =,090=∠BAC ,Q M ,别离是1CC ,BC 的中点.P 点在11B A 上且2:1:11=PB P A .若是AB AA =1,那么AM 与PQ 所成的角等于 ( ) A 、090 B 、31arccos C 、060 D 、030(第十三届高二第一试第5题)题89、在三棱锥ABC S -中,SA ,SB ,SC 两两垂直,那么BAC ∠( )A 、必然是锐角B 、必然不是锐角C 、必然是钝角D 、必然是直角(第八届高二培训题第3题)题90、图1是以4个腰长为1的等腰直角三角形为侧面的棱锥,其中的四个直角是,,,PBC APB APD ∠∠∠ PDC ∠,求棱锥的高. (第十届高一第二试第22题)题91、三棱锥P ABC -中,90APB BPC CPA D ∠=∠=∠=︒,为底面ABC 内的一点, A C BE D B 1 A 1C 1 A B CAB 1C 1PQ M45,60APD BPD ∠=︒∠=︒,那么CPD ∠的余弦值为______.(第九届高一第二试第20题) 题92、有一个侧棱都是l 的三棱锥,极点处的三个面角中,有两个都是α,另一个是x .将该棱锥的体积V 表示成x 的函数并求出当x 取什么值时,V 达到最大或最小.(第二届高一第二试第21题)题93、设M 为正三棱锥S ABC -的底面ABC 内的任意一点,过M 引底面的垂线与这棱锥的三个侧面所在平面别离交于P,Q,R 三点,假设正三棱锥的高为2.试求MP MQ MR ++的长.(第十二届高一培训题第81题)题94、There are two travel projects from Beijing to Santiago, Chile: (A)Flying westward(向西) to New York, then flying southward to Santiago; (B) Flying southward from Beijing to Friemander, Australia , then flying westward to Santiago. The geographic positions of these four cities may be approximately considered as: Beijing (1200 east longitude, 400 north latitude ), New York (700 west longitude , 400 north latitude ), Friemander (1200 east longitude, 300 south latitude) , Santiago(700 west longitude , 300 south latitude ).Suppose that the air lines go along the spherical distance , then the project of the shorter distance is ________. (第十三届高二第一试第20题) 题95、如下图,矩形ABCD 中,P b AD a AB ,,==为CD 上的任一点,以AB 所在直线为轴,将PAB ∆旋转而成一个旋转体,求旋转体表面积的最大值,并指出当表面积最大时P 点位置. (第十一届高一培训题第79题)题96、ABCD 是一个正方形,M 为AB 上一点,N 为BC 上一点,且AM=BN.连DM 、DN 别离交对角线AC 于点P 、Q ,剪掉△MNB.求证:①以DM 、DN 为折痕,将DA 与DC 重合,能够组成一个三棱锥的侧面.②以线段AP 、PQ 、QC 为边恰可组成一个内角为600的三角形.(第一届高一第二试第五题) 题97、正ABC ∆的边长为a ,用任意直线l 截ABC ∆与两边交于F E 、,将ABC ∆沿l 折起作成二面角,由此可形成四棱锥ABEF C -,求此四棱锥的最大体积,并证明之.(第十二届高二培训题第77题)题98、给定一个三角形纸片(如图),你可否用它为原料剪拼成一个正三棱柱(正三棱柱的全面积等于原三角形的面积)?说明你的方式.那个地址“剪拼”的意思是:依直线剪裁,边对边拼接. (第十四届高二第二试第22题)题99 设在空间给出了20个点.其中某些点涂黄色,其余点涂红色.已知在任何一个平面上的同种颜色的点可不能超过三个.求证:存在一个四面体,它的四个极点同色,而且至少有一个侧面内不含另一种颜色的点. (第一届高一第二试第四题)题100、用四个边长别离为 a , b , c (a>b>c>0)的锐角三角形能够拼成一个四面体.把拼成的任何一个四面体的各棱用红、黄、蓝三色染色,每条棱染一色,每种色染两条棱,考A BC D P虑一切通过如此染色的四面体,若是通过适当转动,两个染色四面体完全重合,而且重合的对应棱同色时,称如此的两个四面体是同一染色类.问:所有如此的染色四面体可分为几种染色类? (第四届高一第2试第22题) 参考答案:1、y x < 2、C 3、D 4、)2,13(- 五、2 六、D 7、11<<-x 或31<<x 八、()+∞,2 九、A 10、[21,3] 1一、B 12-14、略 1五、1215≤≤-a 1六、B17、D 1八、ab b a 2++ 1九、23 20、C 2一、825 2二、9 23、1-,221+ 24、1602五、1 2六、1,132⎡⎤⎢⎥⎣⎦ 27、702 28、B 2九、1x =时, y 取得最小值12 30、22,2 3一、22 3二、18 33、24 34、D 3五、3 3六、13830,13100 37、C 3八、()()032=-+-y x μλ,其中μλ,为参数 3九、⎥⎦⎤⎢⎣⎡512,0 40、C 4一、B 4二、B 43、B 44、26- 4五、123<≤e 4六、1 47、2b 4八、ab 433 4九、36- 50、334 5一、译文:点M 是椭圆18922=+y x 上一点,点F 是椭圆的右核心,点P (6,2),那么3|MF|-|MP|的最大值是3,现在点M 的坐标是(223±,2). 5二、B 53、3314 54、C 5五、1 5六、()11,24- 57、01<<-k5八、(1,0) 5九、24l 60、D 6一、1022=+y x 6二、425<<b 63-65、略 6六、}{1,2,3,4 67、D 6八、13- 6九、7625arctan - 70、34≥AD ,21arctan 7一、0 7二、a 6673 74、22+ 7五、1010或35 7六、4:1 77、332 7八、273 7九、20:780、C 8一、B 8二、B 83、B 84、22222c b a c b bc +++ 8五、当22a b =时,ABCD 是平行四边形,当22a b ≠时,ABCD 是梯形 8六、)(93162cm 87、900,410arcsin8八、A 8九、A 90、215-=h 9一、12 9二、当2sin arcsin 2α=x 时,V 最大 93、694、译文:从北京前去智利的圣地亚哥,有两种旅行方案可供选择.方案(A):由北京向西飞抵纽约,再向南飞抵圣地亚哥; 方案(B):由北京向南飞抵澳大利亚的弗里曼特尔,再向西飞抵圣地亚哥.上述4个城市的地理位置可近似看做:北京(东经1200,北纬400),纽约(西经700,北纬400), 弗里曼特尔(东经1200,南纬300), 圣地亚哥(西经700,南纬300). 假设飞机航线都是球面距离,那么飞行距离较短的方案是A.9五、)(222b a b b ++π,现在P 与D 或C 重合 9六、略 97、3363a 98-99、略 100、考虑到a,b,c 按逆时针方向排布的四面体,共有9+⨯(6+12)2=54种.。

历届希望杯高中试题及答案

历届希望杯高中试题及答案

历届希望杯高中试题及答案希望杯数学竞赛是一项在中国高中生中广泛参与的数学竞赛,它旨在激发学生对数学的兴趣,提高他们的数学素养。

以下是历届希望杯高中数学竞赛的一些试题及答案的示例:试题一:已知函数\( f(x) = 2x^3 - 3x^2 + ax + b \),当\( x = 1 \)时,\( f(x) \)取得最大值4。

求\( a \)和\( b \)的值。

答案:首先,我们对函数\( f(x) \)求导得到\( f'(x) = 6x^2 - 6x + a \)。

由于函数在\( x = 1 \)时取得最大值,这意味着\( f'(1) = 0 \)。

将\( x = 1 \)代入导数中,我们得到:\[ 6(1)^2 - 6(1) + a = 0 \]\[ 6 - 6 + a = 0 \]\[ a = 0 \]接下来,我们需要找到\( b \)的值。

由于\( f(1) = 4 \),我们将\( x = 1 \)代入原函数中:\[ f(1) = 2(1)^3 - 3(1)^2 + 0(1) + b = 4 \]\[ 2 - 3 + b = 4 \]\[ b = 5 \]所以,\( a = 0 \)和\( b = 5 \)。

试题二:在平面直角坐标系中,点A(-1, 2)和点B(4, -1),求直线AB的方程。

答案:首先,我们计算线段AB的斜率\( m \):\[ m = \frac{-1 - 2}{4 - (-1)} = \frac{-3}{5} \]然后,使用点斜式方程,以点A为例,写出直线AB的方程:\[ y - 2 = -\frac{3}{5}(x + 1) \]将方程化简,得到:\[ y = -\frac{3}{5}x - \frac{3}{5} + 2 \]\[ y = -\frac{3}{5}x + \frac{7}{5} \]这就是直线AB的方程。

试题三:已知三角形ABC的三个内角A、B、C的度数分别为40°、70°和70°,求三角形ABC的外接圆半径。

2010年第21届“希望杯”数学(高二)决赛真题及答案详解评分标准

2010年第21届“希望杯”数学(高二)决赛真题及答案详解评分标准

第二十一届“希望杯”全国数学邀请赛高二(第2试)2010年4月11日 上午9:00至11:00校名______ 班_________ 姓名________ 辅导老师_________ 成绩_____一、选择题(每小题4分, 共40分)以下每题的四个选项中, 仅有一个是正确的,请1.已知不等式||||1x a x b -+-<(其中,a b 是常数)的解集是空集,则||a b -的取值范围是( )(A) [0,1]. (B) (0, l) . (C)[l , +∞) . (D) (1, +∞).2.若函数21()y x ax a R =++∈在区间[3,2]--上单调递减,则a 的取值范围是( ) (A)[1, +∞). ( B)[-2, 0) . (C) (-∞,-3). (D)(-∞,-27]3.不等式24sin 1x x ≤+的整数解的个数是( )(A) 1. (B) 2 . (C) 3 . ( D)无穷多.4.若向量AB = (3, 4) , d =(-1, 1),且d ·AC =5,那么 d ·BC =( ) ( A ) 0 . ( B ) 4 . (C)-4 . ( D ) 4 或-4 .5.Given the general term formula of sequence {n a } is 211()32n a n n λ=+-+.If Z λ∈and {n a } is an increasing sequence , then the minimum of λ is ( )(A) 2 . (B) 3 . (C) 4 . (D) 5 .6.已知[0,]3x π∈,sin 3x x M =+,则2M 的最小值是( )(A) (C) 1. (D) 4⨯7.从1, 2, 3,4, 5, 6这六个数字中取三个,以替换直线方程0ax by c ++=中的,,a b c ,使直线与圆221x y +=相离,这样的直线有( )(A) 34 条. (B) 36 条. (C) 18 条. (D) 17 条.8.棱长相等的正四棱锥的相邻侧面所成的二面角的正切值等于( )(A) 13-. (B) 3-. (C)- -. (D) 9.已知C :2221()2x y r +-=与sin y x =的图象有唯一交点,且交点的横坐标为α,则2sin sin32cos cos αααα+-的值等于( ) (A)-4α. (B)-2α. (C)- 12α-. (D) 4α.10.已知点M 在正方体ABCD-A 1B 1C 1D 1的棱BB 1上,且BB 1=3BM ,点P 在底面ABCD 内.若∠APA 1=∠BPM ,则点P 的轨迹是( )(A)圆的一部分. (B)椭圆的一部分.(C)双曲线的一部分.(D)抛物线的一部分.二、 填空题(每小题4分, 共40分)11.若向量a ≠e , | e |=1,对任意的t R ∈,| a - t e |≥| a -e |成立,则a ·e = .12.如果函数x y e =的图象与直线(0)y kx k =>只有一个交点,则k = .13.数列{n a }中,12,()a p a q p q ==≠,当3n ≥时,12n n n a a a --=-,则2010a = .14.已知函数'()()cos sin 6f x f x x π=+,则()4f π的值是 . 15.如图1,以正方体ABCD-A 1B 1C 1D 1的顶点C 为顶点截得一个底面是正三角形的三棱锥C- EFG ,设棱锥底面EFG 与正方体对角线A 1C 的交点是M.若CE:CB=1:3,则CM:CA 1= .16.已知,a b R +∈,且2ab =,则2222b a a b +++的最小值是 . 17.已知向量x 满足方程2x 2+3a ·x + 1=0,其中a=,则 . 18.A line passes through point P (l ,-1) intersects with parabola 2y x =,at pointsA, B equation of the locus of AB's midpoint is .一 e 一 th19.如图2,一块材质均匀的圆形金属薄片(不计厚度)用圆域2264x y +≤表示,从中挖掉的两个小圆洞分别用圆域22(2)(4)4x y ++-≤和22(3)(2)9x y -++≤表示(圆心依次为A 、B) ,则剩下部分的重心坐标是 .20.过双曲线22221x y a b-=的右焦点的直线交双曲线的右支于A 、B 两点,设F 是双曲线的左焦点,e 是双曲线的离心率,若△ABF 是等腰直角三角形,且90A ∠= ,则2e = .三、解答题(每题都要写出推导过程)21. (本题满分10分)已知函数32()f x x bx cx d =+++的图象经过点 A (-1, 2) ,且在点A 处的切线方程为310x y ++=,()y f x =的图象与y 轴的交点位于坐标原点的下方,()y f x =在1x x =与2x x =处取得极值,且12||x x -=.求:(l)函数()f x 的解析表达式;(2)函数()f x 的单调区间.图 1图 2图 322.(本题满分15分)如图3,正四面体ABCD的棱长是1,P是△BCD的中心,M、N 分别在面ABD、ACD上运动.求△PMN的周长的最小值.23.(本题满分15分)椭圆22221(0)x ya ba b+=>>的右焦点为F (1, 0) ,过点P (0,2)的直线交椭圆于A、B两点,且△FAB周长的最大值为8.(1)求,a b的值;(2)若点Q (1, 2),求△QAB面积的最大值.。

历届(1-18)希望杯数学邀请赛高二试题(含答案)(1) 全国通用

历届(1-18)希望杯数学邀请赛高二试题(含答案)(1) 全国通用

第一届“希望杯”全国数学邀请赛(高二)第一试1990年3月18日 上午8:30—10:00一、选择题1、等差数列的第p 项是1990,第1990项是p ,那么第p + q (q ≥ 1991)项( )(A )是正数 (B )是负数 (C )是零 (D )符号不能确定2、设S k =11k ++12k ++ (12),则( ) (A )S k + 1 = S k +122k + (B )S k + 1 = S k +121k ++122k + (C )S k + 1 = S k +121k +–122k + (D )S k + 1 = S k –121k ++122k +3、函数y )(A )有最小值没有最大值 (B )有最大值没有最小值(C )有最小值也有最大值 (D )没有最小值也没有最大值4、a ,b ∈R ,那么| a + b | = | a | – | b |是a b ≤ 0的( )(A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )不充分也不必要条件5、α ≠2k π( k ∈ Z ),那么sec α与sin 2 α tan 2α的符号(指正负号)( ) (A )总是相同 (B )总是相异(C )在第一、三象限时,它们同号,在第二、四象限时,它们异号(D )在第一、三象限时,它们异号,在第二、四象限时,它们同号6、正四面体内切球的体积是V ,则它的外接球的体积是( )(A )8V (B )27V (C )64V (D )4V7、一个平面最多把空间分为两部分,两个平面最多把空间分为四部分,三个平面最多把空间分为八部分,那么,四个平面最多把空间分成( )(A )16部分 (B )14部分 (C )15部分 (D )20部分8、设a = arcsin ( sin 17),b = arccos ( –17),c = arcsin ( –17),则( ) (A )a > b > c (B )b > a > c (C )c > a > b (D )b > c > a9、方程arccot x + arcsin x = π的实数根的个数是( )(A )0 (B )1 (C )2 (D )310、在四个数12,中,与等的个数是( )(A )0 (B )1 (C )2 (D )3二、填空题11、方程arcsin ( sin x ) + arccos ( cos x ) =2π的解集是 。

高二希望杯试题及答案

高二希望杯试题及答案
f''(1) = -6 < 0,所以x = 1是极大值点。
f''(11/3) = 2 > 0,所以x = 11/3是极小值点。
2. 已知一个圆的直径为10,求圆的面积。
答案:
圆的半径为5,根据圆的面积公式A = πr^2,得:
A = π * 5^2 = 25π。
四、证明题(每题10分,共10分)
1. 证明:若a,b,c是等差数列,那么a^2 + b^2 + c^2也是等差数列。
高二希望杯试题及答案
一、选择题(每题5分,共20分)
1. 已知函数f(x) = 2x^2 - 3x + 1,求f(-1)的值。
A. 4
B. 3
C. 2
D. 1
答案:A
2. 以下哪个选项是复数的共轭?
A. z = 3 + 4i
B. z = 3 - 4i
C. z =; 4i
1. 若函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(-1, 2),则a的值为________。
答案:-1
2. 给定一个等比数列,首项为2,公比为3,求第5项的值。
答案:486
3. 一个直角三角形的两条直角边长分别为3和4,求斜边的长度。
答案:5
4. 已知一个函数的导数f'(x) = 6x^2 - 12x + 4,求f(2)的值。
答案:
已知a,b,c是等差数列,设公差为d。
则b = a + d,c = a + 2d。
计算b^2 + c^2 - 2a^2:
(b^2 + c^2 - 2a^2) = (a + d)^2 + (a + 2d)^2 - 2a^2

1998年第九届“希望杯”全国高二数学邀请赛(第1试)

1998年第九届“希望杯”全国高二数学邀请赛(第1试)

第九届“希望杯”全国数学邀请赛(高二)第一试1998年3月22日 上午 8:00—9:30一、选择题(每小题6分) 1、直线3x +2y = 1的倾斜角是( )(A )arctan 23(B )arctan ( –23) (C )π + arctan23(D )π + arctan ( –23)2、函数y = arccos (12– x 2 )的值域是( )(A )[ –2π,6π] (B )[ –2π,3π] (C )[6π,π ] (D )[3π,π ]3、以T 1,T 2,T 3分别表示函数| cos x |,sin3x ( sin 3x + cos3x )的最小正周期,那么( )(A )T 1 < T 2 < T 3 (B )T 3 < T 2 < T 1 (C )T 2 < T 1 < T 3 (D )T 2 < T 3 < T 1 4、不等式| 3 | > 1的解集是( ) (A )[23,2 ])∪( 6,+ ∞ ) (B )( – ∞,2 )∪( 6,+ ∞ ) (C )( 6,+ ∞ ) (D )( – ∞,2 )5、已知函数⑴ y = arcsin ( 2 x ),⑵ y = sin ( π x ) + cos ( π x ),⑶ y = log 2 x + log 12( 1 + x ),其中,在区间[12,1 ]上单调的函数是( )(A )⑴⑵⑶ (B )⑵⑶ (C )⑴⑵ (D )⑴⑶ 6a 的最大值是( )(A )13 (B )12 (C )11 (D )10 7、有以下几个数列:⑴ a n,⑵ S n = n ( 2 – 3 n ),⑶ a n + a n +1 = 2 a n + 2,⑷ a n =1n,⑸ a n an + 2 = a 21n +,⑹a n =1nlog 2 6 n ,其中是等差数列的有( )(A )⑴⑶ (B )⑵⑷ (C )⑶⑸ (D )⑵⑹8、在平面直角坐标系内,方程x 2 + y 2 + x | x | + y | y | – 2 = 0表示的曲线是( )(C)9、P 是椭圆上任意一点,F 1,F 2是椭圆的焦点,离心率e =12,则∠F 1PF 2的最大值是( )(A )60° (B )90° (C )120° (D )135° 10、若0 < a ,b ,c < 1,并且a + b + c = 2,则a 2 + b 2 + c 2的取值范围是( ) (A )[43,+ ∞ ) (B )[43,2 ] (C )[43,2 ) (D )(43,2 )二、A 组填空题(每小题6分)11、不等式log sin x 2 x > log sin x x 2在区间( 0,2 π )上的解是 。

历届希望杯数学邀请赛高二试题(含答案) 全国通用

历届希望杯数学邀请赛高二试题(含答案) 全国通用

第十一届“希望杯”全国数学邀请赛(高二)第二试2000年4月23日 上午8:30—10:30一、选择题(每小题6分,共60分)1、函数f ( x ) = log 13( 2 x 2 + 2 + 1 ) x 是( )(A )偶函数 (B )奇函数 (C )奇且偶函数 (D )非奇非偶函数 2、△ABC 中,BC = 6,BC 上的高为4,则AB ∙ AC 的最小值是( )(A )24 (B )25 (C ) (D )263、If l 1 : x + 3 y – 7 = 0 , l 1 : k x – y – 2 = 0 and positive x – axis and positive y – axis make a quadrilateral , which has a circumcircle , then k =( )(A )– 6 (B )– 3 (C )3 (D )6 (英汉小字典:positive 正的;quadrilateral 四边形;circumcircle 外接圆)4、直线y = x + 3和曲线 –||4x x +29y= 1的交点的个数是( )(A )0 (B )1 (C )2 (D )3 5、若f ( x + y ) = f ( x ) ∙ f ( y ),且f ( 1 ) = 2,则(2)(1)f f +(4)(3)f f +(6)(5)f f + … +(2000)(1999)f f =( ) (A )1999 (B )2000 (C )2001 (D )20026、定义在R 上的偶函数f ( x )在[ 0,+ ∞ )上是增函数,且f (13) = 0,则不等式f ( log 18x ) > 0的解是( )(A )(12,1 ) (B )( 2,+ ∞ ) (C )( 0,12)∪( 2,+ ∞ ) (D )(12,1 )∪( 2,+ ∞ )7、将圆x 2 + ( y – 1 ) 2 = 1的中心到直线y = k x 的距离记为d = f ( k ),给出以下三个判断:⑴数列{ n f ( n ) }是递增数列;⑵数列{21()f n }的前n 项和是2(237)6n n n ++;⑶ lim n →+∞(1(1)f n +–1()f n ) – 1 = 1其中,正确的个数是( )(A )3 (B )2 (C )1 (D )08、设计一条隧道,要使高3.5米,宽3米的巨型载重车辆能通过,隧道口的纵断面是抛物线状的拱,拱宽是拱高的4倍,那么拱宽的最小整数值是( )(A )14 (B )15 (C )16 (D )17 9、已知x 、y 、z ∈R +,且1x +2y +3z = 1,则x +2y +3z 的最小值是( )。

历届“希望杯”全国数学邀请赛高二数学精选100题详析(一)

历届“希望杯”全国数学邀请赛高二数学精选100题详析(一)

历届“希望杯”全国数学邀请赛高二数学精选100题详析题 1 已知y x a b b y b b a x b a ,,,,0则--=-+=<<的大小关系是 .(第十一届高二第一试第11题)解法1 b b a a b b a x ++=-+=,ab b aa b b y -+=--=.y x a b b b b a b a <∴-+>++∴<<,,0 .解法2bb a ab b a b b b b a y x ++-+=---+=,y x y x a b b a <∴<∴->+,1, . 解法3a ab b a b b a ab b b b a y x -+-++=----+=-1111 =y x yx a a b b a <∴>-∴>--+,011,0.解法4 原问题等价于比较a b b a -++与b 2的大小.由,2)(222y x y x +≥+得b a b b a a b b a 4)(2)2=-++≤-++(,b a b b a 2≤-++∴. y x b a b b a a b b a <∴<-++∴-≠+,2, .解法5 如图1,在函数x y =的图象上取三个不同的点A (a b -,a b -)、B (b ,b )、C (b a +,b a +).由图象,显然有AB BCk k <,即)()(a b b ab b b b a b b a ----<-+-+, 即a b b b b a --<-+,亦即y x <.解法6 令()f t =tt a at f ++=)( 单调递减,而a b b ->,)()(a b f b f -<∴,即a b b b b a --<-+,y x <∴.解法7 考虑等轴双曲线)0(22>=-x a y x .图1如图2,其渐近线为x y =.在双曲线上取两点 A (b ,a b -)、B (a b +,b ). 由图形,显然有1>ABk ,即1>-+--bb a ab b ,从而y x <.解法8 如图3.在Rt △ABC 中,∠C 为直角,BC=a ,AC=b ,BD=b ,则AB=b a +,DC=a b -. 在△ABD 中,AB-AD<BD ,即-+b a AD b <,从而-+b a AD-DC<-b DC , 即a b b b b a --<-+,故y x <.评析 比较大小是中学代数中的常见内容.其最基本的方法是作差比较法、作商比较法、利用函数的单调性.解法1通过分子有理化(处理无理式常用此法)将问题转化成比较两个分母的大小.解法2直接作商与1比较大小,顺理成章,也很简洁.要注意的是:0,>b a 时,1a a b b >⇔>;0,<b a 时,1aa b b>⇔<.此题直接作差难以确定差与0的大小,解法3对y x ,的倒数作差再与0比较大小,使得问题顺利获解,反映了思维的灵活性.解法6运用函数的单调性解题,构造一个什么样的函数是关键.我们认为构造的函数应使得y x ,恰为其两个函数值,且该函数还应是单调的(最起码在包含y x ,对应的自变量值的某区间上是单调的).解法5与解法7分别构造函数与解几模型,将y x ,的大小关系问题转化成斜率问题加以解决,充分沟通了代数与几何之间的内在联系,可谓创新解法.解法8充分挖掘代数式的几何背景,构造平面图形,直观地使问题得到解决,这也是解决大小关系问题和证明不等式的常用方法.有人对此题作出如下解答:取,2,1==b a 则12112,23123+=-=+=-=y x,32+>10+>,.,121231y x <∴+<+可再取两组特殊值验证,都有y x <.故答案为y x <. 从逻辑上讲,取2,1==b a ,得y x <.即使再取无论多少组值(也只能是有限组值)验证,都得y x <,也只能说明y x >或y x ≥作为答案是错误的,而不能说明y x <一定是正确的,因为这不能排除x y =的可能性.因此答案虽然正确,但解法是没有根据的.当然,如果将题目改为选择题:已知y x a b b y b b a x b a ,,,,0则--=-+=<<的大小关系是图2图3( )A 、y x >B 、y x ≥C 、y x =D 、y x <此时用上述解法,且不用再取特殊值验证就可选D ,并且方法简单,答案一定正确. 总而言之,特殊值法在解许多选择题时显得特别简捷,那是因为选择支中的正确答案是唯一的,从而通过特殊值排除干扰支,进而选出正确答案.但特殊值法只能排除错误结论,而不能直接肯定正确答案,因此,用此法解填空题(少数特例除外)与解答题是没有根据的.当然,利用特殊值指明解题方向还是十分可取的.题 2 设c b a >>N n ∈,,且11na b b c a c+≥---恒成立,则n 的最大值为 ( )A 、2B 、3C 、4D 、5(第十一届高二第一试第7题)解法1 原式n c b c a b a c a ≥--+--⇔.mina c a c n ab bc --⎡⎤∴≤+⎢⎥--⎣⎦.而b a c a --+c b c a -- =b ac b b a --+-+b c a b b c -+--=2+b a c b --+c b b a --≥4,且当b ac b --=cb ba --,即bc a 2=+时取等号.mina c a c ab bc --⎡⎤∴+⎢⎥--⎣⎦4=.4n ∴≤.故选C . 解法2 c b a >>,0,0,0>->->-∴c a c b b a ,已知不等式化为()()()2a c n a b b c -≤--.由()()()()22242a c a c ab bc a b b c --≥=---+-⎛⎫⎪⎝⎭,即()()()4min2=⎥⎦⎤⎢⎣⎡---c b b a c a ,故由已知得4≤n ,选C .解法3由cb a >>,知,0,0>->->-c a c b b a ,有()⎪⎭⎫ ⎝⎛-+--≤c b b a c a n 11.又()()()[]()41111112=+≥⎪⎭⎫ ⎝⎛-+--+-=⎪⎭⎫⎝⎛-+--c b b a c b b a c b b a c a ,即()411min=⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+--c b b a c a ,由题意,4≤n .故选C .解法4 c b a >>,0,0,0>->->-∴c a c b b a .∴已知不等式可变形为()()()2a c n a b b c -≤--.记()()()2a c k ab bc -=--,则()()[]()()()()[]()()4222=----≥---+-=c b b a c b b a c b b a c b b a k .由题意,4≤n .故选C .解法5 c b a >>110,0.a b b c∴>>--于是 ()()ca cb b ac b b a -=-+-≥-+-4411.比较得4≤n .故选C . 评析 由已知,可得()⎪⎭⎫⎝⎛-+--≤c b b a c a n 11恒成立.根据常识“若()a f x ≤恒成立,则()min x f a ≤;若()x f a ≥恒成立,则()max a f x ≥,”()⎪⎭⎫⎝⎛-+--c b b a c a 11的最小值就是所求n 的最大值,故问题转化为求()⎪⎭⎫⎝⎛-+--c b b a c a 11的最小值,上述各种解法都是围绕这一中心的,不过采用了不同的变形技巧,使用了不同的基本不等式而已.解法1运用了2,,b a a b R a b ++≥∈“”;解法2运用了”“22⎪⎭⎫ ⎝⎛+≤b a ab ;解法3运用了()”“411≥⎪⎭⎫⎝⎛++b a b a ;解法4运用了()”“+∈≥+R b a ab b a ,2;解法5运用了()”“+∈+≥+R b a ba b a ,411.虽解法异彩纷呈,但却殊途同归. 此题使我们联想到最新高中数学第二册(上)P 30第8题: 已知c b a >>,求证:0111>-+-+-ac c b b a . 证:令()0,0,>>=-=-y x y c b x b a ,则y x c a +=-.()22111111x y xya b b c c a x y x y xy x y ++∴++=+-=---++.0,0x y >>, 0111>-+-+-∴ac c b b a . 此证法通过换元将分母中的多项式改写成单项式,使得推证更简单了.运用这一思路,又可得本赛题如下解法:设()0,0,>>=-=-y x y c b x b a ,则y x c a +=-.ca nc b b a -≥-+-11恒成立,就是y x ny x +≥+11恒成立.也就是()⎪⎪⎭⎫ ⎝⎛++≤y x y x n 11恒成立.()411≥⎪⎪⎭⎫ ⎝⎛++y x y x 恒成立,∴由题意得4≤n .故选C .再看一个运用这一思想解题的例子.例 设+∈R c b a ,,,求证:2222cb a b ac a c b c b a ++≥+++++. (第二届“友谊杯”国际数学竞赛题)证明 设,,,z b a y a c x c b =+=+=+则()()0,,21>++=++z y x z y x c b a . ()()()02222≥+-=++-+y x xy bx ay y x b a y b x a ,()222a b a b x y x y +∴+≥+ ①, ()()()()222222222a b a b c a b c a b c c a b c x y z x y z x y z a b c +++++++∴++≥+≥==+++++,即 2222c b a z c y b x a ++≥++,2222c b a b a c a c b c b a ++≥+++++∴. 本赛题还可直接由下面的命题得解.命题 若021>>>>n a a a ,则()nn n a a n a a a a a a --≥-++-+--12132211111 . 证明 021>>>>n a a a ,n n a a a a a a ---∴-13221,,, 都大于0.反复运用①式,可得: “若,(1,2,,)i i x y R i n +∈=,则22111n i ni i n i iii x x y y ===⎛⎫⎪⎝⎭≥∑∑∑,当且仅当1212n nx x x y y y ===时取等号”.故有()()22122311223111111111n n n n nn a a a a a a a a a a a a a a --+++-+++≥=----+-++--. 也可以这样证明:021>>>>n a a a ,12231,,,0n n a a a a a a -∴--->.故由柯西不等式,得()()()1223112231111()n n n na a a a a a a a a a a a --+++-+-++-⎡⎤⎣⎦---()()211111n -≥+++个()21n =-,即()()21132211)111(-≥--++-+--n a a a a a a a a n nn .01>-n a a ,()nn n a a n a a a a a a --≥-++-+-∴-12132211111 . 由此可得本赛题的如下解法:cb a >>,,0,0>->->-∴c a c b b a ,()ca cb b ac b b a -=-+-+≥-+-∴411112.由 题意,4≤n .故选C . 由此命题还可直接解决第七届高二培训题第8题:设12320002001a a a a a >>>>>,并且122320002001111m a a a a a a =+++---,200116104a a n -⨯=,则m 与n 的大小关系是 ( )A 、n m <B 、n m >C 、n m ≥D 、n m ≤解12320002a a a a a >>>>>,2001162001121042000a a a a m -⨯=-≥∴.故选C . 题 3 设实数y x n m ,,,满足a n m =+22,b y x =+22,则ny mx +的最大值为( )A 、21()b a + B 、2122b a + C 、222b a + D 、ab(第十一届高二培训题第5题)解法1 设,sin ,cos ααa n a m ==,sin ,cos ββb y b x ==则,)cos(sin sin cos cos ab ab ab ab ny mx ≤-=+=+βαβαβα即)(ny mx +max =ab .故选D .解法2b n ab m a b a n m =+⇒=+2222,又b y x =+22,+=+∴mx abny mx ab)(≤ny ab 2222()()2b m n x y a +++==.2b b a a b=+⋅ny mx +∴,ab ab b =≤当且仅当x =且,y =即my nx =时取等号,max )ny mx +∴(.ab =解法3 2222222222222()2mx ny m x mxny n y m x m y n x n y +=++≤+++()()2222,m n x y ab =++=mx ny ∴+≤当且仅当m y n x =时取等号,故()max mx ny +.解法4设()(),,,,p m n q x y →→==则cos ,p q p q p q θ→→→→→→⋅=⋅⋅≤⋅222,p q p q →→→→∴⋅≤⋅()()222mx ny m n +≤+即()22,xyab +=当且仅当,p q →→共线,即my nx =时取等号,故()max mx ny +.解法5 若设mx ny k +=,则直线mx ny k +=与圆22x y b +=有公共点,于是≤()max k mx ny mx ny =+≤∴+=解法6设12,z m ni z x yi=+=-,则()()()()12,z z m ni x yi mx ny nx my i =+⋅-=++-∴1212,z z mx ny mx ny mx ny z z ⋅=≥=+≥+∴+≤12z z =⋅==当且仅当m y n x =时取等号,故()m a mx n y a b+. 解法7 构造函数()()()222222f X m nXmx ny X x y =+++++,则()()()220.f X mX x nX y =+++≥故()()()2222244mx ny m nxy ∆=+-++()2440,mx ny ab =+-≤即()max mx ny mx ny +≤∴+.ab =解法8 由2222,m n a x y b +=+=还可构造图形(如图),其中90,ACB ADB ︒∠=∠=,AC =,BC =,,BD x AD y AB ===为圆的直径,由托勒密定理,AD BC BD AC ⋅+⋅2,AB CD AB =⋅≤得,x y b ⋅+⋅≤,从而得m x n a b +≤my nx =且0mx >时取等号.()max mx ny ∴+=评析 解法1抓住已知条件式的结构特征,运用三角代换法,合情合理,自然流畅,也是解决此类型问题的通法之一.解法2运用基本不等式222b a ab +≤将ny mx +放大为关于22n m +与22y x +的式子,再利用条件求出最大值.值得注意的是,稍不注意,就会得出下面的错误解法:()()()22222222max ,22222m n x y m x n y a b a bmx ny mx ny ++++++++≤+==∴+=.故选A .错误的原因就在于用基本不等式求最值时未考虑等号能否取到.上述不等式取等号的条件是x a =①且y b =②,而若①,②式同时取得,则2222m n x y +=+,即,a b =这与题设矛盾!即当a b ≠时,mx ny +取不到2a b+.解法2是避免这种错误的有效方法. 由于向量与复数的模的平方是平方和形式,与已知形式一致,故解法4与解法6分别运用了构造向量与构造复数的方法,新颖而简洁.解法5设k ny mx =+后,将其看作动直线,利用该直线与定圆b y x =+22有公共点,则圆心到直线的距离小于等于半径,得ab ny mx k ≤+=,充分体现了等价转化的解题功能.解法7运用的是构造函数法.为什么构造函数()()()2222f X m n X mx ny X =+++2x +2y +呢?主要基于两点:①()f X 为非负式(值大于等于0),②由于()0≥X f ,故有0≤∆,而∆沟通了已知与未知的关系,故使问题得到解决.解法8抓住已知两条件式的特征,构造了两个有公共边的直角三角形,利用托勒密定理及圆的弦小于等于半径使问题获解,充分揭示了这一代数问题的几何背景.拓展 此题可作如下推广 若2222221212,,n n a a a p b b b q +++=+++=则()1122max n n a b a b a b +++=()1,2,,i i b i n ==时取得最大值).证明 2222221212n n q q q a a a p a a a p p p ⎛⎫⎛⎫⎛⎫+++=⇒+++ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭.q = 1122a b a b ∴+++1122n n n nqa bb b a b p ⎫=⋅⋅++⋅⎪⎪⎭≤p ⎝++⎢⎥⎢⎥⎣⎦=(),22222222122221pq qp p q q p b b b a a a pq q p n n=⎪⎪⎪⎪⎭⎫⎝⎛+⋅=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++ 当且仅当()().,,2,1max 2211pq b a b a b a n i b a pqn n i i =+++∴== 时取等号,本推广实际就是由著名的Cauchy (柯西)不等式()()()222212222122211n n n n b b b a a a b a b a b a +++⋅+++≤+++ (当且仅当nn b a b a b a === 2211时取等号)直接得到的一个结论. 推广有十分广泛的应用,现举一例:例 已知123,,,,,,234,8.a b c x y zR a bc x y z +∈++=++=且求最大值.解2221232344,8a b c b cx y z ++==++=22⇒+2+=8.由推广知=≤=当且仅当===即12ax by cz===时取等号.max∴=.24题4对于1≤m的一切实数m,使不等式221(1)x m x->-都成立的实数x的取值范围是____(第十三届高二培训题第63题)解法1题设等价于⎪⎩⎪⎨⎧--<>-112122xxmx或⎪⎩⎪⎨⎧--><-112122xxmx或⎩⎨⎧>-=-1212xx,即⎪⎩⎪⎨⎧--<>-1121122xxx或⎪⎩⎪⎨⎧-->-<-1121122xxx或⎩⎨⎧>-=-1212xx,所以21<<x或113<<-x或1=x,即)2,13(-∈x.解法2 已知不等式即()()01212<---xmx,令()()121)(2---=xmxmf,则当012≠-x,即1±≠x时,)(mf是m的一次函数,因为1≤m,即11≤≤-m时不等式恒成立,所以)(mf在[]1,1-上的图象恒在m轴的下方,故有⎩⎨⎧<+--=<+-+-=-121)1(121)1(22xxfxxf,即⎩⎨⎧<->-+22222xxxx,解得213<<-x)1(≠x.又当1=x时,1)(-=mf,适合题意,当1-=x时,()3f m=不合题意.故x的取值范围是213<<-x.评析解决本题的关键是如何根据条件构建关于x的不等式或不等式组.解法1运用分离参数法,为了达到分离参数的目的,又对12-x分大于0、小于0、等于0三类情形分别构建关于x的不等式组,从而通过解不等式组解决了问题.解法2则转换思维角度,把已知不等式看成关于m的不等式,从而将原问题转化为函数()()121)(2---=xmxmf在[]1,1-上的图象恒在m轴下方的问题.这种方法称为变更主元法.用此方法,使得此题的解决显得既简捷,又直观易懂.题5 当0x a <<时,不等式2)(1122≥-+x a x 恒成立,则a 的最大值是________. (第十一届高二培训题第45题)解法 1 当0x a <<时, 2≥-+-x a x x x a ①,又有2)()(2222≥-+-x a x x x a ②,②+①×2,得6)(222222≥--+-x a x ax x x a ,6)()(122222≥---+-x a x a a x a ,8)(2222≥-+x a a x a ,即2228)(11a x a x ≥-+.由282≥a,得02a <≤,2max =∴a . 解法 2 2222)11()11()(112x a x x a x x a x--+-+=⎥⎦⎤⎢⎣⎡-+ , 又 =-+x a x 11 +a 4(1a2)x a x x x a ---, 222)4()(112a x a x≥⎥⎦⎤⎢⎣⎡-+∴, 即2228)(11a x a x ≥-+, 当且仅当x a x x x a -=- 且 x a x -=11, 即 2ax = 时取等号. 2)(1122≥-+x a x 恒成立, ∴282,02a a ≥<≤. 于是2max =a . 解法 3 原不等式等价于12)(1122≥-+x a x ,由 0x a <<,可知10,x >10a x >-. 由 “两个正数的平方平均值不小于它们的调和平均值”, 可知只需1)(2≥-+x a x , 即2≤a 即可, 故02a <≤, 于是2max =a .解法 422)(11x a x -+2≥ 即 2)(112222≥⎥⎦⎤⎢⎣⎡--++x x a x x ①成立,又2122≥+x x恒成立, ∴a 只要满足22)(1x x a --0≥②就能使①恒成立.由②式,得2x 2)(x a -1≤,1)(≤-x a x ,012≤-+-ax x ③.由于对称轴),0(2a ax ∈=,由二次函数的性质,当),0(a x ∈时,要③式恒成立,则24002a a ∆=-≤∴<≤ 2max =∴a .解法5 设αα22sin ,cos =-=a x a a x (0x a <<),则22)(11x a x -+=α42cos 1a + α42sin 1a ==+⋅αααα44442cos sin cos sin 1a =-⋅αα2sin 1612sin 2111422aαα2sin 2sin 28422-⋅a .)22(sin 2+αα2(sin 2-1)0≤,即2-αα2sin 2sin 42≥,则αα2s i n 2s i n 242-1≥)12s i n (2时取等号当=α,于是2228)(11ax a x ≥-+,由已知,得282,02,a a≥∴<≤2max =∴a . 解法6 设11,(0,0),X Y X Y x a x==>>-则222X Y +≥表示在XOY 坐标系第一象限内以原点为圆心,2为半径的圆及其外部.由11,,X Y x a x==-得,aXY X Y =+又aXY X Y =+,4,22aXY XY ≥∴≥它表示双曲线24a XY =位于第一象限内的一支及其上方部分.依题意,双曲线2224(0)200XY X X Y X Y a=>+=>>与圆弧(,)相切或相离,从而282≥a,即02a <≤ 2max =∴a .解法7 运用结论“如果),,2,1(,n i R y x i i =∈+,则≥+++nn y x y x y x 2222121),()(21221*++++++nn y y y x x x 当且仅当k y x y x y x n n ==== 2211(常数)时取等号.”0x a<<,∴0.a x ->由柯西不等式,有22222)11())(11)(11(x a x x a x -+≥-++①,由)(*得xa x -+11a4≥②.故O2 xO,)4())(11(2222a x a x ≥-+得2228)(11a x a x ≥-+,当且仅当2a x =时取等号,由282≥a,得02a <≤ 2max =∴a .解法8运用结论“212122311111(1),,n n n nn a a a a a a a a a a a -->>>+++≥----若则当且仅当n a a a ,,,21 成等差数列时取等号.”2222111122()(0)()x a x x a x ⎡⎤⎡⎤+=+≥⎢⎥⎢⎥---⎣⎦⎣⎦2110x a x ⎛⎫+ ⎪--⎝⎭222160)13(a a =⎥⎦⎤⎢⎣⎡--≥.∴2228)(11a x a x ≥-+,当且仅当x a x -=,即2a x =时取等号.令282≥a,得02a <≤ 2max =∴a . 评析2)(1122≥-+x a x 恒成立,∴2)(11min22≥⎥⎦⎤⎢⎣⎡-+x a x .故问题的实质就是求22)(11x a x -+的最小值(关于a 的式子)大于等于2的解.因而在0x a <<的条件下,如何求22)(11x a x -+的最小值成了问题的关键.解法1运用“两个互为倒数的正数的和大于等于2”, 解法2运用配方再放缩, 解法3运用均值不等式及“两个正数的平方平均值不小于它们的调和平均值”,解法5运用三角代换,解决了这一关键问题.解法4巧妙地将原问题转化为一个含参(a )一元二次不等式恒成立,求参数的范围问题,从而运用二次函数的性质解决问题.解法6将原问题转化为解析几何问题处理.解法7、8则是运用一些现成的结论(读者可自己证明),各种解法异彩纷呈,都值得细细品味.拓展 此题可作如下推广:推广1 若1210n x x x a -<<<<<,则≥-++-+-2121221)(1)(11n x a x x x 23a n ,当且仅当a x x x n ,,,,121- 成等差数列时取等号.证明 由已知,1210n x x x a -<<<<<,则12x x -0>,23x x -0>,, 1--n x a 0>.根据柯西不等式及解法7运用的不等式(*),有⎥⎦⎤⎢⎣⎡-++-+-2121221)(1)(11n x a x x x n≥21211111n x x x a x -⎛⎫+++≥ ⎪--⎝⎭2242,n n a a ⎛⎫= ⎪⎝⎭故≥-++-+-2121221)(1)(11n x a x x x 23a n . 当且仅当a x x x n ,,,,121- 成等差数列时取等号.推广2 若1210n x x x a -<<<<<,,),,,2,1(++∈=∈N k n i R b i 则++kk x b 111kk n k n k n k k ab b b x a b x x b 121111212)()()(+-+++++≥-++- ,当且仅当∑==n i ii i b ab a 1时取等号. 证明 不妨设112211,,,--=-==n n x a a x x a x a ,=M ,)(11+=∑k ni i b 由已知得i a 0>且),,2,1(n i =,1a a ni i =∑=令a a c i i =,则∑=ni i c 1=111=∑=ni i a a .由均值不等式,++k i k i c b 1≥+++个k i i i Mc Mc Mc ,)1(11+++k k ik b M k 即k ik ic b 1+kn i b b b k kMc ))(1(21++++≥+ ib ⋅,则11111(1)()k nnn k i i iki i i i b kM c k bc ++===+≥+∴∑∑∑1111()k nn k i i k i i i b b c ++==≥∑∑,即11k nki k i ib a a +=≥∑11()n k i i b +=∑,11111()nk k i ni i k k ni ii i b b a a ++===≥⎛⎫ ⎪⎝⎭∑∑∑,当且仅当=i a ∑∑∑====⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n i i i i n i i n i i b ab b b a 111时取等号. ∴++kk x b 111++kk x b 212kn kn x a b )(1--+ k k n a b b b 121)(++++≥ . 题6 已知()⎪⎭⎫⎝⎛∈=2,0,log sin πθθx x f ,设⎪⎭⎫ ⎝⎛+=2cos sin θθf a ,()θθcos sin ⋅=fb ,⎪⎭⎫⎝⎛+=θθθcos sin 2sin f c ,那么c b a 、、的大小关系是 ( )A 、b c a ≤≤B 、a c b ≤≤C 、a b c ≤≤D 、c b a ≤≤(第八届高二第一试第10题) 解法1 设p =θsin ,q =θcos .pq qp ≥+2,而()x f 是减函数,()pq fq p f ≤⎪⎭⎫ ⎝⎛+∴2,即b a ≤.2qp pq +≤,()2pq q p pq +≤∴,pq qp pq≤+2.()pq fq p pq f ≥⎪⎪⎭⎫⎝⎛+∴2,即b c ≥.故c b a ≤≤.选D.解法2 由题意,令6πθ=,则21sin =θ,cos θ=,4312cos sin +=+θθ ,23cos sin 4=θθ,233cos sin cos sin 2cos sin 2sin -=+=+θθθθθθθ,()1,021sin ∈=θ ,()x f ∴是减函数,又233234314->>+,()⎪⎭⎫⎝⎛+<<⎪⎭⎫⎝⎛+∴θθθθθθθcos sin 2sin cos sin 2cos sin f ff ,即c b a <<.故选D.评析 这是一个比较函数值大小的问题,通常利用函数的单调性.若函数()x f 单调递增(减),则当21x x <时,()()()()()2121x f x f x f x f ><,当21x x >时,()()21x f x f >()()()21x f x f <.因此解决问题的关键有两个:一是确定函数的单调性,二是确定自变量的大小关系.解法1就是这样解决问题的.因为正确答案应对一切⎪⎭⎫ ⎝⎛∈2,0πθ都正确,故又可以运用特殊值法.对⎪⎭⎫⎝⎛2,0π内的某个角不正确的选择支都是错误的,由正确选择支的唯一性,也可选出正确答案.解法2便是取特殊值6πθ=,排除了A 、B 、C 、而选D 的.当然,此题也可用作差比较法来解:⎪⎭⎫⎝⎛∈2,0πθ ,()1,0sin ∈∴θ,()x f ∴是单调减函数,0sin >θ,0cos >θ.=⋅-+=-∴θθθθθθcos sin log 2cos sin log sin sin b a01log cos sin 2cos sin log sin sin =≤⋅+θθθθθθ,b a ≤∴.又-⋅=-θθθcos sin log sin c b 01log cos sin 2cos sin log cos sin cos sin 2cos sin log cos sin 2sin log sin sin sin sin =≤+=+⋅=+θθθθθθθθθθθθθθθθθ,即c b ≤,c b a ≤≤∴.选D.题7 已知21=a ,不等式49321log <⎪⎭⎫ ⎝⎛-x a的解是 . (第三届高二第二试第13题)解 原不等式即2log 32321-⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛-x a. 指数函数x⎪⎭⎫⎝⎛32是减函数,21=a ,∴原不等式化为2log 121->-x ,即22121121loglog -⎪⎪⎭⎫⎝⎛->x .又对数函数log x 是减函数,2211-⎪⎭⎫⎝⎛<-∴x ,即21<-x ,解得31<<-x . 对数函数121log-x 的定义域是1≠x 的实数,∴原不等式的解是11<<-x 或31<<x .评析 此题涉及到指数不等式、对数不等式、绝对值不等式的解法.解指数不等式与对数不等式的基本方法是同底法,即先将不等式两边的指数式或对数式化成底数相同的指数式或对数式,然后根据底数所属区间是()1,0或()+∞,1,确定以该底数为底的指数函数或对数函数的单调性,再去掉底数或对数符号,转化成别的不等式.主要依据如下:⑴若01a <<,则()()()()f x g x a af xg x <⇔>;⑵若1a >,则()()()()f x g x aaf xg x <⇔<; ⑶若01a <<,则()()()()log log 0f x g x a af xg x <⇔>>;⑷若1a >,则()()()()log log 0f x g x aaf xg x <⇔<<.有时需要将常数化为指数式或对数式,其化法如下: ⑴ac ca log =(,0,0>>c a 且1≠c );(化为指数式)⑵log ac a c =(,0>c 且1≠c ).(化为对数式) 例如,23log 32=将常数2化为3为底的指数式,233log 2=将常数2化为3为底的对数式.解指数不等式不需检验,但解对数不等式必须保证解使得对数式有意义,这点常被忽略. 若一个指数不等式的指数部分是对数式,常常采用取对数法求解. 例 不等式()x x x>lg的解集是 .(第十一届高二培训题第40题)解 两边取常用对数,得()x xlg lg2>,即0lg ,0lg 4lg ,0lg lg 4122<>->-x x x x x 或10,4lg <<∴>x x 或410>x .故所求解集是()()+∞,101,04.应当指出,两边取对数后,不等号的方向变不变,关键看取的是什么底数.如果底数大于1,则不等号方向不变,如果底数大于0且小于1,则不等号方向改变.关于绝对值不等式,主要是根据绝对值的几何意义求解.下列结论应当理解并熟记(a 为常数).⑴()0≤<a a x 的解集是φ; ⑵()0><a a x 的解集是()a a ,-; ⑶()0<>a a x 的解集是R ;⑷()0x a a >>的解集是()()+∞-∞-,,a a . 下列题目供练习:⑴已知常数⎪⎭⎫⎝⎛∈4,0πθ,则不等式()()8103cot tan 2--->x x x θθ的解集是 .(第八届高二第一试第16题)⑵若函数()⎪⎭⎫⎝⎛⋅⎪⎭⎫ ⎝⎛=4222log log x x x f 的定义域是不等式211222log 7log 30x x ⎛⎫++≤ ⎪⎝⎭的解集,则()x f 的最小值= ;最大值= .(第十届高二第一试第23题)⑶不等式22222log 2log x x x x x x ++>的解集是 .(第九届高二培训题第23题)⑷不等式1323>--x 的解是( )(A )6>x 或232<≤x (B )6>x 或2<x (C )6>x (D )2<x答案 ⑴(]⎪⎭⎫⎢⎣⎡-∞-1374,52, ⑵43 ;2 ⑶⎪⎭⎫⎝⎛2,21 ⑷A题8 不等式t x x +≥-21 的解集是∅ ,实数t 的取值范围(用区间形式)是 .(第一届高二第一试第18题)解法1 由t x x +=-21两边平方并整理得012222=-++t tx x ,此方程无实根,故()084184222<+-=--=∆t t t ,22>t .又0>t ,2>∴t .故填()+∞,2.解法2 作出函数21x y -=的图象(即图中的半圆)及函数t x y +=的图象(即图中斜率为1的直线系).由题意,直线应在半圆的上方,由图象可知直线t x y +=在y 轴上的截距2>t .故填()+∞,2.解法3 由012≥-x ,得11≤≤-x .故设θc o s =x ,[]πθ,0∈,则已知不等式就是t +≥θθcos sin ,即θθcos sin -≤t .⎪⎭⎫ ⎝⎛-=-4sin 2cos sin πθθθ ,又⎥⎦⎤⎢⎣⎡-∈⎪⎭⎫ ⎝⎛-43,44πππθ,()sin cos [1θθ∴-∈-.由题意得2>t . 故填()+∞,2.评析 这是一道蕴含着丰富数学思想方法的好题.解法1﹑2﹑3分别运用方程思想﹑数形结合思想﹑化归转换思想,从不同的角度解决了问题,体现了这道题的丰富内涵.解法2揭示了本题的几何背景.解法3的依据是:不等式t x x +≥-21 的解集是∅等价于不等式x x t -->21恒成立.有人认为不等式t x x +≥-21 的解集是∅等价于不等式x x t -->21有解,这种观点是错误的.事实上,21=t 时,不等式x x t -->21就有解(比如53=x 就是其一个解),而21=t 时,不等式t x x +≥-21即2112+≥-x x 的解集却不是∅ (比如0就是它的一个解).拓展 通过上面的分析,并作进一步的研究,我们便有下面的 结论 已知t 为参数, ()f x 的值域是[],a b . (1) 若()t f x ≤恒成立,则t a ≤. (2) 若()t f x ≥恒成立,则t b ≥.(3) 若()t f x ≤的解集是∅,则t b >. (4) 若()t f x ≥的解集是∅,则t a <. (5) 若()t f x ≤有解,则t b ≤. (6) 若()t f x ≥有解,则t a ≥.若将()f x 的值域改为[),a b 、(],a b 、(),a b 等,也会有相应的结论,限于篇幅,不再一一列出.根据这一结论,请回答下列问题:1.t +的解集是∅,则实数t 的取值范围是 . 2.t +的解集是∅,则实数t 的取值范围是 . 3.t +有解,则实数t 的取值范围是 . 4.t +有解,则实数t 的取值范围是 . 5.t >+恒成立,则实数t 的取值范围是 . 6.t +恒成立,则实数t 的取值范围是 . 答案 1. ()2,+∞2.(,-∞3.)⎡+∞⎣4.(],2-∞5.(,-∞6.()2,+∞题9不等式3422≥+---x x x 的解集是( )A 、⎥⎦⎤⎢⎣⎡++255,253B 、⎥⎦⎤⎢⎣⎡+-255,253 C 、⎪⎪⎭⎫⎢⎣⎡+∞+⎥⎦⎤ ⎝⎛+∞-,255253,D 、⎥⎦⎤⎢⎣⎡+-253,255 (第十三届高二第二试第8题)解法1 当0342≥+-x x ,即1≤x 或3≥x 时,原不等式就是,03422≥-+--x x x 即0552≤+-x x ,解得2553.255255+≤≤∴+≤≤-x x . 当2430,13x x x -+<即<<时,原不等式就是,03422≥+-+-x x x 即,0132≥+-x x 解得253-≤x或3x x ≥≤<.综上,所求解集为355,33,,22⎡⎫⎡+⎪⎢⎢⎪⎣⎭⎣⎦即⎥⎦⎤⎢⎣⎡++255,253.故选A. 解法2 如图,作函数2-=x y 和342+-=x x y 的图象.要求的解集就是21y y ≥,即1y 在2y 上方时x 的区间,即图中线段AB 上的点所对应的横坐标所组成的区间[]B A x x ,.又(),1234222--=+-=x x x y 当32<<x 时,().2122--=x y 由()2212-=--x x 可解得253+=A x .当3>x 时,(),1222--=x y 由()2122-=--x x 可解得255+=Bx ,∴所求不等式的解集为⎥⎦⎤⎢⎣⎡++255,253,故选A.解法 3 同解法2画出图形后,可知解集为一个闭区间[]b a ,,且()3,2∈a ,对照 选择支.可知选A.解法4 当5.1=x 时,03422<+---x x x 时,故1.5不是原不等式的解,从而排除含1.5的B 、C 、D ,故选A.评析 解含绝对值的不等式,一般是先去掉绝对值符号,然后再求解.解法1正是运用分类讨论思想这样解决问题的,也是一种通法.我们知道,方程()()x g x f =的解就是函数()x f y =与()x g y =的图象交点的横坐标;若图象无交点,则方程无解.而不等式()()x g x f >的解集则是函数()x f y =的图象在()x g y =的图象上方部分的点的横坐标的集合;若()x f y =的图象都不在()x g y =的图象的上方,则不等式无解.解法2正是运用这种数形结合思想解决问题的.许多超越不等式的近似解或解的所属范围也都运用此法解决.选择题的正确答案就在选择支中,只是要求我们把它选出来而已.因此,不是非要求出答案再对照选择支选择答案不可的.基于此,解法3运用估算的方法选出了正确答案(注意:估算能力是高考明确要求要考查的能力之一).而解法4则运用特殊值排除了干扰支,进而选出了正确答案.类似这种不等式(方程)的解集是什么的选择题几乎都可用这种方法解,而且1 A B十分方便.值得注意的是,特殊值只能否定错误结论,根据正确选择支的唯一性才能肯定正确答案.另外,如何选取特殊值也是很有讲究的,读者可在解题实践中体会并加以总结.题10 不等式199920003224>-+-x x 的解集是 . (第十一届高二培训题第41题)解 设y=x x -+-3224 ,由⎩⎨⎧≥-≥-03024x x ,得定义域为[21,3]. 1999200010,106144410)3)(24(4)3(42422>≥∴≥-+-+=--+-+-=y x x x x x x y 即原不等式在定义域内恒成立,故所求解集为[21,3].评析 解无理不等式,通常是通过乘方去掉根号,化为有理不等式后再解.但从此题中不等式右边的数可以想象该有多么复杂,若将题目改为“276.571623.93224+>-+-πx x 的解集是 ”,还会有谁想通过平方化为有理不等式去解呢?显然,常规方法已难以解决问题,怎么办呢?考虑到不等式中的x ∈[21,3],从而左边1999200010>≥,故解集就是定义域,这就启示我们,当常规思维受阻或难以奏效时,就应积极开展非常规思维,另辟蹊径,寻求解决问题的新方法.拓展 根据上面的分析,并加以拓广,我们可得结论 设a,b,c 是常数,若[,],()[,],()[,]x a b f x m n g x p q ∈∈∈,则当m c >时,不等式()f x c >的解集是[,],()a b f x c ≤的解集是φ;当n c <时, 不等式()f x c ≥的解集是φ,()f x c <的解集是[,]a b ;当n p >时, 不等式()()f x g x ≥的解集是φ, ()()f x g x <的解集是[,]a b ;当m q >时,不等式()()f x g x >的解集是[,]a b ,()()f x g x ≤的解集是φ.根据这一结论,不难求得下列不等式的解集:1、2、 2sinx+3cosx>4;3、 322163-->-x x ;4、 x x x -<-+-433)1(log 4;5、 sinx-cosx<32+x .答案:1、φ2、[2,+∞)3、φ4、R。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历届“希望杯”全国数学邀请赛高二数学精选题详析(四)题31 Let point M move along the ellipse 18922=+y x ,and point F be its right focus, then for fixed point P(6,2) ,then maximum of 3|MF|-|MP| is ,where the coordinate of Mis .(ellipse 椭圆;focus 焦点;coordinate 坐标)(第十四届高二第二试第18题)译文:点M 是椭圆18922=+y x 上一点,点F 是椭圆的右焦点,点P (6,2),那么3|MF|-|MP|的最大值是 ,此时点M 的坐标是 .解 在椭圆18922=+y x 中,8,922==b a ,则1,12==c c ,所以椭圆的右焦点F 的坐标 为(1,0),离心率31==a c e ,右准线9:2==ca x l ,显然点P (6,2)在椭圆18922=+y x 的外部.过点P 、M 分别作PG ⊥l 于G ,MD ⊥l 于D ,过点P 作PQ ⊥MD 于Q ,由椭圆的定义知,3|MF|-|MP|=|MD|-|MP|≤|MD|-|MQ|=|QD|=|PG|=9-6=3,当且仅当点P 位于线段MD 上,即点P 与Q 点重合时取等号.由点P 位于线段MD 上,MD ⊥l 及点P (6,2),知点M 的纵坐标为2,设M 的横坐标为0x ,即M (0x ,2),则有184920=+x ,解得2230±=x ,因此3|MF|-|MP|的最大值是3,此时点M 的坐标是(223±,2). 评析 若设点M 的坐标为(x,y),则可将3|MF|-|MP|表示成x 、y 的二元无理函数,然后再求其最大值,可想而知,这是一件相当麻烦的事,运用椭圆的定义,将3|MF|-|MP|转化为||MD|-|MP|,就把无理运算转化为有理运算,从而大大简化了解题过程.拓展 将此题引伸拓广,可得定理 M 是椭圆E :)0(12222>>=+b a by a x 上的动点,F 是椭圆E 的一个焦点,c 为椭圆E 的半焦距,P (m,n )为定点.1、 若点P 在椭圆E 内,则当F 是右焦点时,e 1|MF|+|MP|的最小值是m ca -2;当F 是左焦点时,e 1|MF|+|MP|的最小值是m ca +2. 2、 若点P 在椭圆E 外,则F 是右焦点,且0≤m≤c a 2,|n|≤b 时,e 1|MF|-|MP|的最大值是m c a -2. F 是右焦点,且m>c a 2,|n|≤b 时,|MP|-e 1|MF|的最小值是c a m 2-.F 是左焦点,且c a 2-≤m≤0,|n|≤b 时,e 1|MF|-|MP|的最大值是m c a +2. F 是左焦点,且m≤c a 2-,|n|≤b 时,|MP|-e 1|MF|的最小值是ca m 2--.简证 1、如图1,作MN ⊥右准线l 于N ,PQ ⊥l 于Q ,由椭圆定义,|MN|=e1|MF|. ∴e 1|MF|+|MP|=|MN|+|MP|≥|PQ|=m c a -2,当且仅当P 、M 、Q 三点共线,且M 在P 、Q 之间时取等号.如图2,同理可证e 1|MF|+|MP||=|MN|+|MP|≥|PQ|=m ca +2,当且仅当P 、M 、Q 三点共线,且M 在P 、Q 之间时取等号.2、 如图3,e 1|MF|-|MP|=|MN|-|MP|≤|MN|-|MR|=|RN|=|PQ|=m ca -2,当且仅当P 位于线段MN 上,即P 与R 重合时取等号.m图1图2如图4,|MP|-e 1|MF|=|MP|-|MN|≥|MQ|-|MN|=|NQ|=ca m 2-,当且仅当P 位于直线MN上,即点P 与Q 重合时取等号.如图5,e 1|MF|-|MP|=|MN|-|MP|≤|MN|-|MR|=|RN|=|PQ|=m ca +2,当且仅当P 位于线段MN 上,即P 与R 重合时取等号.如图6,|MP|-e 1|MF|=|MP|-|MN|≥|MQ|-|MN|=|NQ|=ca m 2--,当且仅当P 位于直线MN上,即点P 与Q 重合时取等号.题32 已知双曲线k y x =-22关于直线x-y=1对称的曲线与直线x+2y=1相切,则k 的值等于( )A 、32 B 、34 C 、45 D 54 (第十五届高二培训题第19题)解 设点P (x 0,y 0)是双曲线k y x =-22上任意一点,点P 关于直线x-y=1的对称点为图3 图4图5图6P’(x,y ),则12200=+-+y y x x ①,又10-=--x x y y ②,解①、②联立方程组得 0011x y y x =+⎧⎨=-⎩③.∵P 点在双曲线k y x =-22上,∴k y x =-2020 ④.③代入④,得k x y =--+22)1()1( ⑤,此即对称曲线的方程,由x+2y=1,得x=1-2y`,代入⑤并整理,得01232=-+-k y y .由题意,△=4-12(k-1)=0,解得k=34,故选B. 评析 解决此题的关键是求出对称曲线的方程.由于对称曲线与直线相切,故由△=0便可求得k 的值.拓展 关于直线的对称,我们应熟知下面的结论 1、点(x 0,y 0)关于x 轴的对称点是(x 0,-y 0). 2、点(x 0,y 0)关于y 轴的对称点是(-x 0, y 0). 3、点(x 0,y 0)关于y=x 的对称点是(y 0,x 0). 4、点(x 0,y 0)关于y=-x 的对称点是(-y 0,-x 0).5、点(x 0,y 0)关于y=x+m 的对称点是(y 0-m,x 0+m ).6、点(x 0,y 0)关于y=-x+n 的对称点是(n-y 0,n-x 0).7、点(x 0,y 0)关于直线Ax+By+C=0的对称点是(x,y ),x,y 是方程组⎪⎩⎪⎨⎧-=-=++⋅++⋅)()(022********x x B y y A c y y B x x A 的解. 根据以上结论,不难得到一曲线关于某直线对称的曲线的方程,比如曲线f(x,y)=0关于直线y=x+m 对称的曲线的方程是f(y-m,x+m)=0.题33 21,F F 是双曲线3322=-y x 的左、右焦点,B A ,两点在右支上,且与2F 在同一条直线上,则11F A F B +的最小值是____________-.(第四届高二第二试第15题)解 双曲线3322=-y x ,即1322=-y x ,如图,B A ,在双曲线右支上,3221=-AF AF ,3221=-BF BF ,故当22BF AF +取得最小值时,11BF AF +也取最小值.设l 是双曲线对应于2F 的准线,l BD l AC ⊥⊥,,垂足为D C ,,则由双曲线定义可知BD e BF AC e AF ==22,,而MN BD AC 2=+,其中MN 是梯形ACDB 的中位线,当21F F AB ⊥时,MN取最小值21232=-,这时,22BF AF +取得最小值322=MN e ,从而11BF AF +取最小值33143234=+. 评析 解决此题的关键是灵活运用双曲线的第一、第二定义,发现22BF AF +,即)(BD AC e +,亦即MN e 2最小时,B F A F 11+也最小,并能知道21F F AB ⊥时MN最小(这点请读者自己证明).本题虽然也有其他解法,但都不如此法简单,双曲线定义及平几知识的运用在简化本题解题过程中起了决定性的作用.拓展 将本题中的双曲线一般化,便得定理 1F 、2F 是双曲线12222=-b y a x 的左、右焦点,B A ,两点在右支上,且与2F 在同一条直线上,则B F A F 11+的最小值是ab a 224+.仿照本题的解法易证该定理(证明留给读者). 用此定理可知本题中的最小值为3314312342=⨯+⋅. 题34 方程()()|3|2222+-=-+-y x y x 表示的曲线是( )A 、直线B 、椭圆C 、双曲线D 、抛物线(第十二届高二培训题第23题)解法1 由()()|3|2222+-=-+-y x y x 的两边平方并整理得012102=-+-y x xy .令v u y v u x -=+=,,则()()()()012102=--++--+v u v u v u v u ,整理得91812288222-=---+-v v u u ,即()()9322222-=+--v u ,故已知方程表示双曲线,选C.解法2 已知方程就是()()2|3|22222+-⋅=-+-y x y x ,由双曲线的第二定义,可知动点P ()y x ,到定点(2,2)的距离与到定直线03=+-y x 的距离比为2,因为12>,所以选C.评析 根据选择支,可知解决本题的关键是将已知方程化为某二次曲线的标准方程或直线方程.显然,平方可去掉根号与绝对值符号,但却出现了乘积项xy .如何消去乘积项便成了问题的关键.解法1表明对称换元是消去乘积项的有效方法.解法2从已知方程的结构特征联想到两点距离公式与点线距离公式,发现方程表示的曲线是到定点(2,2)的距离与到定直线03=+-y x 的距离之比为2的动点()y x ,的轨迹,根据双曲线定义选C.显示了发现与联想在解题中的作用. 拓展 将此题一般化,我们有下面的定理 若()()||22C By Ax b y a x ++=-+-(b a C B A 、、、、为常数,且BA 、不全为零),则(1)当1022<+<B A 时,方程表示()b a ,为一个焦点,直线0=++C By Ax 为相应准线的椭圆.(2)当122>+B A 时,方程表示()b a ,为一个焦点,直线0=++C By Ax 为相应准线的双曲线.(3)当122=+B A 且0=++c Bb Aa 时,方程表示过点()b a ,且与直线0=++C By Ax 垂直的直线.(4)当122=+B A 且0≠++c Bb Aa 时,方程表示()b a ,为焦点,直线0=++C By Ax 为准线的抛物线.读者可仿照解法2,运用二次曲线的第二定义自己证明该定理. 题 35 已知1≥x ,则动点A ⎪⎭⎫⎝⎛-+x x x x 1,1与点B(1,0)的距离的最小值是_________-.(第七届高二第一试第23题)解法1 由已知得2222111101AB x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+-+--=+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦214x x ⎡⎤⎛⎫++-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦212x x ⎛⎫=+- ⎪⎝⎭2111723222x x x x ⎡⎤⎛⎫⎛⎫+-=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦将此式看作以xx 1+为自变量的二次函数,111,22x x x x x≥∴+≥=,这表明该二次函数的定义域是[)+∞,2. 该函数在[)2,+∞上是增函数,∴当21=+xx 时,1,1272122m i n 22mi n=∴=-⎪⎭⎫ ⎝⎛-=AB AB .解法 2 令24,tan πθπθ<≤=x ,则112tan 2csc 22tan sin 2x x θθθθ+=+==≥ 112,x x x ⎛⎫≥⇒+≥ ⎪⎝⎭112tan 2cot 2.tan tan 2x x θθθθ--=-==-AB ∴=== ∴当12csc =θ,即4πθ=时,12741182min=-⎪⎭⎫⎝⎛-=AB .解法 3 设11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 1≥),两式平方并相减,得),0,2(422≥≥=-y x y x 即动点A 的轨迹是双曲线422=-y x 的右半支在x 轴上方的部分(含点(2,0)),由图知|AB|min =1.评析 所求距离|AB|显然是x 的函数,然而它是一个复杂的分式函数与无理函数的复合函数,在定义域[)+∞,1上的最小值并不好求,解法1根据|AB|≥0,通过平方,先求2min ||AB ,再求|AB|min =2min ||AB ,并将xx 1+看作一个整体,将原问题化为求二次函数在[)+∞,2上的最值问题;解法2通过三角换元,把求|AB|min 的问题转化为求关于θ2csc 的二次函数在[)+∞,2的最小值问题,整体思想、转化思想使得问题化繁为简,化生为熟;解法3则求出点A 的轨迹,从图形上直观地看出答案,简捷得让人拍案叫绝,这应当归功于数形结合思想的确当运用.许多最值问题,一旦转化为图形,往往答案就在眼前.题36 抛物线2x y =上到直线02=++y x 的距离最小的点的坐标是________.(第九届高二培训题第27题)解法1 设抛物线2x y =上的点的坐标是()2,xx ,则它到直线02=++y x 的距离是271()24x d ++==,当12x =-时d 最小,此时14y =.故所求点的坐标是()11,24-. 解法 2 如图,将直线02=++y x 平移至与抛物线2x y =相切,则此时的切点即为所求点.设切线方程为k x y +-=,代入2x y =,得02=-+k x x .由o =∆,即041=+k ,得14k =-.解214y x y x ⎧=⎪⎨=--⎪⎩得1214x y ⎧=-⎪⎨⎪=⎩.故所求点的坐标是()11,24-.解法3 设所求点的坐标为P ()00,y x ,则过点P 的抛物线的切线应与直线02=++y x 平行.而其切线方程为02y y x x +=,故120-=x ,012x =-.20014y x ∴==. 故所求点的坐标为()11,24-. 评析 解法1由点线距离公式将抛物线上的任意一点()2,x x 到直线02=++y x 的距离d 表示成x 的二次函数,再通过配方求最值,体现了函数思想在解析几何中的运用.解法2运用数形结合思想发现与直线02=++y x 平行的抛物线2x y =的切线的切点就是所求点,设切线方程为k x y +-=后运用方程思想求出k ,进而求出切点坐标.解法3则设切点为P ()00,y x ,直接写出过二次曲线()0,=y x f 上一点P ()0,0y x 的切线方程,由切线与已知直线平行.两斜率相等,求出切点坐标.解法2、3不仅适用于求抛物线上到直线的距离最小的点的坐标,同样也适用于求椭圆、双曲线上到直线的距离最小的点的坐标,故为通法.解法3涉及到过抛物线上一点的抛物线的切线方程,下面用导数证明一般情形的结论:定理 过抛物线c bx ax y ++=2上一点P ()00,y x 的切线方程是00022y y x x ax x b c ++=++. 证明 设过点P ()00,y x 的抛物线c bx ax y ++=2的切线的方程为()00x x k y y -=-①. b ax y +=2/,b ax y k x x +===0/20,代入①得()()0002x x b ax y y -+=-,()()000022222ax b x x y y y +-+=+,200000022y y x x ax x b y ax bx ++=++--②. 点()00,y x 在抛物线c bx ax y ++=2上,c bx ax y ++=∴0200,c bx ax y =--0200,代入②,得切线方程为000y y x x ax x b c ++=++. 拓展 观察切线方程的特征,就是同时将曲线方程中的22,y x 分别换成x x 0,y y 0,把y x ,分别换成00,22x x y y++便得切线方程.事实上,对于一般二次曲线,有下面的定理. 定理 过二次曲线022=+++++F Ey Dx Cy Bxy Ax 上一点Ρ()00,y x 的该曲线的切线方程是0000000222x y xy x x y yAx x BCy y D E F ++++++++=. 运用该定理必须注意点Ρ()00,y x 在曲线上.例 求过点()3,2的曲线2223448300x xy y x y ++---=的切线的方程.解 经验证,点()3,2在曲线2223448300x xy y x y ++---=上,根据上面的定理,所求切线方程为23322234348300222y x yx x y +++⋅+⋅+⋅-⋅-⋅-=,即0922213=-+y x .题37 在抛物线x y 42=上恒有两点关于直线3+=kx y 对称,则k 的取值范围是 .(第十五届高二培训题第71题)解法1 设两点B ()11,y x 、C ()22,y x 关于直线3+=kx y 对称,直线BC 的方程为m ky x +-=,将其代入抛物线方程x y 42=,得0442=-+m ky y .若设BC 的中点为M ()00,y x ,则k y y y 22210-=+=.因为M 在直线3+=kx y 上,所以 ()3222++=-m k k k .kk k k k k m 32223232++-=-+-=,因为BC 与抛物线相交于两个不同点,所以016162>+=∆m k .再将m 的式子代入,经化简得0323<++kk k ,即 ()()0312<+-+kk k k ,因为032>+-k k ,所以01<<-k .解法2 由解法1,得k y y 421-=+,k k k m y y 12884321++=-=.因为212212y y y y >⎪⎭⎫ ⎝⎛+,所以k k k k 1288432++>,解得01<<-k . 解法3 设B ()11,y x 、C ()22,y x 是抛物线x y 42=上关于直线3+=kx y 对称的两点,且BC 中点为M ()00,y x .因为2221214,4x y x y ==,所以()1221224x x y y -=-,即()4211212=+⋅--y y x x y y ,所以k y y k 2,42100-==⋅-.又300+=kx y ,所以k k x 320+-=,因为M ()00,y x 在抛物线x y 42=的内部,所以0204x y <,即()⎪⎭⎫⎝⎛+-<-k k k 32422,解得01<<-k .解法4 设B 、C 是抛物线x y 42=上关于直线3+=kx y 对称的两点, M 是BC 中点.设M()00,y x ,B()y x ,,C()y y x x --002,2,则xy 42=①,()()x x y y -=-020242②.①-②,得0220200=-+-x y y y x ③.因为点M ()00,x y 在直线3+=kx y 上,003y kx ∴=+④.④代入③得直线BC的方程为()()023320200=-+++-x kx y kx x ,故直线BC 的方向向量为⎪⎪⎭⎫ ⎝⎛+=32,000kx x x ,同理得直线3+=kx y 的方向向量()00,kx x v =.因为直线BC 与直线3+=kx y 垂直,所以0=⋅,即()0,32,00000=⋅⎪⎪⎭⎫⎝⎛+kx x kx x x ,化简得 ()03320020=+++kx k kx x ,得0320=++k kx 或020=x (舍去).显然0≠k ,解得k kx y kk x 23,32000-=+=+-=.因为M ()00,y x 在抛物线x y 42=的内部,所以0204x y <,即()⎪⎭⎫⎝⎛+-<-k k k 32422,3223(1)(3)0,0,k k k k k k k +++-+<<又032>+-k k ,所以01<<-k .评析 定(动)圆锥曲线上存在关于动(定)直线对称的两点,求直线(圆锥曲线)方程中参数的取值范围.这是解析几何中一类常见的问题.解决这类问题的关键是构造含参数的不等式,通过解不等式求出参数的范围.解法1运用二次方程根的判别式,解法2运用均值不等式,解法3、4运用抛物线弦的中点在抛物线内部,分别成功地构造了关于k 的不等式,这其中,韦达定理、曲线与方程的关系、两垂直直线的方向向量的数量积为零等为构造关于k 的不等式起了积极作用.练习 若抛物线12-=ax y 上总存在关于直线0=+y x 对称的两个点,则实数a 的取值范围是( )A 、⎪⎭⎫ ⎝⎛+∞,41B 、⎪⎭⎫ ⎝⎛+∞,43C 、⎪⎭⎫ ⎝⎛41,0D 、⎪⎭⎫⎝⎛-43,41 答案:B题38 抛物线x y 42=的一条弦的倾斜角是α,弦长是α2csc 4,那么这种弦都经过一定点,该定点是 .(第十三届高二培训题第73题)解法1 设弦过点)0,(a M ,则弦所在的直线是)(a x k y -=,αtan =k ,︒≠90α,代入抛物线方程,消去x 得)4(2a y k y -=,即042=--ak y y k . (弦长)2=)cot 1(2α+()222416161cot 16tan a a k αα⎡⎤⎛⎫⎛⎫+=++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()22csc 16cot 16a αα=+ =α4csc 16,即2216cot 1616csc a αα+=21616cot α=+,由此得1=a .当︒=90α时,弦所在直线方程为)0(>=a a x ,弦长为4.由⎩⎨⎧==x y ax 42,得⎩⎨⎧==a y a x 2或⎩⎨⎧-==ay ax 2.又由弦长44=a ,得1=a . 综上,这些弦都经过点(1,0).解法2 由题意,对任意α都得同一结论,故运用特殊化思想解. 令2πα=,则弦长为42csc42=π,此时弦所在直线方程为)0(>=a a x ,代入x y 42=,得a y 42=,a y 2±=.由题设,44=a ,即1=a .所以2πα=时,弦所在直线方程为1=x .再令4πα=,则弦长为84csc42=π,设此时弦所在直线方程为1-=-x b y ,得b y x -+=1,代入x y 42=并整理,得04442=-+-b y y ,弦长⋅+=11212214)(y y y y -+8)44(4162=--⋅=b ,解得0=b ,所以4πα=时,弦所在直线方程为1-=x y .解⎩⎨⎧-==11x y x ,得定点为(1,0).评析 题目本身反映了对于一条确定的抛物线,若α确定,则以α为其倾斜角的弦的长也确定,α变化,则以α为其倾斜角的弦的长也变化.但不论α怎样变化,这样的弦都过一个定点,这反映了客观世界运动变化中的相对不变因素的存在.由题设可知0≠α,故解法1设弦过点)0,(a ,并分直线的斜率存在与不存在两类情形,根据弦长是α2csc 4,直接求出1=a .从而说明不论α为何值,弦总过定点(1,0).这是合情合理的常规思维.然而,根据题意,这些弦过定点肯定是正确的,这就意味着满足题设的任意两弦的交点就是所求定点.这就具备了运用特殊化思想解题的前提.解法2分别令2πα=与4πα=,得到两个相应的弦所在直线的方程,解其联立方程组得其交点为(1,0),即为所求.这种解法的逻辑依据是“若对一般正确,则对一般中的特殊也正确.”至于解法2中为什么令2πα=与4πα=,而不令713πα=与325πα=,主要是为了计算的方便,这也是用此法解题时应当十分注意的.应当指出,凡解某种一般情形下某确定结论是什么的问题都可用这种方法解.拓展 原题中弦长α2csc 4中的4恰好为抛物线方程中的p 2,而答案中的定点(1,0)又恰好为抛物线x y 42=的焦点.这是偶然的巧合,还是普遍规律呢?经研究,这 并非巧合,而是一个定理.定理 若抛物线)0(22>=p px y 的弦PQ 的倾斜角为θ,则θ2c s c 2p PQ =的充分必要条件是PQ 经过抛物线的焦点)0,2(pF . 证明 先证必要性:由已知,可设PQ 的方程为)90,tan ()(︒≠=-=θθk a x k y ,代入px y 22=,得-22x k)(2222=++a k x p a k ①.由已知及弦长公式得[]21221224)()1(x x x x k PQ -+⋅+=②.将①的两根之和与积代入②,得()2242241c s c 2k p p a p k kθ+=+,从而得2442csc tan sec p θθθ=(222tan p ap θ+),解得2p a =,即知PQ 过焦点(,0)2p F .容易验证当90θ︒=时,结论也成立.再证充分性:由已知可设PQ 的方程为()(tan ,90)2py k x k θθ︒=-=≠,代入2y =2px ,得 22244(2)k x p k x -+22k p +0=③,将③的两根之和与积代入②得22csc PQ p θ=.容易验证当90θ︒=时,结论也成立.应用该定理,可解决下面的问题:1.斜率为1的直线经过抛物线24y x =的焦点,与抛物线相交于A 、B 两点,求线段AB 的长.2.PQ 是经过抛物线24(0)y ax a =>焦点F 的弦,若PQ b =,试求△POQ 的面积(O 是坐标原点).(91年全国高中联赛题)3.PQ 是经过抛物线24y x =焦点F 的弦,O 是抛物线的顶点,若△POQ 的面积为4,求PQ 的倾斜角α.(98年上海高考题)答案:1. 82. 3.30︒或150︒题39 长为)1(<l l 的线段AB 的两端在抛物线2x y =上滑动,则线段AB 的中点M 到x 轴的最短距离等于 .(第13届高二第二试第20题)解 设AB 的中点为M (y x ,),点A 的坐标为(βα++y x ,),由对称性知B 的坐标为(),x y αβ--,于是有以下关系成立:22222()()()2y x y x l βαβααβ⎧+=+⎪⎪-=-⎨⎪⎪+=⎩ ①+②,得22α+=x y ④,-②,得x αβ2= ⑤.将④、⑤代入③,得4)41)((222l x x y =+-,即2222221[(14)1]4(14)4(14)l l y x x x x =+=++-++,因为2(0,0),a u x a x x =+>>当x a =时, u 有最小值,当x a >时, u 是单调增加的.又214(1),x l l y +><关于2x 是单调增加的,所以,当0x =时, y 取得最小值24l .评析 点M 到x 轴的最短距离显然就是点M 的纵坐标的最小值.巧妙利用对称性,设出点M 、A 、B 的坐标后,利用曲线与方程的关系及平几知识,可以得到三个关系式,这又有何用处呢?我们要求的是y 的最小值,现在却出现了四个 变量βα、、、y x ,能否消去βα、从而得到)(x f y =,再求其最小值呢?果然,可以消去βα、,得到①, ②, ③.222)41(4x x l y ++= ⑥(这里用到了“设而不求”及函数的思想方法).若变形为2422164164xx x l y +++=,再令2x u =,得到 22416416l u u y u++=⇒+)0(04)164(1622≥=-+-+u y l u y u ⑦,则可由方程⑦有非负实数解求出y 的最小值,但方程⑦有非负实数解的充要条件很复杂.能否用别的什么方法呢?考虑到⑥式中的0412>+x ,故将⑥式变形为]1)41(41[41222-+++=x xl y ⑧,由于2241x l +与241x +的积是定值,故当2241xl +=241x +,即214x l +=时,有y 最小值..然而,因为1<l ,所以l x >+241,即214x +取不到l ,故由函数⑧为2x 的单调增函数,可知当时,0=x 42minl y =. 注:形如)0()(2>+=a xa x x f 的函数,若0,x >则当x a =时, ()f x 取得最小值2a ;若(0)x ab b ≥+>,则()f x 单调递增, min ()()f x f a b =+;若0(0)x a b b a <≤-<<,则()f x单调递减,)()(min b a f x f -=.(请读者自己证明该结论)拓展 将此题推广,可得定理1 长为l 的线段AB 的两端在抛物线)0(22>=p py x 上滑动,线段AB 的中点M 到x 轴的距离为d ,则(1) 当;8202minpl d p l =≤<时, (2) pl d p l d p l 8,222max min=-=>时,当. 证明 由题意,直线AB 的斜率k 存在.设),,(),2,(),2,(00222211y x M px x B p x x A 则22121222ABx x p pk x x -=- 0122x x x p p +==,所以直线AB 的方程为)(000x x p x y y -=-,由20002()x pyx y y x x p ⎧=⎪⎨-=-⎪⎩,消去y ,得22x -2000220x x x py +-=,因为点M 在抛物线的内部,即202x y p>,所以200420py x ∆=->(),又212012002,22x x x x x x py +==-,所以12|l x x =-=.于是,2)(82020220p x x p pl y d ++==对x 求导数,得2'2220001(1)()2282x pl d p x x x p -=-++2202220[1]4()x p l p p x =-+ 22002220[2()]4()x p x pl p p x =+++])(2[202pl x p -+. (1)若02l p <≤(抛物线的通径长),令0'0x d =,得00x =,易知00x =,是d的唯一极小值点,所以当 00x =(即AB y ⊥轴)时,2min8l d p=; (2)若2l p >,令0'0x d =,得00x =或0x =,易知当00x =时,2ma x 8l d p=;当0x =2min p l d -=. 令定理中的21p =,由定理的结论(1)可知本赛题的答案为24l .此定理尽管也可以用均值不等式加以证明,但配凑的技巧性很强.这里,运用高中数学的新增内容导数进行证明,显得较为简洁.用导数研究函数的最值问题,顺理成章,不必考虑特殊技巧,易被大家接受,应当加以重视并大力提倡.此定理还可进一步拓广到椭圆、双曲线的情形,便得如下:定理2 已知A 、B 两点在椭圆)0(12222>>=+b a by a x 上滑动,|AB| =l ,线段AB 的中点M 到y 轴的距离为d ,则(1)22max 22)2(22b a l a a d a l a b --=≤≤时,当; (2)当bl b a d a b l 24222max 2-=<时,. 定理3 已知A 、B 两点同在双曲线)0,(12222>=-b a by a x 的右(或左)分支上滑动,|AB| =l ,线段AB 的中点M 到y 轴的距离为d ,则(1)22min 22)2(2b a l a a d a b l ++=≥时,当; (2)当bl b a d a b l 24222min 2+=<时, . 为证定理2、3,可以先证引理 在圆锥曲线过焦点的弦中,垂直于对称轴的弦最短. 证明 设圆锥曲线的极坐标方程为θρcos 1e ep-=,其中e 表示圆锥曲线的离心率,p 表示焦点F 到对应准线l 的距离,设AB 是圆锥曲线过焦点F 的弦,且A ),(),,(21θπρθρ+B ,因为12,1cos 1cos()1cos ep ep epe e e ρρθπθθ===--++,所以12||AB ρρ=+1cos ep e θ=-+θcos 1e ep +=θ22cos 12e ep-.当2πθ=,即当AB 与对称轴x 轴垂直时,ep AB 2||min =,故在圆锥曲线过焦点的弦中,垂直于对称轴的弦最短.下面运用引理证明定理2 .证明 (1)不妨设椭圆的右焦点为F (0,c ),A 、M 、B 三点到右准线ca x 2=的距离分别是,22121t t t t t t +=,则、、由椭圆的第二定义知:|AF|=1et ,|BF|=)(2a ce et =,|AF|+|BF|≥|AB|=l ,所以e l t 2≥.又过焦点的弦最小值为时,当ab l a b 222,2≥线段AB 可以过焦点F ,当AB 过焦点F 时,t 有最小值2l e ,因此222max 2)2(2)2(2ba l a a c l a a e l c a d --=-=-=. (2)时,当ab l 22<线段AB 不可能过焦点F ,但点M 总可以在过F 垂直于x 轴的椭圆的弦的右侧,如右图,在△AFM 中,设∠AMF=α,由余弦定理知222||||||2||||cos AF FM AM FM AM α=+-22211||cos 42FM l l α=+-,在△BFM 中,222211||||cos 42BF FM l l α=++,所以22221||||2||2AF BF FM l +=+,所以||FM =22||a b FM t c c c+≥-=,所以cb l BF AF t 2222||||221≥-++)( ①,无论线段AB 在什么位置,不等式①都成立.又222||||2l BF AF -+)(2221222)(||||l t t e l BF AF -+=-+≥)(,4222l t e -=故c b l t e t 222241≥-+ ②.解此不等式,得bl b a c a t 24222--≥③,当线段AB 垂直 于x 轴且在焦点F 的右侧时,不等式①、②、③都取等号,此时b l b a c a t 24222mi n --=,bl b a b l b a c a c a d 24)24(222222max-=---=. 仿此亦可证明定理1、3,不再赘述.题40 动圆M 过定点A 且与定圆O 相切,那么动圆M 的中心的轨迹是 ( )A 、圆B 、圆,或椭圆C 、圆,或椭圆,或双曲线D 、圆,或椭圆,或双曲线,或直线(第三届高二第二试第10题)解 动圆M 、定点A 、定圆O ,这三者的位置关系有5种可能,如图⑴~⑸:在情形⑴:A 在圆O 上,这时动圆M 与定圆O 相切于A ,所以M 点的轨迹是过A O ,的一条直线. 在情形⑵:A 与O 重合,这时动圆M 在定圆O 的内部,与它内切,所以M 点的轨迹是以O 为圆心,以定圆O 的半径的一半为半径的圆.在情形⑶:A 在定圆O 的内部但不重合于O 点,动圆M 过A 且与定圆O 内切,这时动点M 与定点O 、A 的距离的和是R x x R MA MO =+-=+)((定值),其中的R 、x 分别表示定圆O 、动圆M 的半径.可知点M 的轨迹是以O 、A 为焦点,R 为长轴长的椭圆. 在情形⑷:A 在定圆O 的外部,动圆M 过A 且与定圆O 外切,这时R x x R MA MO =-+=-)((定值).可知M 的轨迹是以O 、A 为焦点,R 为实轴长的双曲线的一支.在情形⑸:A 在定圆O 的外部,动圆M 与定圆O 内切,这时R R x x MO MA =--=-)((定值).可知M 点的轨迹也是以A O ,为焦点.R 为实轴长的双曲线的一支(和情形4对应的另一支).综上,可知选D.评析 分类讨论是参加高考与竞赛必须掌握的数学思想.分类要注意标准的统一,不可重复,也不能遗漏.此题的关键是要搞清全部情形有5种,然后再分别求动圆中心的轨迹.运用二次曲线的定义大大简化了解题过程.应当指出,当点A 在圆O 上时,动圆M 的中心的轨迹是直线OA ,但应除去点O 、A . 另外,讨论完第一种情形后就可排除,,,C B A 而选D ,这样就更快捷了.O。

相关文档
最新文档