2018年考研数学三真题与解析

合集下载

2018考研数学(三)真题

2018考研数学(三)真题

代入已知条件
f x dx 0, 得
0
1
2 1 1 f 1 1 0 f f x x dx 0 2 2 2 2 2 1 2 2 1 f x 1 1 1 x f f x dx 2 2 2 2 2 0 0 2 1 2 1 1 1 f f x dx 2 2 0 2 2 1 f 1 1 f x dx, 0 2 2 2
1 1 0 (5) 下列矩阵中, 与矩阵 0 1 1 相似的为 0 0 1 1 1 1 (A) 0 1 1 . 0 0 1 1 0 1 (B) 0 1 1 . 0 0 1


1 1 1 (C) 0 1 0 . 0 0 1
x
lim
0 x
x
2 x
2
0,
f 0 lim
x 0
cos x 1 lim x 0 x
x
2 x
2
1 , 2
f 0 lim
x 0
cos x 1 lim x 0 x

x 2 x

2
lim
1 ,Y 服从参数为 的泊松 2
设总体 X 的概率密度为 f x;
1 e , 其中 0, 为未知参数, X1 , X 2 X n 为来自总体 2
x
X 的简单随机样本,记 的最大似然估计量为 .
(Ι )求 ; (Ⅱ)求 E 和 D .
1 , 则 P AC A B 2

考研数学三模拟题2018年(13)_真题(含答案与解析)-交互

考研数学三模拟题2018年(13)_真题(含答案与解析)-交互

考研数学三模拟题2018年(13)(总分100, 做题时间90分钟)一、填空题1.设且存在三阶非零矩阵B,使得AB=O,则a=______,b=______.SSS_FILL分值: 12 1[解析] 因为AB=O,所以r(A)+r(B)≤3,又B≠O,于是r(B)≥1,故r(A)≤2,从而a=2,b=1.2.设η为非零向量,η为方程组AX=0的解,则a=______,方程组的通解为______.SSS_FILL分值: 13 k(-3,1,2) T [解析] AX=0有非零解,所以|A|=0,解得a=3,于是方程组AX=0的通解为k(-3,1,2) T.二、选择题1.设A是m×s矩阵,B为s×n矩阵,则方程组BX=0与ABX=0同解的充分条件是______.SSS_SINGLE_SELA r(A)=sB r(A)=mC r(B)=sD r(B)=n分值: 1答案:A[解析] 设r(A)=s,显然方程组BX=0的解一定为方程组ABX=0的解,反之,若ABX=0。

因为r(A)=s,所以方程组AY=0只有零解,故BX=0,即方程组BX=0与方程组ABX=0同解,选A.2.设n阶矩阵A的伴随矩阵A *≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是______.A.AX=b的通解为k1η1+k2η2B.η1+η2为AX=b的解C.方程组AX=0的通解为k(η1 -η2)D.AX=b的通解为SSS_SIMPLE_SINA B C D分值: 1答案:C[解析] 因为非齐次线性方程组AX=b的解不唯一,所以r(A)<n,又因为A *≠O,所以r(A)=n-1,η2 -η1为齐次线性方程组AX=0的基础解系,选C.3.设有方程组AX=0与BX=0,其中A,B都是m×n矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4)若r(A)=r(B),则AX=0与BX=0同解以上命题正确的是______.SSS_SINGLE_SELA (1)(2)B (1)(3)C (2)(4)D (3)(4)分值: 1答案:B[解析] 若方程组AX=0的解都是方程组BX=0的解,则n-r(A)≤n-r(B),从而r(A)≥r(B),(1)为正确的命题;显然(2)不正确;因为同解方程组系数矩阵的秩相等,但反之不对,所以(3)是正确的,(4)是错误的,选B.4.设A是m×n矩阵,B是n×m矩阵,则______.SSS_SINGLE_SELA 当m>n时,线性齐次方程组ABX=0有非零解B 当m>n时,线性齐次方程组ABX=0只有零解C 当n>m时,线性齐次方程组ABX=0有非零解D 当n>m时,线性齐次方程组ABX=0只有零解分值: 1答案:A[解析] AB为m阶方阵,当m>n时,因为r(A)≤n,r(B)≤n且r(AB)≤min{r(A),r(B)},所以r(AB)<m,于是方程组ABX=0有非零解,选A.5.设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是______.SSS_SINGLE_SELA r(A)=mB r(A)=nC A为可逆矩阵D r(A)=n且b可由A的列向量组线性表示分值: 1答案:D[解析] 方程组AX=b有解的充分必要条件是b可由矩阵A的列向量组线性表示,在方程组AX=b有解的情形下,其有唯一解的充分必要条件是r(A)=n,故选D.三、解答题1.设向量组α1,α2,…,αn-1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.SSS_TEXT_QUSTI分值: 5[证明] 令因为α1,α2,…,αn-1与β1,β2正交,所以Aβ1 =0,Aβ2=0,即β1,β2为方程组AX=0的两个非零解,因为r(A)=n-1,所以方程组AX=0的基础解系含有一个线性无关的解向量,所以β1,β2线性相关.2.设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.SSS_TEXT_QUSTI分值: 5[解](1)当a≠b,a≠(1-n)b时,方程组只有零解;(2)当a=b时,方程组的同解方程组为x1 +x2+…+xn=0,其通解为X=k1(-1,1,0,…,0) T +k2 (-1,0,1,…,0) T+…+kn-1(-1,0,…,0,1) T(k1,k2,…,kn-1为任意常数);(3)令当a=(1-n)b时,r(A)=n-1,显然(1,1,…,1) T为方程组的一个解,故方程组的通解为k(1,1,…,1) T (k为任意常数).3.设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解.SSS_TEXT_QUSTI分值: 5[解] 由AB=O得r(A)+r(B)≤3且r(A)≥1.(1)当k≠9时,因为r(B)=2,所以r(A)=1,方程组AX=0的基础解系含有两个线性无关的解向量,显然基础解系可取B的第1、3两列,故通解为(2)当k=9时,r(B)=1,1≤r(A)≤2,当r(A)=2时,方程组AX=0的通解为当r(A)=1时,A的任意两行都成比例,不妨设a≠0,由得通解为4.a,b取何值时,方程组有解?SSS_TEXT_QUSTI分值: 5[解](1)a≠1时,唯一解为(2)a=1,b≠-1时,r(A)≠ ,因此方程组无解;(3)a=1,b=-1时,通解为X=k1 (1,-2,1,0) T +k2(1,-2,0,1) T +(-1,1,0,0) T (k1,k2为任意常数).5.A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.SSS_TEXT_QUSTI分值: 5[证明] 方程组的解即为方程组AX=0与BX=0的公共解.因为所以方程组有非零解,故方程组AX=0与BX=0有公共的非零解.设(Ⅰ) α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=SSS_TEXT_QUSTI 6.求方程组(Ⅰ)的基础解系;分值: 2[解] 方程组(Ⅰ)的基础解系为SSS_TEXT_QUSTI7.求方程组(Ⅱ)BX=0的基础解系;分值: 2[解] 因为r(B)=2,所以方程组(Ⅱ)的基础解系含有两个线性无关的解向量,为方程组(Ⅱ)的基础解系;SSS_TEXT_QUSTI8.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.分值: 2[解] 方程组(Ⅰ)的通解为方程组(Ⅱ)的通解为=k,则方程组(Ⅰ)与方程组(Ⅱ)的公共解为k(-1,令,则有取k21,1,1) T (其中k为任意常数).设(Ⅰ)(Ⅱ)SSS_TEXT_QUSTI9.求(Ⅰ),(Ⅱ)的基础解系;分值: 3[解] 的基础解系为的基础解系为SSS_TEXT_QUSTI10.求(Ⅰ),(Ⅱ)的公共解.分值: 3[解] 方法一(Ⅰ),(Ⅱ)公共解即为的解,(Ⅰ),(Ⅱ)的公共解为方法二(Ⅰ)的通解代入(Ⅱ) =2k2,故(Ⅰ),(Ⅱ)的公共解为(-k,k,2k,k) T =k(-1,1,2,1) T (k为任意常数).方法三(Ⅰ)的通解为(Ⅱ)的通解为令∴(Ⅰ),(Ⅱ)的公共解为11.问a,b,c取何值时,(Ⅰ),(Ⅱ)为同解方程组?SSS_TEXT_QUSTI分值: 5[解] 方法一的通解为把(Ⅱ)的通解代入(Ⅰ),得方法二因为(Ⅰ),(Ⅱ)同解,所以它们的增广矩阵有等价的行向量组,(Ⅱ)的增广矩阵为阶梯阵,其行向量组线性无关.α1可由β1,β2,β3唯一线性表出,α1=-2β1+β2+aβ2a=-1,α2可由β1,β2,β3唯一线性表出,α2=β1+β2-β3b=-2,α3可由β1,β2,β3唯一线性表出,α3=3β1+β2+β3c=4.12.证明线性方程组(Ⅰ)有解的充分必要条件是方程组(Ⅲ)是同解方程组.SSS_TEXT_QUSTI分值: 5[证明] 令方程组(Ⅰ)可写为AX=b,方程组(Ⅱ)、(Ⅲ)可分别写为A TY=0及若方程组(Ⅰ)有解,则r(A)=r( ),从而又因为(Ⅲ)的解一定为(Ⅱ)的解,所以(Ⅱ)与(Ⅲ)同解;反之,若(Ⅱ)与(Ⅲ)同解,则从而r(A)=r( ),故方程组(Ⅰ)有解.13.设的一个基础解系为写出的通解并说明理由.SSS_TEXT_QUSTI分值: 5[解] 令则(Ⅰ)可写为AX=0,令其中则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(Ⅰ)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,.α1T,α2T,…,αn T为BY=0的一组解,而r(B)=n,α1T,α2T,…,αnT线性无关,因此α1T,α2T,…,αnT为BY=0的一个基础解系.14.设A是m×s矩阵,B是s×n矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.SSS_TEXT_QUSTI分值: 5[证明] 首先,方程组BX=0的解一定是方程组ABX=0的解.令r(B)=r且ξ1,ξ2,…,ξn-r是方程组BX=0的基础解系,现设方程组ABX=0有一个解η0不是方程组BX=0的解,即Bη≠0,显然ξ1,ξ2,…,ξn-r,η0线性无关,若ξ1,ξ2,…,ξn-r,η线性相关,则存在不全为零的常数k1,k2,…,kn-r,k,使得k1ξ1+k2ξ2+…+kn-rξn-r +kη=0,若k=0,则k1ξ1+k2ξ2+…+kn-rξn-r+kη=0,因为ξ1,ξ2,…,ξn-r线性无关,所以k1=k2=…=kn-r=0,从而ξ1,ξ2,…,ξn-r,η线性无关,所以k≠0,故η可由ξ1,ξ2,…,ξn-r线性表示,由齐次线性方程组解的结构,有Bη=0,矛盾,所以ξ1,ξ2,…,ξn-r,η线性无关,且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.设A,B,C,D都是n阶矩阵,r(CA+DB)=n.SSS_TEXT_QUSTI15.证明分值: 3[证明] 因为n=r(CA+DB)=所以SSS_TEXT_QUSTI16.设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组Ax=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.分值: 3[证明] 因为所以方程组只有零解,从而方程组AX=0与BX=0没有非零的公共解,故ξ1,ξ2,…,ξr与η1,η2,…,ηs线性无关.17.设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A * b=0.SSS_TEXT_QUSTI分值: 5[证明] 设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0,于是A * b=A * AX=|A|X=0.反之,设A * b=0,因为b≠0,所以方程组A * X=0有非零解,从而r(A * )<n,又A11≠0,所以r(A * )=1,且r(A)=n-1.因为r(A * )=1,所以方程组A * X=0的基础解系含有n-1个线性无关的解向量,而A * A=0,所以A的列向量组α1,α2,…,αn为方程组A * X=0的一组解向量.由A11≠0,得α2,…,αn线性无关,所以α2,…,αn是方程组A* X=0的基础解系.因为A * b=0,所以b可由α2,…,αn线性表示,也可由α1,α2,…,αn线性表示,故r(A)= =n-1<n,即方程组AX=b有无穷多个解.18.证明:r(AB)≤min{r(A),r(B)}.SSS_TEXT_QUSTI分值: 5[证明] 令r(B)=r,BX=0的基础解系含有n-r个线性无关的解向量,因为BX=0的解一定是ABX=0的解,所以ABX=0的基础解系所含的线性无关的解向量的个数不少于BX=0的基础解系所含的线性无关的解向量的个数,即n-r(AB)≥n-r(B),r(AB)≤r(B);又因为r[(AB) T ]=r(AB)=r(B T A T)≤r(A T )=r(A),所以r(AB)≤min{r(A),r(B)}.19.证明:r(A)=r(A T A).SSS_TEXT_QUSTI分值: 5[证明] 只需证明AX=0与A T AX=0为同解方程组即可.若AX0 =0,则A T AX=0.反之,若A T AX0 =0,则XT A T AX=0 (AX) T (AX)=0 AX=0,所以AX=0与A T AX=0为同解方程组,从而r(A)=r(A T A).20.设A是m×n矩阵,且非齐次线性方程组AX=b满足.证明:方程组AX=b 的线性无关的解向量的个数最多是n-r+1个.SSS_TEXT_QUSTI分值: 5[证明] 因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ1,ξ2,…,ξn-r.设η为方程组AX=b的一个特解,令β0=η,β1=ξ1+η,β2=ξ2+η…,βn-r=ξn-r+η0,显然β,β1,β2,…,βn-r为方程组AX=b的一组解.令k0β+k1β1+…+kn-rβn-r=0,即(k0 +k1+…+kn-r)η+k1β1+k2β2+…+kn-rβn-r=0,上式两边左乘A得(k0 +k1+…+kn-r)b=0,因为b为非零列向量,所以k0 +k1+…+kn-r=0,于是k1ξ1+k2ξ2+…+kn-rξn-r=0,注意到ξ1,ξ2,…,ξn-r线性无关,所以k1=k2=…=kn-r=0,故β0,ξ1,ξ2,…,ξn-r线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组.设ξ1,ξ2,…,ξn-r+2为方程组AX=b的一组线性无关解,令γ1=β2-β1,γ2=β3-β1,…,γn-r+1=βn-r+2-β1,根据定义,易证γ1,γ2,…,γn-r+1线性无关,又γ1,γ2,…,γn-r+1为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾,所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个.21.讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.SSS_TEXT_QUSTI分值: 5[解](1)当a≠-1,b≠-2时.因为D≠0,所以方程组有唯一解,由克拉默法则得(2)当a=-1,b≠-2时,当b≠-1时,方程组无解当b=-1时,方程组的通解为(3)当a≠-1,b=-2时,当a=1时,方程组的通解为当a≠1时,显然r(A)=2≠ =3,方程组元解.22.设问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解.SSS_TEXT_QUSTI分值: 5[解] 令X=(X1,X2,X3),B=(β1,β2,β3),方程组AX=B等价于则AX=B有解的充分必要条件是r(A)=r( ),由r(A)=r( )得a=1,b=2,c=-2,此时AX1=β1的通解为AX2=β2的通解为AX 3 =β 3 的通解为 则 其中k 1 ,k 2 ,k 3 为任意常数. 1。

2018考研数学三试题及答案解析

2018考研数学三试题及答案解析

2018年全国硕士研究生入学统一考试数学(三)试题及答案解析一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的.(1)下列函数中,在0x =处不可导的是()(A)()sin f x x x =(B)()sin f x x =(C)()cos f x x =(D)()f x =【答案】(D)【解析】根据导数的定义:(A)sin limlim0,x x x x x x →→== 可导;(B)0,x x →→==可导;(C)1cos 12limlim0,x x xx x→→--==可导;(D)000122limlim,x x x xx x→→→-==极限不存在,故选D。

(2)()[]()10,10,f x f x dx =⎰设函数在上二阶可导,且则()(A)1()0,()02f x f '<<当时(B)1()0,()02f x f ''<<当时(C)1()0,()02f x f '><当时(D)1()0,(02f x f ''><当时【答案】(D )【解析】2111()11()()()()(,2222!22f f x f f x x x ξξ'''=+-+-介于,之间,故1111220000120111()11()10=()()(()((2222!222!2()11()0()0,()0..2!22f f f x dx f f x dx x dx f x dxf f x x dx f D ξξξ'''''=+-+-=+-''''>⇒-><⎰⎰⎰⎰⎰由于所以,应选(3)设()(2222222211,,1,1x x xM dx N dx K dx x e ππππππ---++===++⎰⎰⎰则()(A)M N K >>(B)M K N >>(C)K M N >>(D)K N M>>【答案】(C)【解析】22222222222(1)122=(1).111x x x x M dx dx dx x x x πππππππ---+++==+=+++⎰⎰⎰22222111(0)11xxxxx e x N dx dx Mee πππππ--+++<≠⇒<⇒=<=<⎰⎰2222=11K dx dx M πππππ-->==⎰⎰(,K M N >>故应选C 。

考研数学三历年真题答案与解析-模拟试题

考研数学三历年真题答案与解析-模拟试题

考研数学三历年真题答案与解析|模拟试题展开全文第一部分历年真题及详解2008年全国硕士研究生入学统一考试考研数学三真题及详解2009年全国硕士研究生入学统一考试考研数学三真题及详解2010年全国硕士研究生入学统一考试考研数学三真题及详解2011年全国硕士研究生入学统一考试考研数学三真题及详解详解2013年全国硕士研究生入学统一考试考研数学三真题及详解2014年全国硕士研究生入学统一考试考研数学三真题及详解2015年全国硕士研究生招生考试考研数学三真题及详解2016年全国硕士研究生招生考试考研数学三真题及详解2017年全国硕士研究生招生考试考研数学三真题及详解2018年全国硕士研究生招生考试考研数学三真题及详解2019年全国硕士研究生招生考试考研数学三真题及详解(2)模拟试题及详解部分:精选了3套模拟试题,且附有详尽解析。

考生可通过模拟试题部分的练习,掌握最新考试动态,提前感受考场实战。

第二部分模拟试题及详解全国硕士研究生招生考试考研数学三模拟试题及详解(一)全国硕士研究生招生考试考研数学三模拟试题及详解(二)全国硕士研究生招生考试考研数学三模拟试题及详解(三)第一部分历年真题及详解解一、选择题(1~8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求。

)1设函数f(x)在区间[-1,1]上连续,则x=0是函数的()。

A.跳跃间断点B.可去间断点C.无穷间断点D.振荡间断点【答案】B查看答案【考点】函数间断点的类型【解析】首先利用间断点的定义确定该点为间断点,然后利用如下的间断点的类型进行判断。

第一类间断点:x=x0为函数f(x)的间断点,且与均存在,则称x=x0为函数f(x)的第一类间断点,其中:①跳跃型间断点:②可去型间断点:第二类间断点:x=x0为函数f(x)的间断点,且与之中至少有一个不存在,则称x=x0为函数f(x)的第二类间断点,其中:①无穷型间断点:与至少有一个为∞;②振荡型间断点:或为振荡型,极限不存在。

2018年考研数学三真题及答案解析(完整版)

2018年考研数学三真题及答案解析(完整版)

(C) f x cos x
(D) f x cos x
【答案】(D)
【解析】根据导数的定义:
x sin x
x
lim
lim
x 0,可导;
(A) x0 x
x0 x
x sin x
x
lim
lim
x 0,可导;
(B) x0
x
x0 x
cos lim
x
1

lim

1 2
t 0
t 0
2= lim (1 bt)et 1 lim et 1 lim btet 1 b,
t 0
t
t t 0
t t 0
从而b 1.
综上,a 1,b 1.
(16)(本题满分 10 分)
设平面区域D由曲线y 3 1 x2 与直线y 3x及y轴围成, 计算二重积分 x2dxdy.
2018 年全国硕士研究生入学统一考试数学(三)试题及答案解析
一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题目要求的.
(1) 下列函数中,在 x 0 处不可导的是( )
(A) f x x sin x
(B) f x x sin x
x
x
x 0时,可得f (x) 2xf (x) f (x) 2xf (x) 0.
由公式得:f (x) Ce(2x)dx =Cex2 , f (0) 2 C 2. 故f (x)=2ex2 f (1) 2e.
(13) 设A为3阶矩阵, a1, a2, a3是线性无关的向量组,若Aa1 a1 a2, Aa2 a2 a3, Aa3 a1 a3,

2018年考研数学三试题与答案解析(完整版)

2018年考研数学三试题与答案解析(完整版)

M 2 (1
2

2x ) dx 22 1dx 1 x2
x - , 时, 1 cos x 1, 所以K M 2 2 令f ( x) 1 x e x , f (0) 0, f ( x) 1 e x 当x 0, 时,f ( x ) 0; 当x , 0 时,f ( x ) 0 2 2 1 x 所以x - , 时,有f ( x ) 0,从可有 x 1,由比较定理得N<M, 故选C e 2 2
B. f ( x ) x sin( D. f ( x ) cos(
x) x)
f - 0 lim
x 0
x sin x x x sin x x
lim
x 0
x sin x x sin x x sin x 0 lim 0, f lim 0 x 0 x 0 x x x x sin x x sin x x sin x 0 lim 0, f lim 0 x 0 x 0 x x x
0 2
B. r ( A BA) r ( A). D. r ( A B ) r ( A B ).
T T
【解析】特殊值法:由已知可将 f ( x ) 看成随机变量 X N 1, 布的对称性, P X 0 0.2

2
的概率密度,根据正态分
1 n Xi , n i 1
Born to win
2018 年考研数学三试题与答案解析(完整版)
——跨考教育数学教研室
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项 符合题目要求的,请将所选项前的字母填在答题纸 指定位置上. ... 1. 下列函数中,在 x 0 处不可导的是( A. f ( x ) x sin( x ) C. f x cos( x ) 【答案】D 【解析】 A 可导: ) 。

2018考研数学三真题及答案

2018考研数学三真题及答案

2018考研数学三真题及答案一、 选择题1.下列函数中,在 0x =处不可导的是()().sin A f x x x = ().B f x x =().?C f x cos x = ().D f x =答案:() D 解析:方法一:()()()000sin 0limlim lim sin 0,x x x x x x f x f x x xx A →→→-===可导 ()()()0000limlim 0,x x x x f x f x x B →→→-===可导()()()20001cos 102limlim lim 0,x x x x x f x f x x C x→→→---===可导 ()()()000102limlim x x x x f f x xD x →→→--==不存在,不可导 应选()D . 方法二:因为()(1)0f f x ==()()000102lim limx x x x f x f x x→→→--==不存在 ()f x ∴在0x =处不可导,选()D对()():?A f x xsinx =在 0x =处可导 对()()32:~?B f x x x =在 0x =处可导 对()():x x C f cos =在 0x =处可导. 2.设函数()f x 在[0,1]上二阶可导,且()10,f x dx =⎰则()()1'0,02A f x f ⎛⎫<<⎪⎝⎭当时 ()()1''0,02B f x f ⎛⎫<< ⎪⎝⎭当时 ()()1'0,02C f x f ⎛⎫><⎪⎝⎭当时 ()()1''0,02D f x f ⎛⎫>< ⎪⎝⎭当时 答案()D【解析】将函数()f x 在12处展开可得()()()()()222111000''1111',22222''1111111''',22222222f f x f f x x f f x dx ff x x dx f f x dx ξξξ⎛⎫⎛⎫⎛⎫⎛⎫=+-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-=+-⎢⎥ ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎰⎰⎰故当''()0f x >时,()111.0.22f x dx f f⎛⎫⎛⎫>< ⎪ ⎪⎝⎭⎝⎭⎰从而有选()D 。

2018年考研数学一二三真题解析及点评(史上最强版)

2018年考研数学一二三真题解析及点评(史上最强版)

证明数列收敛只有唯一的方法:证明数列单调有界。 《金讲》17页予以重要说明并给出两道难度高于本题 的同型例题详解,本题再不济,直接用第一问的结论 求出第二问的结果应该是一丝难度都没有。
数一第20题 数三第20题 数二第22题
《金讲》403-405页不仅给出了通用性齐次 方程组的详细解题过程,还给予具体具体方 程解析示例,详细程度超越市面任何一本数 学参考书,足以解答任何复杂齐次方程组。
本质 一样
数一第18题
(Ⅰ)是简单一阶微分方程求解,直接套公式即得, 送分题;(Ⅱ)不定积分函数与变现积分函数的灵活 转换,需要对两者关系有较深度地掌握方可轻易转 换,稍有难度,本题完整证明出来的同学应该不超 过万分之一。
较 难 题
考查不等式的证明,具有天然的难题属性。但 《金讲》在142页对这类题型设了一个专题给予 了本质性的总结,任何不等式证明本质都可以归 结到两类情况,每类情况的证明有唯一思路,因 此,不等式证明对于《金讲》读者不太可能成为 难题,但《金讲》以外,没有任何参考书做过这 种深度总结,因此本道题对于有些人是难题。
数二第18题
数三第18题
简单函数的级数展开并求通项。展开部分直接套公 式,属于送分。求通项虽偶有难度,但任何求通项 都可以通过适当展开进行归纳这一万能方法,在 《金讲》 中有强调,所以也属于半送分。《金讲》 254页至259页用了一个重点专题予以详解本考点, 足以解决任何函数的展开式。
数一第19题 数三第19题 数二第21题
数二第20题
考查微分的基本应用,将题目 内容用数学式子表示出来,问 题就转化为了最简单的微分或 积分问题,本题几乎是《金 讲》配套暑期集训讲义中的原 题。
数一第11题
考查旋度公式的记忆,直接用 旋度公式计算即得答案。旋度 公式的详细计算公式参见《金 讲》288页,属送分题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年考研数学三真题及答案一、 选择题1.下列函数中,在 0x =处不可导的是()().sin A f x x x =().B f x x =().?C f x cos x =().D f x =答案:() D 解析:方法一: ()()()00sin 0limlim lim sin 0,x x x x x x f x f x x xx A →→→-===可导 ()()()0000limlim 0,x x x x f x f x x B →→→-===可导()()()20001cos 102limlim lim 0,x x x x x f x f x x C x→→→---===可导 ()()()000102limlim x x x x f f x xD x →→→--==不存在,不可导应选()D . 方法二:因为()(1)0f f x ==()()000102lim limx x x x f x f x x→→→--==不存在()f x ∴在0x =处不可导,选()D对()():?A f x xsinx =在 0x =处可导 对()()32:~?B f x x x=在 0x =处可导对()():x x C f cos =在 0x =处可导.2.设函数()f x 在[0,1]上二阶可导,且()100,f x dx =⎰则()()1'0,02A f x f ⎛⎫<<⎪⎝⎭当时 ()()1''0,02B f x f ⎛⎫<< ⎪⎝⎭当时 ()()1'0,02C f x f ⎛⎫><⎪⎝⎭当时 ()()1''0,02D f x f ⎛⎫>< ⎪⎝⎭当时 答案()D 【解析】 将函数()f x 在12处展开可得 ()()()()()222111000''1111',22222''1111111''',22222222f f x f f x x f f x dx ff x x dx f f x dx ξξξ⎛⎫⎛⎫⎛⎫⎛⎫=+-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-=+-⎢⎥ ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎰⎰⎰故当''()0f x >时,()1011.0.22f x dx f f ⎛⎫⎛⎫>< ⎪ ⎪⎝⎭⎝⎭⎰从而有选()D 。

3.设()(2222222211,,11x x xM dx N dx K dx x e ππππππ---++===++⎰⎰⎰,则 A .? .M N K >> B ..M K N >> C..K M N >> D..K N M >>解析:()2222222221211,11x x M dx dx dx x x ππππππ---+⎛⎫==+= ⎪++⎝⎭⎰⎰⎰ 221x x N dx eππ-+=⎰,因为1xe x >+所以11x x e +<(221,1 1.K dx ππ-=+>⎰即111xxe +<<所以由定积分的比较性质 K M N >>,应选()C .4.设某产品的成本函数()C Q 可导,其中Q 为产量,若产量为0Q 时平均成本最小,则()A ()0'0C Q =B ()()00'C Q C Q = C .()()000'C Q Q C Q =D .()()000'Q C Q C Q =答案 D【解析】平均成本()()()()()2',C Q dC Q C Q Q C QC Q QdQQ-==,由于()C Q 在0Q Q =处取最小值,可知()00'0.Q C Q =故选(D).5.下列矩阵中,与矩阵110011001⎛⎫⎪⎪ ⎪⎝⎭相似的为 111.011001A -⎛⎫ ⎪ ⎪ ⎪⎝⎭ 101.011001B -⎛⎫⎪ ⎪ ⎪⎝⎭ 111.010001C -⎛⎫ ⎪ ⎪ ⎪⎝⎭ 101.010001D -⎛⎫ ⎪ ⎪ ⎪⎝⎭解析:令110010001P -⎛⎫ ⎪= ⎪ ⎪⎝⎭则1110010001P -⎛⎫⎪= ⎪ ⎪⎝⎭1110111110010011010001001001120110110011010011001001001P AP ---⎛⎫⎛⎫⎛⎫⎪⎪⎪= ⎪⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎪⎪⎪= ⎪⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭Q∴选项为A6.设,A B 为n 阶矩阵,记()r X 为矩阵X 的秩,()XY 表示分块矩阵,则()().?Ar A AB r A = ()().?B r ABA r A =()()(){}.? ,C r AB max r A r B = ()().? T T D r AB r A B =答案:()A解析:易知选项C 错 对于选项B 举反例:取11001112A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭1 则()001100,,331133BA A BA ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭7. 设随机变量X 的概率密度()f x 满足()()11+=-f x f x ,且()200.6=⎰f x dx ,则{}0______<=P X .(A)0.2; (B) 0.3; (C) 0.4; (D) 0.6. 解 由()()11+=-f x f x 知,概率密度()f x 关于1=x 对称,故{}{}02<=>P X P X ,且{}{}{}00221<+≤≤+>=P X P X P X ,由于{}()20020.6≤≤==⎰P X f x dx ,所以{}200.4<=P X ,即{}00.2<=P X ,故选项A 正确.8. 设()12,,,n X X X K 为取自于总体()2,X N μσ:的简单随机样本,令∑==ni iX n X 11,1S =2S =,则下列选项正确的是______.(A) )()X t n Sμ-:;(B) )()1X t n Sμ--:;(C))()*X t n Sμ-:;(D))()*1X t n S μ--:.解由于()~0,1N ,)1(~)()1(221222--=-∑=n X XSn ni iχσσ,且与22(1)n S σ-相互独立,由t 分布的定义,得)~(1)X t n Sμ-=-,故选项B 正确. 二、 填空题9.曲线22ln y x x =+在其拐点处的切线方程为__。

答案43y x =-【解析】函数()f x 的定义域为()232240,,'2,''2,'''y x y y xx x +∞=+=-=。

令''=0y ,解得x=1,而()'''10,y ≠故点(1,1)为曲线唯一的拐点。

曲线在该点处切线的斜率()'14,y =故切线方程为43y x =-。

10.__.x e =⎰arcsin ,=tan x x x e C t t Ce C====⎰⎰答案【解析】令t=e 则原式11.差分方程25∆-=x x y y 的通解______. 【答案】125x x y c +=⋅-()()2+1+2+1+1+2+1+2+1+1+111111==22=5,2525,2,-2=5,=-52x x x x x x x x x x x x x x x x x x x x x y y y y y y y y y y y y y y y y y y c y c c c c y c *+∆∆∆∆-∆=∆-∆-∆-∆=∆-∆+∆-∆-=-==⋅==⋅-【解析】由于,故原差分方程可化为即。

设一阶常系数线性差分方程对应的其次方程为其通解为。

设原差方程的特解代入原方程得即。

所以原差分方程的通解为5,c 为任意常数。

12.函数()x ϕ满足()()()()()20,x x x x x x x x ϕϕϕο+∆-=∆+∆∆→且()02ϕ=,则()1__.ϕ=答案 ()12.e ϕ=【解析】()()()()()()2,,'=2x x x x x x x x x ϕϕοϕϕϕ=∆+∆由可知可微且。

这是一个可分离变量微分方程,求得其通解为()2;x x ce ϕ=再由()02ϕ=,可得2c =。

故()()22,12x x e e ϕϕ==。

13.设A 为3阶矩阵,123,,ααα为线性无关的向量组,若112322332322,A A A αααααααααα=++=+=-+,,可得 ()()123123200,,,,111121A αααααα⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦。

由于123,,ααα线性无关,故200111121A ⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦:=B ,从而有相同的特征值。

因()()2200111223,121E Bλλλλλλλ--=--=--+---故A 的实特征值为2。

14.设随机事件,,A B C 相互独立,且1()()()2===P A P B P C , 则()______⋃=P AC A B .解 由条件概率以及事件相互独立性的定义,得()()()()()()()()()()()()()11122.111132222⋃⎡⎤⎣⎦⋃=⋃=+-⋅=+-⋅⋅==+-⋅P AC A B P AC A B P A B P AC P A P B P AB P A P C P A P B P A P B 三、 解答题15.已知实数,a b ,满足()1lim 2,x x ax b e x →+∞⎡⎤+-=⎢⎥⎣⎦求a,b 。

答案 1,1a b ==【解析】()011,lim2,t t a bt e t x t+→+-=令 =可得 ()0000111lim lim lim lim t t t tt t t t a bt e ae ae be bttt++++→→→→+---=+=+其中可知0011lim 2,lim ,1t t t t ae ae b a t t++→→--=-=而要使得存在必须有。

01,lim =1=2, 1.,1,1t t ae b b ta b +→--===此时有故综上。

16.设平面区域D 由曲线y =y =及y 轴围成。

计算二重积分2D x dy ⎰⎰。

答案)2.32π-【解析】)22I x dy x dx ==()3022240,,sin ,cos sin 2288432xx dx x x t t tdt td t ππ=-===⋅=其中对于令可化为而)340112416x dx x π==-=-,综上。

相关文档
最新文档