2013年全国各地高考文科数学试题分类汇编6:不等式
2013年全国各地高考文科数学试题分类汇编6:不等式

2013年全国各地高考文科数学试题分类汇编6:不等式一、选择题错误!未指定书签。
.(2013年高考四川卷(文))若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b -的值是( )A .48B .30C .24D .16【答案】C错误!未指定书签。
.(2013年高考福建卷(文))若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤+012y x y x ,则y x z +=2的最大值和最小值分别为( )A .4和3B .4和2C .3和2D .2和0【答案】B错误!未指定书签。
.(2013年高考课标Ⅱ卷(文))设x,y 满足约束条件错误!未找到引用源。
,则z=2x-3y 的最小值是( )A .错误!未找到引用源。
B .-6C .错误!未找到引用源。
D .-3 【答案】B错误!未指定书签。
.(2013年高考福建卷(文))若122=+y x,则y x +的取值范围是( )A .]2,0[B .]0,2[-C .),2[+∞-D .]2,(--∞【答案】D错误!未指定书签。
.(2013年高考江西卷(文))下列选项中,使不等式x<错误!未找到引用源。
<2x 成立的x 的取值范围是 ( )A .(错误!未找到引用源。
,-1)B .(-1,0)C .0,1)D .(1,+错误!未【答案】A错误!未指定书签。
.(2013年高考山东卷(文))设正实数z y x ,,满足04322=-+-z y xy x,则当zxy取得最大值时,2x y z +-的最大值为 ( )A .0B .98C .2D .94【答案】C错误!未指定书签。
.(2013年高考课标Ⅱ卷(文))若存在正数x 使2x(x-a)<1成立,则a 的取值范围是( )A .(-∞,+∞)B .(-2, +∞)C .(0, +∞)D .(-1,+∞)【答案】D错误!未指定书签。
2013届全国各地高考押题数学(文科)精选试题分类汇编6不等式

2013届全国各地高考押题数学(文科)精选试题分类汇编6:不等式一、选择题1 .(2013届辽宁省高考压轴卷数学文试题)已知正数x 、y 满足20350{x y x y -≤-+≥,则y xz -∙=4)21(的最小值为)(A 1 )(B 14 )(C 116)(D 132 【答案】D2 .(2013届辽宁省高考压轴卷数学文试题)设变量x,y 满足约束条件3,1,1,x y x y y +≤⎧⎪-≥-⎨⎪≥⎩则目标函数z=4x+2y 的最大值为 ( ) A .12 B .10 C .8 D .2 【答案】B【解析】本题主要考查目标函数最值的求法,属于容易题,做出可行域,如图由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时z 取得最大值10.3 .(2013届天津市高考压轴卷文科数学)三个数0.760.760.7log 6,,的大小顺序是 ( )A .0.76<log 0.76<60.7B .0.76<60.7<log 0.76 C .log 0.76<60.7<0.76D .60.70.7log 60.76<<【答案】D【解析】0.761>,600.71<<,0.7log 60<,所以60.70.7log 60.76<<,选D .4 .(2013届湖北省高考压轴卷 数学(文)试题)已知变量,x y 满足240,2,20,x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩则32x y x +++的取值范围是5.2,2A ⎡⎤⎢⎥⎣⎦ 55.,42B ⎡⎤⎢⎥⎣⎦ 45.,52C ⎡⎤⎢⎥⎣⎦ 5.,24D ⎡⎤⎢⎥⎣⎦【答案】B 【解析】:根据题意作出不等式组所表示的可行域如图阴影部分所示,即ABC ∆的边界及其内部,又因为31122x y y x x +++=+++,而12y x ++表示可行域内一点(),x y 和点()2,1P --连线的斜率,由图可知12PB PC y k k x +≤≤+,根据原不等式组解得()()2,0,0,2B C ,所以0112111322202422y y x x ++++≤≤⇒≤≤++++535422x y x ++⇒≤≤+.故选B.5 .(2013届安徽省高考压轴卷数学文试题)实数满足不等式组2303270210x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则x y -的最小值是( )A .-1B .-2C .1D .2【答案】B 【解析】本题考查简单的线性规划问题中的求最值问题.根据题目可得如下的可行域,其中 ,令Z x y =- ,将这条直线平移可以得到在A 点使得x y - 取得最小值,所以min ()112x y -=--=-,故选B6 .(2013届全国大纲版高考压轴卷数学文试题(一))设实数y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤-+≥+-0,004022y x y x y x ,目标函数y x z -=的取值范围为( )A .83- B .-2C .2D .4【答案】D7 .(2013届重庆省高考压轴卷数学文试题)设偶函数()f x 满足3()8(0)f x x x =-≥,则{|(2)0}x f x ->=( )A .{|24}x x x <->或B .{|04}x x x <>或C .{|06}x x x <>或D .{|22}x x x <->或【答案】解析:当0x <时,则0x ->,由偶函数满()f x 足3()8(0)f x x x =-≥可得,3()()8f x f x x =-=--,则338(0)()8(0)x x f x x x ⎧-≥=⎨--<⎩,33(2)8(2)(2)(2)8(2)x x f x x x ⎧--≥-=⎨---<⎩令(2)0f x ->,可解得4,0x x ><或.应选B .另解:由偶函数满()f x 足3()8(0)f x x x =-≥可得3()()8f x f x x ==-,则3(2)(2)28f x f x x -=-=--,要使(2)0f x ->,只需3280,22x x -->-> 解得4,0x x ><或.应选B .命题意图:本题主要考查偶函数性质、不等式的解法以及相应的运算能力.8 .(2013届浙江省高考压轴卷数学文试题)设变量x 、y 满足1,0,220,x y x y x y +≥⎧⎪-≥⎨⎪--≥⎩则目标函数z=2x+y 的最小值为 ( )A .6B .4C .2D .32【答案】C【解析】由题意可得,在点B 处取得最小值,所以z=2,故选C9 .(2013届全国大纲版高考压轴卷数学文试题(二))已知关于x 的不等式x ab x+≥的解集为[1,0]-,则a b +等于 ( )A .2-B .1-C .1D .3【答案】C10.(2013届天津市高考压轴卷文科数学)设变量x ,y 满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最小值为 ( )A .2B .3C .4D .9【答案】B【解析】做出可行域如图,设2z x y =+,即2y x z =-+,平移直线2y x z =-+,由图象可知当直线经过点C 时,直线2y x z =-+的截距最小,此时z最小.由2y x x y =⎧⎨+=⎩,解得11x y =⎧⎨=⎩,即(1,1)B ,代入得23z x y =+=,所以最小值为3,选 B .11.(2013届福建省高考压轴卷数学文试题)若01x y <<<,则( )A .log 3log 3x y <B .33y x <C .44log log x y <D .11()()44x y <【答案】C12.(2013届山东省高考压轴卷文科数学)若实数x ,y 满足不等式组:⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是( ) ( )A .3B .52C .2D .22【答案】C【解析】可行域为直角三角形,其面积为S =12×22×2=2.13.(2013届江西省高考压轴卷数学文试题)已知a<0,b<0,a+b=-2若ba c 11+=,则c 的最值为 ( ) A .最小值-1 B .最小值-2 C .最大值-2 D .最大值-1【答案】C14.(2013届江西省高考压轴卷数学文试题)设变量,x y 满足约束条件20510080x y x y x y -+⎧⎪-+⎨⎪+-⎩≥≤≤,则目标函数34z x y =-的最大值和最小值分别为( )A .3,11-B .3,11--C .11,3-D .11,3【答案】A【解析】作出满足约束条件的可行域,如右图所示,可知当直线z=3x-4y 平移到点(5,3)时, 目标函数z=3x-4y 取得最大值3; 当直线z=3x-4y 平移到点(3,5)时, 目标函数z=3x-4y 取得最小值-11,故选 ( )A .15.(2013届辽宁省高考压轴卷数学文试题)设554a log 4b log c log ===25,(3),,则( )A .a<c<bB .)b<c<aC .)a<b<cD .)b<a<c【答案】D【解析】本题主要考查利用对数函数的单调性比较大小的基本方法,属于容易题. 因为50log 41,<<所以b<a<c16.(2013届广东省高考压轴卷数学文试题)已知变量x ,y 满足约束条件20,2,0,x y y x y +-≥⎧⎪≤⎨⎪-≤⎩则2z x y =+的最大值为 ( )A .2B .3C .4D .6【答案】D 如图,作出可行域,当目标函数直线经过点A 时取得最大值.由2,0,y x y =⎧⎨-=⎩解得()2,2A ,∴max 2226z =⨯+=.17.(2013届海南省高考压轴卷文科数学)设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为()A.11 B.10C.9 D.8.5【答案】答案:B考点:二元一次不等式(组)与平面区域.分析:首先做出可行域,将目标函数转化为,求z的最大值,只需求直线l:在y轴上截距最大即可.解答:解:做出可行域如图所示:将目标函数转化为,求z的最大值,只需求直线l:在y轴上截距最大即可.作出直线l0:,将直线l0平行移动,当直线l:经过点A时在y 轴上的截距最大,故z最大.由可求得A(3,1),所以z的最大值为2×3+3×1+1=1018.(2013新课标高考压轴卷(一)文科数学)已知动点P(m,n)在不等式组4x yx yx+≤⎧⎪-≥⎨⎪≥⎩表示的平面区域内部及其边界上运动,则35n z m -=-的最小值是 ( )A .4B .3C .53D .13【答案】D【解析】做出不等式组对应的平面区域OAB.因为35n z m -=-,所以z 的几何意义是区域内任意一点(,)P x y 与点(5,3)M 两点直线的斜率.所以由图象可知当直线经过点AM 时,斜率最小,由40x y x y +=⎧⎨-=⎩,得22x y =⎧⎨=⎩,即(2,2)A ,此时321523AM k -==-,所以35n z m -=-的最小值是13,选 D .二、填空题19.(2013届天津市高考压轴卷文科数学)设0,0.a b >>是3a与3b的等比中项,则11a b+的最小值_______【答案】4【解析】由题意知233a b ⨯=,即33a b +=,所以1a b +=.所以11224a b a b b a a b a b a b +++=+=++≥+=,当且仅当b a a b=,即12a b ==时,取等号,所以最小值为4.20.(2013届四川省高考压轴卷数学文试题)若实数,x y 满足222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则目标函数1y z x =+的最大值是__________. 【答案】221.(2013届湖北省高考压轴卷 数学(文)试题)已知函数()xe x F =满足()()()x h x g x F+=,且()x g ,()x h 分别是R 上的偶函数和奇函数,若[]2,1∈∀x 使得不等式()()02≥-x ah x g 恒成立,则实数a 的取值范围是_【答案】22≤a .【解析】:()()()xe x h x g x F =+=,得()()()xe x h x g x F -=-+-=-,即()()()xex h x g x F -=-=-,解得()2x x e e x g -+=,()2xx e e x h --=,()()02≥-x ah x g 即得02222≥--+--x x x x e e a e e ,参数分离得()xx xx x x x x x x x x e e e e e e e e e e e e a -------+-=-+-=-+≤22222,因为222≥-+---x x x x e e e e (当且仅当xx xx ee e e ---=-2,即2=--x x e e 时取等号,x 的解满足[]2,1),所以22≤a .22.(2013届上海市高考压轴卷数学(文)试题)不等式组201x y y x ≤⎧⎪≥⎨⎪≤-⎩表示的平面区域的面积是_______________.【答案】12【解析】不等式组表示的区域为三角形BCD ,由题意知(1,0),(2,0),(2,1)C D B ,所以平面区域的面积11111222BCD S CD BD ∆==⨯⨯=.23.(2013届湖北省高考压轴卷 数学(文)试题)已知不等式2342x x a-+-<.(1)若1a =,则不等式的解集为_______________;(2)若不等式的解集不是空集,则实数a 的取值范围为________________.【答案】(1)843xx ⎧⎫<<⎨⎬⎩⎭(2)1,2⎛⎫+∞ ⎪⎝⎭【解析】:(1)当1a =时,2342x x -+-<.①若4x ≥,则3102,4x x -<<,∴舍去;②若34x <<,则22x -<,34x ∴<<;③若3x ≤,则81032,33x x -<∴<≤.综上,不等式的解集为843x x ⎧⎫<<⎨⎬⎩⎭.(2)设()234f x x x =-+-,则()()()()()3104,234,11033,x x f x x x f x x x -≥⎧⎪=-<<∴≥⎨⎪-≤⎩,若不等式2342x x a -+-<的解集不是空集,则121,2a a >∴>,即a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭. 24.(2013届海南省高考压轴卷文科数学)设函数f(x)=x-1x,对任意x [1,∈+∞),f(mx)+mf(x)<0恒成立,则实数m 的取值范围是________【答案】考点分析:本题主要考查了恒成立问题的基本解法及分类讨论思想,属于难题. 已知f(x)为增函数且m≠0若m>0,由复合函数的单调性可知f(mx)和mf(x)均为增函数,此时不符合题意.M<0,时有22111102()012m mx mx mx m x mx x m x m-+-<⇒--∙<⇒+<因为22y x =在[1,)x ∈+∞上的最小值为2,所以1+212m<即2m >1,解得m<-1.25.(2013届陕西省高考压轴卷数学(文)试题)若y x ,满足条件⎪⎩⎪⎨⎧≥≤-+≥+-,001532,0653y y x y x ,当且仅当3==y x 时,y ax z -=取最小值,则实数a 的取值范围是______.【答案】⎪⎭⎫⎝⎛-53,32【解析】画出可行域,得到最优解()3,3,把y ax z -=变为z ax y -=,即研究z -的最大值.当⎪⎭⎫⎝⎛-∈53,32a 时,z ax y -=均过()3,3且截距z -最大 . 26.(2013届湖南省高考压轴卷数学(文)试题)已知,x y R +∈,且满足22x y xy +=,那么+4x y 的最小值是_____________________【答案】3+27.(2013届北京市高考压轴卷文科数学)已知函数93(1)1y x x x =-+>-+,当x a =时,y 取得最小值b ,则a b +=______【答案】4【解析】9931+411y x x x x =-+=+-++,因为1x >-,所以910,01x x +>>+,所以由均值不等式得91+4421y x x =+-≥-=+,当且仅当911x x +=+,即2(1)9x +=,所以13,2x x +==时取等号,所以2,2a b ==,4a b +=.28.(2013届全国大纲版高考压轴卷数学文试题(二))若点(,3)P a 到直线4310x y -+=的距离为4,且该点在不等式23x y +<所确定的平面区域内,则a =_______.【答案】3-29.(2013届江西省高考压轴卷数学文试题)(根据浙江高考题改编)若不等式211ax bx c -<++<的解集为(1,3)-,则实数a 的取值范围是______.【答案】1122a -<<30.(2013届湖南省高考压轴卷数学(文)试题)已知实数X,满足约束条件,则目标函数Z=X-y 的最小值等于______.【答案】 -131.(2013届浙江省高考压轴卷数学文试题)已知===,若=(a ,t 均为正实数),则类比以上等式,可推测a ,t 的值,a+t =_______. 【答案】41【解析】照此规律:a=6,t=a 2-1=3532.(2013届重庆省高考压轴卷数学文试题)若变量,x y 满足约束条件329,69,x y x y ≤+≤⎧⎨≤-≤⎩则2z x y =+的最小值为 ___.【答案】解析:画出区域图知,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =- 33.(2013届福建省高考压轴卷数学文试题)已知函数164(1)1y x x x =-+>-+,当x a =时,y 取得最小值b ,则a b +=_______.【答案】6。
2013年全国统一高考数学试卷(文科)(大纲版)(含解析版)

5.【解答】解:(x+2)8 展开式的通项为 T r+1=C x 8﹣r2 r
令 8﹣r=6 得 r=2, ∴展开式中 x6 的系数是 2 2C82=112. 故选:C. 【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.
6.【解答】解:设 y=log2(1+ ),
把 y 看作常数,求出 x:
设 A(x1,y1),B(x2,y2). ∴x1+x2=4+ ,x1x2=4.
∵曲线 y=x4+ax2+1 在点(﹣1,a+2)处切线的斜率为 8, ∴﹣4﹣2a=8 ∴a=﹣6 故选:D.
∴y1+y2= ,y1y2=﹣16,
又
=0,
∴
=(x1+2,y1﹣2)•(x2+2,y2﹣2)=
=0
【点评】本题考查导数的几何意义,考查学生的计算能力,属于基础题.
(II)由(I)得:A+C=60°,∵sinAsinC= ,cos(A+C)= , ∴co(s A﹣C)=cosAcosC+sinAsinC=cosAcosC﹣sinAsinC+2sinAsinC=co(s A+C)+2sinAsinC= +2×
∴k=2.
故选:D.
11.【解答】解:设 AB=1,则 AA1=2,分别以 建立空间直角坐标系,
的方向为 x 轴、y 轴、z 轴的正方向
【点评】本题考查直线与抛物线的位置关系,考查向量的数量积公式,考查学生的计算能力,属于中 档题.
第 5页(共 8页)
关注公众号:麦田笔墨 获取更多干货
故答案为:0
C.112
D.224
2013年全国高考数学不等式部分

2013年全国高考数学——不等式部分1.(安徽理科第4题)设变量,x y 满足1,x y +≤则2x y +的最大值和最小值分别为 (A)1,-1 (B)2,-2 (C)1,-2 (D)2,-12. (安徽理科第19题) (Ⅰ)设1,1,x y ≥≥证明xy yx xy y x ++≤++111 (Ⅱ)1a b c ≤≤≤,证明log log log log log log a b c b c a b c a a b c ++≤++.3.(安徽文科第6题)设变量x,y 满足,x y 1x y 1x +≤⎧⎪-≤⎨⎪≥0⎩,则x y +2的最大值和最小值分别为说明:若对数据适当的预处理,可避免对大数字进行运算.(A ) 1,-1 (B) 2,-2 (C ) 1,-2 (D)2,-1[ 4.(安徽文科13题)函数216y x x=--的定义域是 .5.(北京理科第8题)设()0,0A ,()4,0B ,()4,4C t +,()(),4D t t R ∈.记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为(A ){}9,10,11 (B ){}9,10,12 (C ){}9,11,12 (D ){}10,11,12 6.(北京文科14)设(0,0),(4,0),(4,3),(,3)(A B C t Dt t +∈R )。
记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则(0)N = ; ()N t 的所有可能取值为 。
7.(福建理科第8题)已知O 是坐标原点,点A (-1,1)若点M (x,y )为平面区域上⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则OM OA ⋅ 的取值范围是A.]0,1[-B.[0.1]C.[0.2]D.]2,1[- 8(福建文科6).若关于x 的方程012=++mx x 有两个不相等的实数根,则实数m 的取值范围是A. )1,1(-B. )2,2(-C. ),2()2,(+∞--∞D.),1()1,(+∞--∞9(广东理科5、文科6)已知平面直角坐标系xOy 上的区域D 由不等式组0222x y x y⎧⎪⎨⎪⎩≤≤≤≤给定.若(,)M x y 为D 上的动点,点A 的坐标为(2,1),则z OM OA=⋅的最大值为A .42B .32C .4D .3 10.(广东文科5)不等式0122>--x x 的解集是A.1(,1)2-B.),1(+∞C.),2()1,(+∞-∞D.1(,)(1,)2-∞-+∞ 11.(湖北理科8)已知向量)3,(z x a +=,),2(z y b -=,且b a ⊥.若y x ,满足不等式1≤+y x ,则z 的取值范围为A. []2,2-B . []3,2- C. []2,3- D. []3,3-12.(湖北文科8) 直线2100x y +-=与不等式组0024320x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩表示的平面区域的公共点有A.0个B.1个C.2个D.无数个13.(湖南理科7) 设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A .(1,12)+B .(12,)++∞C .(1,3)D .(3,)+∞14.(湖南文科14)设1,m >在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为 .15.(四川理科9、文科10)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车需满载且只运送一次.派用的每吨甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司合理计划派用两类卡车的车辆数,可得最大利润为(A )4650元 (B )4700元 (C )4900元 (D )5000元 。
吉林省各地市2013年高考数学最新联考试题分类汇编(6)不等式

第6部分: 不等式一、选择题:5.(东北三省四市教研协作体2013届高三等值诊断联合理)设1130a x dx - =⎰,11201b x dx =-⎰,130c x dx =⎰,则a 、b 、c 的大小关系为 A. a b c >> B. b a c >> C. a c b >> D. b c a >>9. (东北三省四市教研协作体2013届高三等值诊断联合理)若两个正实数,x y 满足211x y+=,并且222x y m m +>+恒成立,则实数m 的取值范围是 A. (,2][4,)-∞-+∞ B. (,4][2,)-∞-+∞C. (2,4)-D. (4,2)-6. (东北三省四市教研协作体2013届高三等值诊断联合文)若(1,4)x ∈,设12a x =,23b x =,ln c x =a 、b 、c 的大小关系为A. c a b >>B. b a c >>C. a b c >>D. b c a >>10. (东北三省四市教研协作体2013届高三等值诊断联合文)若两个正实数,x y 满足211x y+=,并且222x y m m +>+恒成立,则实数m 的取值范围是 A. (,2][4,)-∞-+∞ B. (,4][2,)-∞-+∞C. (2,4)-D. (4,2)-11.(吉林省实验中学2013届高三第二次模拟理)已知正项等比数列{}n a 满足:3212a a a =+,若存在两项n m a a ,,使得14m n a a a =,则14m n+的最小值为 ( )A .32B . 53C .256D .不存在4. (吉林省吉林市2013届高中毕业班下学期期末复习检测理)已知点(),P x y 在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-0220102y x y x 表示的平面区域上运动,则z x y =-的取值范围是 A. []2,1-- B. []2,1- C. []1,2- D. []1,2【答案】C7. (吉林省吉林市2013届高中毕业班下学期期末复习检测理)若直线)0,(022>=-+b a by ax 始终平分圆082422=---+y x y x 的周长,则b a 121+的最小值为A .21B .25C .23D .2223+ 【答案】D二、填空题:13.(东北三省四市教研协作体2013届高三等值诊断联合理)若实数,x y 满足11211x y x y x ⎧⎪⎪-+⎨⎪+⎪⎩≤≤≥≤,则1y x +的取值范围是____________. 率k 的取值范围,由图可知[]1,5k ∈.13. (东北三省四市教研协作体2013届高三等值诊断联合文)若实数,x y 满足11211x y x y x ⎧⎪⎪-+⎨⎪+⎪⎩≤≤≥≤,则2z x y =+的最大值是____________.15.(吉林省实验中学2013届高三第二次模拟理)已知集合{}23A x R x =∈+<,集合{}()(2)0B x R x m x =∈--< ,且(1)A B n =-,,则m =__________,n =__________. 【答案】 -1,113. (吉林省长春市2013年高中毕业班第四次调研测试文)设,x y 满足约束条件0+22y y x x y ⎧⎪⎨⎪⎩≥≤≤,则3z x y =+的最大值为____________.(15)(吉林省实验中学2013年高三下学期第一次模拟理)设x ,y 满足约束条件112210x y x x y ⎧⎪⎪⎨⎪+⎪⎩≥≥≤,向量(2)(11)a b y x m =-=-,,,,且a ∥b ,则m 的最小值为 .【答案】-6(16)(吉林省实验中学2013年高三下学期第一次模拟理)已知x ,y 为正实数 ,且满足3x y xy ++=,若对任意满足条件的x ,y ,都有2()()10x y a x y +-++≥恒成立,则实数a 的取值范围为 .【答案】37(,]6-∞ 三、解答题:18.(吉林省实验中学2013届高三第二次模拟理)(本小题满分12分)已知函数2π()2sin 324f x x x ⎛⎫=+- ⎪⎝⎭,ππ42,x ⎡⎤∈⎢⎥⎣⎦. (Ⅰ)求()f x 的最大值和最小值;(Ⅱ)若不等式()2f x m -<在ππ42,x ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围.18.(本小题满分12分)22.(吉林省实验中学2013届高三第二次模拟理)(本小题满分12分)已知S n =1+12+13+…+n1,(n ∈N *),设f (n ) =S 2n +1-S n +1,试确定实数m 的取值 范围,使得对于一切大于1的自然数n ,不等式22(1)11()[log (1)][log ]20m m f n m m ->--恒 成立.22.(本小题满分12分)。
2013年全国高考数学试题分类解析——不等式部分

4),
(
2
3t 4
,
3t 4
4)
当 t R 时,考虑把t 按照t 4k,t 4k 1,t 4k 2,t 4k 3 及在期区间上取值进行分
类讨论:(1)当t 4k 时,在每条直线上均有三个整点,共 9 个整点;(2)当 t 4k 1时,在每条直线上均有 4 个整点,共 12个整点;(3)当t 4k 2 时,
11.(湖北理科 8)已知向量 a (x z,3), b (2, y z) ,且 a b .若 x, y 满足不等式
x y 1,则 z 的取值范围为
A. 2,2
B. 2,3
C. 3,2
D. 3,3
【答案】D
解析:因为 a b , 2 x z 3 y z 0 , 则 z 2x 3y , x, y 满足不等式 x y 1, 则点 x, y 的可行域如图所示,
2013 年全国高考数学试题分类解析——不等式部分
1.(安徽理科第 4 题)设变量 x, y 满足 x y 1, 则 x 2 y 的最大值和最小值分别为
(A)1,-1
(B)2,-2 (C)1,-2 (D)2,-1
答案:B
解: x y 1是由点 (1,0),( 1,0), (0,1),(0, 1) 四点为顶点的正方形及其内部,当直线
z x 2 y 经过 (0,1),(0, 1) 时, z 分别取到最大值和最小值 2 和 2 。
(本小题满分 12分) 2.(安徽理科第 19题)
(Ⅰ)设 x 1, y 1, 证明
x y 1 1 1 xy xy x y
(Ⅱ)1 a b c ,证明 loga b logb c logc a logb a logc b loga c .
2
河南省各地市2013年高考数学 最新联考试题分类汇编(6)不等式.pdf

河南省各地市2013年高考数学 最新联考试题分类汇编(6)不等式 一、选择题: 5.(河南省郑州市2013年高三第二次质量预测理)若,则a,b,c的大小关系为A. c>b>aB. b>c>aC. a>b>cD. b>a>c 【答案】B 11.(河南省郑州市2013年高三第二次质量预测理)设f(x)是定义在R上的增函数,且对于任意的x都有f(2—x)+f(x)=0恒成立.如果实数m、n满足不等式组’则m2+n2的取值范围是A. (3,7)B. (9,25)C. (13,49)D. (9,49) 【答案】C 3、 ,则满足不等式f(1-x)>f(2x)的x的取值范围A、(-,0]B、(-,)C、(-,)D、 【答案】B 10、(河南省焦作市2013届高三第一次模拟文)已知实数x,y满足,则2x+y的最小值,最大值分别为A、3,6B、0,3C、0,6D、-,6 【答案】D 1.,,则 A.B.C.D. 9. (河南省三市平顶山、许昌、新乡2013届高三第三次调研理)设实数满足约束条件:,若目标函数的最大值为12,则的最小值为 A. B. C. D. 【答案】A 12. (河南省十大名校2013届高三第四次联合模拟文)已知是定义在R上的偶函数,在区间上为增函数,且,则不等式的解集为( ) A. B. C. D. -x-2>0},B={x|1<<8),则(CUA)∩B等于 A.[-1,3) B.(0,2] C.(1,2] D.(2,3) 【答案】B 8.(河南省六市2013年高中毕业班第一次联考文)若A为不等式组表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为 A. B. C. D.1 【答案】A 二、填空题: 14.(河南省郑州市2013年高三第二次质量预测理)已知O为坐标原点,点M(3,2),若N(x,y)满足不等式组则的最大值为______. 【答案】12 15. (河南省郑州市2013年高三第二次质量预测理)已知不等式,若对任意x∈[l,2],且y∈[2,3],该不等式恒成立,则 实数a的取值范围是______. 【答案】 (13) (河南省豫东、豫北十所名校2013届高三阶段性测试四)如果实数满足条件那么目标函数z=2x - y的最小值为______ 【答案】-3 13.已知实数x,y满足条件 ,则目标函数z=2x-y的最大值是 . +2x-4y+1=0截得的弦长为4,则的最小值为______________. 【答案】4 三、解答题: 19. (河南省十大名校2013届高三第四次联合模拟文) (本小题12分)鑫隆房地产公司用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)。
2013高考数学真题分类汇编—不等式模块 2

高一升高二7.30晚上六点半一对一两份2013高考数学—不等式一:选择题1.(2013北京卷文2)设R c b a ∈,,,且b a >,则 .A bc ac > .B ba 11< 22.b a C > 33.b a D >2.(2013安徽卷理6)已知一元二次不等式0)(<x f 的解集}211|{>-<x x x 或,则0)10(>x f 的解集为.A }2lg 1{->-<x x x 或 .B }2lg 1{-<<-x x .C }2lg {->x x .D }2lg {-<x x3.(2013新课标2卷12)若存在正数x 使1)(2<-a x x 成立,则a 的取值范围是 .A ),(+∞-∞ .B ),2(+∞- .C ),0(+∞ .D ),1(+∞-4.(2013江西卷文6)下列选项中,不等式21x xx<<成立的x 的取值范围.A )1,(--∞ .B )0,1(- .C )1,0( .D ),1(+∞ 5.(2013大纲卷文4)不等式222<-x 的解集是.A )1,1(- .B )2,2(- .C )1,0()0,1( - .D )2,0()0,2( -.6(2013山东卷理6)在平面直角坐标系xOy 中,M 为不等式组⎪⎩⎪⎨⎧≤-+≥-+≥--083012022y x y x y x 所表示的平面区域上一动点,则OM 斜率的最小值为 .A 2 .B 1 .C 31-.D 21-7(2013新课标2卷理5)已知0>a ,y x ,满足约束条件⎪⎩⎪⎨⎧-≥≤+≥)3(31x a y y x x ,若y x z +=2的最小值为1,则=a .A 41 .B 21.C 1 .D 2 8.(2013北京卷理8)设关于y x ,的不等式组⎪⎩⎪⎨⎧>-<+≥+-0012m y m x y x 表示的平面区域内存在点),(00y x P ,满足2200=-y x ,求m 的取值范围是.A )34,(--∞ .B )31,(-∞ .C )32,(--∞ .D )35,(--∞ 9.(2013四川卷文8)若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5zy x =-的最大值为a ,最小值为b ,则a b -的值是( )(A )48 (B )30 (C )24 (D )16 10(2013福建卷文7)若221,x y x y +=+则的取值范围是A .[]0,2B .[]2,0-C .[]2,-+∞D .[],2-∞-填空题1.(2013广东卷理9)不等式022<-+x x 的解集为 .2.(2013浙江卷理13)设y kx z +=,其中实数y x ,满足⎪⎩⎪⎨⎧≤--≥+-≥-+04204202y x y x y x ,若z 的最大值为12,则实数=k ________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年全国各地高考文科数学试题分类汇编6:不等式
一、选择题
1 .(2013年高考四川卷(文))若变量,x y 满足约束条件8,24,0,0,
x y y x x y +≤⎧⎪-≤⎪
⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,
则a b -的值是
( )
A .48
B .30
C .24
D .16
【答案】C
2 .(2013年高考福建卷(文))若变量y x ,满足约束条件⎪⎩
⎪
⎨⎧≥≥≤+012y x y x ,则y x z +=2的最大值和最小值分别为
( )
A .4和3
B .4和2
C .3和2
D .2和0
【答案】B
3 .(2013年高考课标Ⅱ卷(文))设x,y 满足约束条件,则z=2x-3y 的最小值是 ( )
A .
B .-6
C .
D .-3
【答案】B
4 .(2013年高考福建卷(文))若122
=+y x
,则y x +的取值范围是
( )
A .]2,0[
B .]0,2[-
C .),2[+∞-
D .]2,(--∞
【答案】D
5 .(2013年高考江西卷(文))下列选项中,使不等式x<
1x
<2
x 成立的x 的取值范围是 ( )
A .(,-1)
B .(-1,0)
C .0,1)
D .(1,+)
【答案】A
6 .(2013年高考山东卷(文))设正实数z y x ,,满足
04322=-+-z y xy x ,则当
z
xy
取得最大值时,2x y z +-的最大值为
( )
A .0
B .
98
C .2
D .
9
4[来源:学+科+网]
【答案】C
7 .(2013年高考课标Ⅱ卷(文))若存在正数x 使2x
(x-a)<1成立,则a 的取值范围是
( )
A .(-∞,+∞)
B .(-2, +∞)
C .(0, +∞)
D .(-1,+∞)[来源:学科网ZXXK]
【答案】D
8 .(2013年高考天津卷(文))设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪
⎨⎪⎩
则目标函数2z y x =-的最小值为
( )
A .-7
B .-4
C .1
D .2[来源:Z 。
xx 。
]
【答案】A
9 .(2013年高考湖北卷(文))某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆
的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,
且B 型车不多于A 型车7辆.则租金最少为 ( ) A .31200元 B .36000元 C .36800元 D .38400元 【答案】C
10.(2013年高考陕西卷(文))若点(x ,y )位于曲线y = |x |与y = 2所围成的封闭区域, 则2x -y 的最小值
为
( )
A .-6
B .-2
C .0
D .2
【答案】A
11.(2013年高考重庆卷(文))关于x 的不等式2
2
280x ax a --<(0a >)的解集为12(,)x x ,且:2115x x -=,
则a = ( )
A .
5
2 B .
72
C .
154
D .
152
【答案】A
12.(2013年高考课标Ⅱ卷(文))设a=log 32,b=log 52,c=log 23,则
( )
A .a>c>b
B .b>c>a
C .c>b>a
D .c>a>b
【答案】D
13.(2013年高考北京卷(文))设,,a b c R ∈,且a b >,则
( )
A .ac bc >
B .
11
a b
< C .22
a b >
D .3
3
a b >[来源:学_科_网Z_X_X_K]
【答案】D[来源:学科网ZXXK] 二、填空题
14.(2013年高考大纲卷(文))若x y 、满足约束条件0,34,34,x x y x y ≥⎧⎪
+≥⎨⎪+≤⎩
则z x y =-+的最小值为____________.
【答案】0
15.(2013年高考浙江卷(文))设a,b ∈R,若x ≥0时恒有0≤x 4
-x 3
+ax+b ≤(x 2
-1)2
,则ab 等于______________.
【答案】1- [来源:学科网ZXXK]
16.(2013年高考湖南(文))若变量x,y 满足约束条件28,04,03,x y x y +≤⎧⎪
≤≤⎨⎪≤≤⎩
则x+y 的最大值为______
【答案】6
17.(2013年高考重庆卷(文))设0απ≤≤,不等式2
8(8sin )cos 20x x αα-+≥对x R ∈恒成立,则a 的取
值范围为____________.
【答案】5[0,
][
,]
6
6π
π
π
18.(2013年高考山东卷(文))在平面直角坐标系xOy 中,M 为不等式组2360
200x y x y y +-≤⎧⎪
+-≥⎨⎪≥⎩
所表示的区域上
一动点,则直线OM 的最小值为_______
【答案】2
19.(2013年高考四川卷(文))已知函数
()4(0,0)a
f x x x a x
=+>>在3x =时取得最小值,则
a =__________.[来源:学.科.网]
【答案】36
20.(2013年高考课标Ⅰ卷(文))设,x y 满足约束条件 13,
10x x y ≤≤⎧⎨-≤-≤⎩
,则2z x y =-的最大值为______.
【答案】3
21.(2013年高考浙江卷(文))设z kx y =+,其中实数,x y 满足2
240240x x y x y ≥⎧⎪
-+≥⎨⎪--≤⎩
,若z 的最大值为12,则实
数k =________ . 【答案】2
22.(2013年上海高考数学试题(文科))不等式
021
x
x <-的解为_________. 【答案】1
(0,
)2
23.(2013年高考北京卷(文))设D 为不等式组02030x x y x y ≥⎧⎪
-≤⎨⎪+-≤⎩
,表示的平面区域,区域D 上的点与点(1,0)之
间的距离的最小值为___________.
【答案】25
来源:学科网ZXXK]。