流体力学第1章流体的力学性质解读

合集下载

流体力学 第1章(下) 流体的主要物理性质

流体力学 第1章(下)  流体的主要物理性质

连续介质假设
连续介质假设是将流体区域看成由流体质点连续组成,占满空 间而没有间隙,其物理特性和运动要素在空间是连续分布的。
为什么要做这样的假设呢?
对流体物质结构的简化,使我们在分析问题时得到两大方便: 第一,它使我们不考虑复杂的微观分子运动,只考虑在外 力作用下的宏观机械运动; 第二,能运用数学分析的连续函数工具。因此,本课程分 析时均采用“连续介质”这个模型。
和流层问距离dy成反比;
2.与流层的接触面积A的大小成正比;
3.与流体的种类有关;
4.与流体的压力大小无关。
动力粘滞系数μ
表征单位速度梯度作用下的切应力,
Байду номын сангаас
所以它反映了粘滞性的动力性质,因此 也称为动力粘滞系数。
单位是N/m2·s或Pa·s。
运动粘滞系数ν
理解为单位速度梯度作用下的切应力对单位体
2、流体质点和连续介质模型
流体质点的概念 流体质点也称流体微团,是指尺度大小同一 切流动空间相比微不足道又含有大量分子,具有 一定质量的流体微元。 如何理解呢?
宏观上看(流体力学处理问题的集合尺度):流体质 点足够小,只占据一个空间几何点,体积趋于零。
微观上看(分子集合体的尺度):流体质点是一个足 够大的分子团,包含了足够多的流体分子,以至于对 这些分子行为的统计平均值将是稳定的,作为表征流 体物理特性的运动要素的物理量定义在流体质点上。
实例应用:以密度为例来说明物理量如何在流体质点上定义的。 假设流体微团的质量为Δm ,体积为ΔV ,则流体质点的密度 m 为Δm/ΔV lim
v 0
V
其中,ΔV的含义可以理解为流体微团趋于流体质点。

连续介质假设为建立流场的概念奠定了基础:设 在t时刻,有某个流体质点占据了空间点(x,y,z), 将此流体质点所具有的某种物理量定义在该时刻和空 间点上,根据连续介质假设,就可形成定义在连续时 间和空间域上的数量或矢量场。

《流体力学》教案第一章流体及其主要物理性质

《流体力学》教案第一章流体及其主要物理性质

前言流体力学是力学的一门重要分支。

它是运用力学中的基本规律,研究流体平衡及其运动规律的一门学科。

这门课侧重于流体力学在工程实际中的应用,而对于我们专业来讲,则主要是研究流体力学中的不可压缩流体的平衡及运动规律部分,因为我们经常会遇到的有关水面舰艇、潜艇及鱼雷的运动问题,都是在海水中进行的,而我们一般认为海水的密度为常数,即海水为不可压缩流体。

关于流体的压缩性(可压或不可压),我们在下一节中再详细阐述。

下面就流体力学的发展简史,它的研究方法和内容,这门课程在本专业中的地位与作用等三方面的问题进行说明。

1、流体力学的发展简史流体力学成为一门完整的学科,是经历了一个漫长的历史过程。

人类最早对流体的认识是从供水、灌溉、航行等方面开始的。

例如我国古代传说中的大禹治水的故事及李冰父子在四川修建的都江堰水利工程都是劳动人民利用流体的知识去改造大自然的光辉范例。

在流体力学领域中,最早的一部科学著作是公元前250年由阿基米德所著的《论浮体》,书中精确的给出了著名的“阿基米德原理”,但在这之后的相当长时间里,流体力学几乎没有什么显著进展。

随着欧洲资本主义萌芽的产生,到十七世纪末流体力学又有了许多成就,托里拆利的孔口出流公式、巴斯卡原理、牛顿内摩擦定律等都是当时在流体力学领域内取得的成就,但这些成就都是离散的,孤立的,还不足以使流体力学发展成为独立的学科体系。

流体力学成为独立的一门学科是开始于十八世纪伯诺利(D.Bernonlli)方程和欧拉(L.Euler)方程的建立,十九世纪初期和中期,纳维埃(L.Navier)和斯托克斯(G..G..Stocks)发表了非常著名的粘性流体的运动方程式(即N-S方程)。

十九世纪末,雷诺(O.Regnolols)发现了流体的两种完全不同的流动状态,即层流和紊流。

二十世纪以来,这门科学的发展很快,库塔(W.M.Kutta)和儒可夫斯基(H.E.Joukowski)发表了机翼的升力理论,为航空事业的发展奠定了坚实的理论基础,普朗特(L.Prardtl)提出了边界层理论,这些理论对流体力学开始脱离经典式的理论研究而与工程实际相结合起着很大的作用。

流体力学 - 第一章流体属性及静力学

流体力学 - 第一章流体属性及静力学
第一章 流体属性及静力学
1
第一章
流体属性及静力学
§1-1 流体定义及连续介质假定 §1-2 流体的密度、重度和粘性 §1-3 流体的其他属性 §1-4 作用于流体上的力 §1-5 流体静压力特性及静止流体中 压力变化规律 §1-6 静止流体作用在壁面上的力
第一章 流体属性及静力学
2
重点:连续介质模型,流体的粘性, 作用于流体上的力,静压力的特性,
第一章 流体属性及静力学
31
外力:周围物体对其作用力 。包括周 围流体和固体的作用力 。 外力又可分为: 表面力:表面压力、表面粘性力。自由 面上还有表面张力 ——是一种特殊类型的 表面力 ,液体内分子对表面分子的吸引。 质量力(体积力 ):重力、惯性力、磁场 力等等。
第一章 流体属性及静力学
32
1. 流体的压缩性
如果温度不变,流体的体积随压强增加 而缩小,这种特性称为流体的压缩性,通 常用体积压缩系数 p 来表示。 p 指的是在温度不变时,压强增加一个 单位所引起的流体体积相对缩小量,即:
p
1 dV V dp
第一章 流体属性及静力学
28
流体体积压缩系数的倒数就是流体的体积 弹性模量E。它指的是流体的单位体积相对变 化所需的压强增量,即:
第一章 流体属性及静力学
25
粘性流体(viscous fluid):考虑粘性影响。 理想流体(ideal fluid):不考虑粘性影响。 粘性流体与理想流体的主要差别如下: (1)流体运动时,粘性流体相互接触的流体 层之间有剪切应力作用,而理想流体没有; (2)粘性流体附着于固体表面,即在固体表 面上其流速与固体的速度相同,而理想流体在 固体表面上发生相对滑移。
第一章 流体属性及静力学

第1章 流体的力学性质

第1章 流体的力学性质

第1章流体的力学性质根据现代的科学观点,物质可区分为五种状态:固态、液态、气态、等离子态和凝聚态,其中,固、液、气三态是自然界和工程技术领域中常见的。

从力学的角度看,固态物质与液态和气态物质有很大的不同:固体具有确定的形状,在确定的剪切应力作用下将产生确定的变形,而液体或气体则没有固定的形状,且在剪切应力作用下将产生连续不断的变形——流动,因而液体和气体又通称为流体。

应用物理学基本原理研究流体受力及其运动规律的学科被称为流体力学。

流体力学作为宏观力学的重要分支,与固体力学一样同属于连续介质力学的范畴。

本章将首先阐述流体连续介质模型,在此基础上讨论流体的力学特性。

1.1 流体的连续介质模型1.1.1流体质点的概念流体是由分子构成的,根据热力学理论,这些分子(无论液体或气体)在不断地随机运动和相互碰撞着。

因此,到分子水平这一层,流体之间总是存在着间隙,其质量在空间的分布是不连续的,其运动在时间和空间上都是不连续的。

但是,在流体力学及与之相关的科学领域中,我们感兴趣的往往不是个别分子的运动,而是大量分子的统计平均特性,如密度、压力和温度等,而且,为了准确地描述这些统计特性的空间分布,需要在微分即“质点”的尺度上讨论问题,为此,必须首先建立流体质点的概念。

建立流体质点的概念可借助于物质物理量的分子统计平均方法。

以密度为例,在流体中任取体积为的微元,其质量为,则其平均密度可表示为:(1-1)显然,为了描述流体在“质点”尺度上的平均密度,应该取得尽量地小,但另一方面,的最小值又必须有一定限度,超过这一限度,分子的随机进出将显著影响微元体的质量,使密度成为不确定的随机值。

因此,两者兼顾,我们采用使平均密度为确定值(与分子随机进出无关)的最小微元作为质点尺度的度量,并将该微元定义为流体质点,其平均密度就定义为流体质点的密度:(1-2)推广到一般,所谓流体质点就是使流体统计特性为确定值(与分子随机进出无关)的最小微元,而流体质点的密度、压力和温度等均是指内的分子统计平均值。

工程流体力学(第二版)习题与解答

工程流体力学(第二版)习题与解答

普通高等教育“十一五”国家级规划教材“过程装备与控制工程”专业核心课程教材工程流体力学(第二版)习题与解答黄卫星编四川大学化工学院过程装备与安全工程系2008年10月30日第1章 流体的力学性质1-1 用压缩机压缩初始温度为20℃的空气,绝对压力从1个标准大气压升高到6个标准大气压。

试计算等温压缩、绝热压缩、以及压缩终温为78℃这三种情况下,空气的体积减小率V ∆= 121()/V V V −各为多少?解:根据气体压缩过程方程:k pV const =,有1/2112(/)(/)k V V p p =,所以V ∆=1/1221112()11kV V Vp V V p −=−=−等温过程k =1,所以 V ∆121/11/6p p =−=−=83.33% 绝热过程k =1.4,所以 V ∆1/1.41/1.4121(/)1(1/6)p p =−=−=72.19% 压缩终温为78℃时,利用理想气体状态方程可得212121178111=80.03%620V V p T V p T ×∆=−=−=−× 1-2 图1-12所示为压力表校验器,器内充满体积压缩系数104.7510p β−=×m 2/N 的油,用手轮旋进活塞达到设定压力。

已知活塞直径D =10mm ,活塞杆螺距t =2mm ,在1标准大气压时的充油体积为V 0=200cm 3。

设活塞周边密封良好,问手轮转动多少转,才能达到200标准大气压的油压(1标准大气压=101330Pa )。

解:根据体积压缩系数定义积分可得:1d d p VV pβ=−→ 00exp[()]p V V p p β=−− 因为 02()001exp 4p p p D nt V V V βp −− =−=− 所以 21()0241=p p p nV e D tβp −− − 12.14 rpm图1-12 习题1-2附图1-3 如图1-13所示,一个底边为200mm 200mm ×、重量为1kN 的滑块在20°斜面的油膜上滑动,油膜厚度0.05mm ,油的粘度µ=2710−×Pa·s 。

流体力学基础流体的性质与流体力学原理

流体力学基础流体的性质与流体力学原理

流体力学基础流体的性质与流体力学原理流体力学基础——流体的性质与流体力学原理流体力学是研究流体运动和流体力学基本原理的学科,广泛应用于航空、航海、能源、化工等领域。

本文将介绍流体的性质以及流体力学的基本原理。

一、流体的性质流体指的是气体和液体,在力学中被视为连续介质。

流体具有以下几个主要的性质:1. 可流动性:与固体不同,流体具有较低的粘性和内聚力,因此可以流动。

流体的流动性使其在工程领域中应用广泛,并且流体力学正是研究流体流动的力学学科。

2. 不可压性:对于液体来说,密度变化相对较小,一般可视为不可压缩的。

而对于气体来说,变化较大的压力会引起密度变化,所以流体力学中对气体流动的研究需要考虑密度的变化。

3. 流体静力学压力:流体静力学压力是由于流体自身重力或外力作用下的压力差异引起的。

流体中的每一点都承受来自其周围流体的压力。

4. 流体动力学压力:流体动力学压力是由于流体的动力作用引起的压力差异。

当流体以较高速度通过管道或物体时,流体动力学压力扮演着重要的角色。

二、流体力学原理流体力学原理是研究流体运动的基本规律,它由庞加莱提出的运动方程、贝努利定律、连续方程等组成。

以下将分别介绍这几个基本原理:1. 流体运动方程:流体运动方程描述了流体在空间中运动的规律。

流体运动方程包括质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程指出质量在流体中不会凭空消失或产生;动量守恒方程描述了流体运动中受到的作用力和压力的关系;能量守恒方程则研究了流体在流动过程中的能量转化。

2. 贝努利定律:贝努利定律是流体力学中最为著名的定律之一。

它说明了在无粘度和定常状态下,流体在不同位置的速度、压力和高度之间存在着一种平衡关系。

贝努利定律在飞行器设计和管道流动等领域中有广泛的应用。

3. 材料导数:材料导数是流体力学中用来描述物质随时间变化的速率的重要概念。

对于流体来说,由于其非刚性的特性,物质随时间的变化需要通过材料导数来描述,它包括时间导数和空间导数。

流体的主要力学性质

流体的主要力学性质
粘性是流体抵抗剪切变形(或相对运动)的一种属性。粘性也是运动流 体产生机械能损失的根源。
微观机制:分子间吸引力、分子不规则运动的动量交换。
流体力学-- Fluid Mechanics
天河学院 建筑工程系
Construction Engineering Department ,TianHe College
流体的黏性受温度的影响很大,而且液体和气体的黏性随温度的变化是不 同的。液体的黏性随温度升高而减小,气体的黏性随温度升高而增大。
造成液体和气体的黏性随温度不同变化的原因是由于构成它们黏性的主要 因素不同。分子间的吸引力是构成液体黏性的主要因素,温度升高,分子间的 吸引力减小,液体的黏性降低;构成气体黏性的主要因素是气体分子作不规则 热运动时,在不同速度分子层间所进行的动量交换。温度越高,气体分子热运 动越强烈动量交换就越频繁,气体的黏性也就越大。
二、流体的主要力学性质
2、粘性(viscosity)
y
F
U
b
uy
(1)牛顿内摩擦定律——Newton’s 实验
A
FU
du
Ab
dy
——内摩擦力。
Hale Waihona Puke 产生原因:分子引力;分子动量交换。
——动力粘性系数(Pa.s) 。 值越大,流体
越粘,抵抗变形运动的能力越强。
——运动粘性系数(m^2/s)。
二、流体的主要力学性质 2、粘性(viscosity) (2) 理想流体与粘性流体
理想流体: 的 0流体(无粘性流体)
粘性流体: 的0 流体(真实流体) (3) 牛顿流体和非牛顿流体
牛顿流体: c的on流st 体。剪应力和变 形速率满足线性关系。
非牛顿流体: (d的u 流dy体) 。剪切应力 和变形速率不满足线性关系。

流体力学流体性质讲解

流体力学流体性质讲解

粘性、扩散性、热传导性
这种流体的输运性质,从微观上看,是通过分子的 无规则热运动及分子的相互碰撞实现的,分子在无 规则热运动中,将原先所在区域的流体宏观性质输 运到另一个区域,再通过分子的相互碰撞,交换、 传递了各自的物理量,从而形成新的平衡态。
流体的输运性质,主要指动量输运、能量输运、 质量输运,从宏观上看,它们分别表现为粘滞 现象、导热现象、扩散现象。
水 1.785 106 m2/s
1000C
水 0.282 103 Pa s
水 0.294 106 m2/s

-40C
空气 1.49 105 Pa s
空气 0.98105 m2/s
1000C
空气 2.18105 Pa s
空气 2.31105 m2/s
一般按具体流动中压缩程度的大小分类: 可压缩流 不可压缩流体
d 0
dt
一般地,当 / 5 时,按不可压缩流处理 一般情况下,水和其它液体认为不可压缩,可 忽略其密度变化。 低速气体流动(速度小于100米/秒),通常也按不 可压缩流处理 也与研究问题有关,如空气中声波,要考虑压缩性。
它起源于分子间的相互作用和跨界面的动量交换
粘滞现象示意图
流体粘滞现象
A层流体具有较大的动量
B层流体分子具有较小的动量
(气体)分子无规则运动及碰撞导致A、B两层
流体动量发生变化,
(液体分子为分子间吸引力作用),在相邻流体
层间产生内摩擦,存在一个平行于流体层的剪切力。
动量定理
d
(
mv)

F

1


( T )p

1 v
v ( T )p
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 dV V V dt
单位:1/K
10
1.2.3 可压缩流体和不可压缩流体 通常情况下,视液体为不可压缩流体,即密 度为常数。但在某些特殊场合,如水击现象,则 必须考虑液体的可压缩性才能得出合理的结果。 通常视气体为可压缩流体,特别在流速较高 时,压强变化较大的场合,必须将其密度视为变 量。但在流速不高时,压强变化较小的场合,可 忽略其可压缩性,视为不可压缩性流体。例如: 在标准状态下,当气体的流速为102m/s(Ma=0.3) 时,不考虑压缩性所引起的计算相关误差为2.3%, 这在工程上是允许的。
流体微团(也称为流体质点),由足够数量的分 子组成,连续充满它所占据的空间,彼此间无任何间 隙。——这就是1753年由欧拉首先建立的连续介质模 型。 基于流体质点的概念,流体的连续介质的模型有 如下的基本假设: a.质量分布连续 ( x, y, z, t ) v v( x, y, z, t ) b.运动连续 p p( x, y, z, t ) c.内应力连续 这意味着大量的数学方法特别是微分方程可以引 用到流体力学中来。
16

如图(a)实验,可见各流体层之间都有相对运动,因 而必定产生内摩擦力。若要维持该摩擦力,必须在上板施 加与内摩擦力F大小相等而方向相反的力F´。F大小为:
U F A h
式中,μ称为动力粘度(简称粘 度),单位Pa·s;U/h为速度梯度。 一般情况下,流体的速度并不按直 线变化,如图(b)所示,将上式推广 应用于流体的各个薄层,得:
dVx dy
止时,流体中不存在内摩擦。 在流体力学中,还常用动力粘度和流体密度的比值来 度量流体的粘度,称为运动粘度。
/
单位 m2/s
18
d
例:垂直圆管内的活塞运动
如图是一根内经d=74.0mm的垂 直圆管,管内有一质量为2.5Kg的活 塞,其D=73.8mm,L=150mm。活塞与 圆管完全对中,两者间隙为0.1mm, 间隙中充满润滑油膜。润滑油粘度系 数μ =0.007Pa·s。若不考虑空气压 力,试求当活塞自由下落时其最终的 平均速度。
11

1.2.4 流体的粘性 1.2.4.1 粘性及粘性内摩擦力
ω
12
当流体层间出现相对运动时, 随之产生阻抗流体层间相对运动的 内摩擦力,流体产生内摩擦力的这 种性质称为粘性。
必须注意:只有在流体流动时 才会表现出粘性,静止的流体不会 呈现粘性。
ω
13
粘性内摩擦力产生的原因: (1) 由于分子间的吸引力,如图(a)所示。 (2) 由于分子不规则运动的动量交换,如图(b)所示。
Vx+dVx dy Vx
y x 图(b)
dVx F A 称为牛顿内摩擦定律 dy
17
物理意义:流体内摩擦力的大小与流体的速度梯度和 接触面积的大小成正比,并且与流体的性质有关,即与粘 性有关。 单位面积上的内摩擦力称为切向应力,用τ 表示

dVx 0 dy
时, =0,即当两层流体处于静止或相对静
V1 V2 第一层 第二层 V1 V2 mdv
V3
V1>V2
分子间距d增大
V1>V2>V3
(b)
(a)
思考题:试分析液体、气体产生粘性内摩擦力的
主要原因?
14
思考题
1.什么是流体? 2.流体的物理性质有哪些? 3.流体的连续介质的模型有哪些基本假设? 4.所有液体都可视为不可压缩流体,气体可 视为可压缩流体,这种说法对吗? 5.血液比水粘性大,对吗? 6.为了研究方便,流体质点可以取得无限小, 对吗?
流体中存在切应力是流体处于运 动状态的充分必要条件。
9
1.2.2
可压缩性及膨胀性
流体可压缩性的表示法: a、体积压缩系数表示法:指在一定温度下,单位压 力增量产生的体积相对减少率,即
dV / V 1 dV p dp V dp
思考题:β p的符号?
b、体积弹性模量表示法(即β p的倒数用Ev表示)。 流体可膨胀性表示法: 当压强保持不变时,单位温升所引起的体积变 化率称为体积膨胀系数,即:
3
F1
∆θ
作用后 作用前
F
v
流体 流体上滑动一个固体 平板对流体施加剪切 应力,发现流体将产 生连续变形。
F1
弹性体受剪切力时 角变形量∆θ与剪切力成正比, 只要剪切力保持不变且材料 没达到屈服点,弹性体的角 变形就保持不变。
流体—是一种受到任何微小剪切应力 作用时,都能连续变形的物质。
5
1.1.2
7
思考题
1.对于稀薄空气和高真空是否适用于流体的连 续介质模型?
2.按连续介质的概念,流体质点是指: (a)流体的分子; (b)流体内的固体颗粒; (c)几何的点; (d)几何尺寸同流动空间相比是极小量,又含 有大量分子的微元体。
8
1.2 流体的主要物理性质
1.2.1 流动性
流体的流动性:流体没有固定的形状,其形状取 决于限制它的固体边界;流体各个部分之间很容易发 生相对运动,这就是流体的流动性。 运动流体:受到剪切应力的作用发生了连续变形 的流体就称之为运动流体。 静止流体:不受剪切应力的流体就不发生变形, 称之为静止流体。
15
1.2.4.2 牛顿内摩擦定律
牛顿经大量实验,1686年提出了确定流体内摩擦力大 小的定律。现以图例说明实验内容及结果。 两块水平放置 的平行平板,间距为h,两平板间充以某种液体,假定上板 以匀速度U向右平动,下板保持静止不动。
1.两板间的液体会有何变化?2.上板的受力及影响因素.
U
y F h y o 图(a) x
1
1
主 要 内 容
流体的力学性质
掌握:流体概念、连续介质模型、流体
性质、牛顿内摩擦定律、拉普拉 斯公式。 熟悉:拉普拉斯公式的推导过程;毛细 管现象。 了解:牛顿流体;非牛顿流体。
2
1.1 流体的特征及连续介质模型
1.1.1
流体的特征 根据现代科学的观点,物质可分为五种状 态即:固态、液态、气态、等离子态和凝聚态。 液体和气体没有固定的形状,在切应力作用下 将产生连续不断的变形——流动。通常称液体 和气体为流体。 流体和固体对剪切力的反映不同。如下图 所示。
流体质点的概念
在流体中任意取一体积为△V 的微元,其质量为 △m,其平均密度为:
m m / V
m lim V Vl V
△V 应该是使物理量统计平均值与分子随机运动 无关的最小微元△Vl,并将该微元定义为流体质点, 该微元的平均密度定义为流体质点的密度:
6
1.1.3
流体的连续介质模型
相关文档
最新文档