函数信号发生器的multisim仿真电路图
基于Multisim的非正弦波信号发生器设计与仿真

基于Multisim的非正弦波信号发生器设计与仿真作者:张爱英毛战华来源:《现代电子技术》2014年第13期摘要:在电子电路中,矩形波、三角波、锯齿波统称为非正弦波,所设计的非正弦波信号发生器以矩形波发生电路为基础,在其输出端加积分运算电路及相应的辅助电路产生三角波或锯齿波信号,辅以外围电路设计,实现信号频率、幅值、占空比调节。
在Multisim 10开发环境中搭建该电路并进行了验证分析,结果表明,电路达到了设计要求,实现了预期功能。
关键词:非正弦波;信号发生器;仿真; Multisim 10中图分类号: TN702⁃34 文献标识码: A 文章编号: 1004⁃373X(2014)13⁃0146⁃04 Design and simulation of non⁃sinusoidal wave signal generator based on MultisimZHANG Ai⁃ying, MAO Zhan⁃hua( College of Science and Information, Qingdao Agricultural University, Qingdao 266109,China)Abstract: Rectangular wave, triangle wave and sawtooth wave are collectively referred to as non⁃sinusoidal wave in the electronic circuit. The non⁃sinusoidal signal generator designed in this paper is based on a rectangular wave generating circuit. It can generate triangle wave or sawtooth wave by adding an integral circuit and auxiliary circuit at its output end. The signal amplitude,frequency and duty ratio can be controlled by designing the auxiliary circuit. This circuit was built and analysed in the Multisim 10 development environment. The results show that the circuit meets the design requirements and can realize the expected function.Keywords: non⁃sinusoidal wave; signal generator; simulation; Multisim 100 引言在实际的电子电路应用中,除了常用的正弦波信号之外,还经常用到矩形波、三角波、锯齿波等非正弦波信号。
第3章Multisim8的虚拟仪器4字信号发生器逻辑分析仪

3.8 字信号发生器 字信号发生器(Word Generator)是一个
可以产生32位同步逻辑信号的仪器,用于对数 字逻辑电路进行测试。
字信号发生器的图标左侧有0~15共16个输 出端,右侧有16~31也是16个输出端,任何一 个都可以用作数字电路的输入信号。另外,R 为备用信号端,T为外触发输入端。
3.9 逻辑分析仪 逻辑分析仪(Logic Analyzer)可以同步显
示和记录16路逻辑信号,用于对数字逻辑信 号的高速采集和时序分析 。
逻辑分析仪的图标左侧有1~F共16个输入端, 使用时接到被测电路的相关节点。图标下部 也有3个端子,C是外时钟输入端,Q是时钟 控制输入端,T是触发控制输入端。
基于Multisim10的函数发生器设计应用

基于Multisim10的函数发生器设计应用文章基于Multisim 10使用放大器3554AM以及乘法器等设计了一次函数发生器、二次函数发生器以及幅值和频率可调的方波和三角波函数信号发生器,用Multisim 1O进行仿真分析,并和理论计算进行了比较。
1 Multisim 10软件简介美国国家仪器公司(NI)最新推出电子线路仿真软件Multisim 10,该软件包含电路仿真(Multisim)、PCB设计(Ultiboard)、布线(Ultir-oute)以及通信分析与设计(Commsim)四个部分,Multisim 10中虚拟仪器仪表种类齐全,如示波器、函数发生器等,也有强大的电路分析功能,可进行直流工作点分析、瞬态分析、传递函数分析、傅里叶分析等,同时还可以测试设计演示各种电路,支持常用的8051单片机,并且在程序编译中支持C代码、汇编和16进制代码。
与传统的电路设计相比,可随时调整元器件参数以达到预期的要求,从而能降低电路设计成本,缩短设计周期,提高设计效率。
2 函数发生器的设计与仿真分析2.1 一次函数发生器在函数发生器设计中,往往需要对一定电压Ui给予放大再偏置以得到Uo=AUi+Vo这种形式的电压,其中Vo就是期望的偏置量,利用求和放大器可实现这种偏置放大。
此一次函数表达式为f(x)=-Ax-B类型,由运放3554AM构成的比例相减电路来实现。
相关电路如图1所示。
图1 一次函数发生器电路及仿真结果由图可得:,将电阻值等代入可得:Uo=-3Ui-4V,代入输入电压12V,则Uo=-3×12-4V=-40V。
用Multisim 10仿真结果如图1模拟电压表所示,与理论计算结果一致。
2.2 二次函数发生器此函数表达式为:,该函数由乘法器构成的平方电路和由运放3554AM构成的比例相减电路的组合电路来实现。
设计电路如图2所示。
运放有两个输入和一个输出,分别加在同相边和反相边,可由叠加原理算出,Uo=Uo1+Uo2,将图2中反相边置于零,此时电路起一个同相放大作用,又因电路中加入了乘法器,则有:。
模拟电子电路multisim仿真实例大全

模拟电子电路multisim仿真1.1 晶体管基本放大电路1.1.1 共射极基本放大电路按下图搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等。
1. 静态工作点分析选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。
2. 动态分析用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。
由波形图可观察到电路的输入,输出电压信号反相位关系。
再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。
3. 参数扫描分析在上图所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC 的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。
选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100k,终值为900k,扫描方式为线性,步长增量为400k,输出节点5,扫描用于暂态分析。
4.频率响应分析选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。
由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25.12MHz。
第4讲.电路分析Multisim仿真

4
电路基本规律
基尔霍夫电压定律(KVL)
在任一时刻,对于集总参数电路的任意回路,某回路上所有支路电压的 代数和恒为零。KVL是各支路电压必须遵守的约束关系。
例. 求如下电路中,各电阻上的电压,并验证KVL定律。 R=R1+R2+R3,I=U/R, U1=R1I=1.7V, U2=R2I=1.7V, U3=R3I=8.6V。则由KVL定律知: U=U1+U2+U3=12V。
i
u 的相量:U
= Ue jψ = U ∠ ψ
i
模为正弦电压的有效值,辐角为正弦电压的初相 用最大值表示相量:U m
33
= U m e jψ = U m ∠ ψ
正弦稳态分析
交流电路的KCL
例. 如图所示电路,求流过电压源V1的电流。 在交流稳态电路中应用KCL的相量形式,电流必须使用相量相加。由于流 过电感的电流相位落后其两端电压90°,而流过电容的电流超前90°,故 电感电流与电容电流有180°的相位差,流过电感和电容支路的总电流就 等于电感电流与电容电流之差。
图2
图3
电阻电路分析
替换定理 (Substitution Theorem)
在具有惟一解的任意线性或非线性网络中,若已知某支路电压U或电流 I,则可在任意时刻用一个电压为U的独立电压源或一个电流为I的独立 电流源代替该支路,而不影响网络其它支路的电压或电流。
例. 图1所示电路,已知R2右侧二端网络的电流为2A,电压为6V, 对R2右侧二端网络进行替换以验证替换定理。
27
动态电路分析
例. 如图所示一阶积分电路,仿真该电路的全响应。 信号源为函数信号发生器,其参数设置如下图。输出为电容两端的电压。 当一阶电路的时间常数选取足够大时,输出与输入呈积分关系。
multisim仿真电路

1.输入和逻辑状态判断电路的测试
1)调节逻辑电平测试器的被测电压(输入直流电压)为低电平(VL<0.8v)用数字万用表测逻辑状态判断电路输出电平。
2)调节逻辑电平测试器的被测电压(输入直流电压)为高电平(VH>3.5v)用数字万用表测逻辑状态判断电路输出电平。
2.音响声调产生电路
1)逻辑电平测试器的被测电压为低电平(VL<0.8v)用示波器观察、记录音响声调产生电路输出波形,用频率计测量振荡频率f.
四、实验内容及步骤
1.场效应管共源放大器的调试
(1)连接电路。按图1连接好电路,场效应管选用N沟道消耗型2N3370,静态工作点的设置方式为自偏压式。直流稳压电源调至12V。
图1
2.测量静态工作点
将输入端短接(图2),并测量此时的 Vg、Vs、VD、 ,填入下表1
静态工作点:
1.006V
39.355nV
1)输入电阻测量:先闭合开关S1(R2=0),输入信号电压Vs,测出对应的输出电压 ,然后断开S1,测出对应的输出电压 ,因为两次测量中和是基本不变的,所以
,测得 =134.137mV, =67.074mV,
仿真结果如下图4:
2)输出电阻测量:在放大器输入端加入一个固定信号电压Vs,分别测量当已知负载RL断开和接上的输出电压 和 。则 ,由于本实验所用的场效应管必须接入很大的负载才能达到放大效果,因此此方法不适合用来测量本实验输出电阻效果不太好,仿真结果如下图5 =66.8mV, =125mV .
38.328
43.36
35
40
45
50
55
60
65
47.847
51.875
55.507
Multisim14电子电路仿真方法和样例

Multisim14 电子电路仿真方法和样例
2019 年 9 月
1
前言
本手册基于 Multisim14 仿真环境,从最基本的仿真电路图的建立开始,结合实际的例 子,对模拟和数字电路中常用的测试方法进行介绍。这些应用示例包括:常用半导体器件特 性曲线的测试、放大电路静态工作点和动态参数的测试、电压传输特性的测试、波形上升时 间的测试、逻辑函数的转换与化简、逻辑分析仪的使用方法等。
选定 sheet properties 即弹出图 2.3 所示界面,选中 Net names 下的 Show all(简述为
Optionsàsheet propertiesà Net namesàShow all,以下均用简述方法表述),即可在电路图中
显示出各个节点号。
4
图 2.2 移动连线
图 2.3 显示电路节点号
3
1. Multisim14 主界面简介
运行 Multisim14,自动进入电路图编辑界面。当前电路图的缺省命名为“Design1”,在 保存文件时可以选择存放路径并重新命名。Multisim14 主界面如图 1.1 所示。
图 1.1 Multisim14 用户界面
2. 仿真电路图的建立
下面以单管放大电路为例,介绍建立电路的步骤。其中三极管选用实际器件
此外,本手册侧重于测试方法的介绍,仅对主要步骤进行说明,如碰到更细节的问题, 可参阅《Multisim 14 教学版使用说明书》或其它帮助文档。
2
目录
基于Multisim的函数信号发生器设计与仿真

基于Multisim的简易函数信号发生器设计与仿真函数信号发生器是具有两种或两种以上波形信号输出的信号发生器。
把几种不同类型的基本电路组合在一起就可以构成一个函数发生器。
本电路是由一个文氏桥振荡电路。
过零比较电路,积分电路,电压跟随电路和直流稳电路组成。
其工作原理是:首先由文氏桥振荡电路产生一个所需频率的正弦波振荡信号,该正弦信号一部分由电压比较器引出,另一部分由电压跟随器耦合到过零比较电路的输入端,经比较器处理后,将在输出端产生一个相同频率的方波信号,同理,一部分方波信号由电压跟随器引出作为发生器方波信号输出;另一部分继续由跟随器送入下一级积分电路,方波信号被积分电路处理后,在输出端输出一个相同频率的三角波信号,并由跟随器引出作为发生器又一信号输出。
在整个过程中,直流稳压电路作为所有集成运放提供电源。
如图1-1所示:图1-1一、电源选择集成稳压电源是指将不稳定的直流电压变为稳定的直流电压,由于集成稳压器具有稳压精度高、工作稳定可靠、外围电路简单、体积小、质量轻等显著优点,所以它完全可以跟信号发生器提供稳定电源。
集成稳压电路基本结构如图1-2所示,该电路是采用LM7818和LM7918构成的正、负18伏电压同时输出的稳压电源电路,其他元件参数如图所示:图1-2二、文氏桥振荡电路选择振荡电路是大多数信号发生器电路的核心技术,文氏桥振荡电路为其中的一种,在电路中选择合适的元器件参数,便可得到相应的输出频率和振幅,即)foutπ=,而振幅取决于集成运放的峰Up1RC2/((1)参数分析根据设计要求,需应用集成运放设计频率为1KHZ的信号发生器a 选择C6 C7 R3 R4取C6=C7=0.015uF 则R4= 1/(2πfC)= 1/(2π⨯106⨯⨯)=10.6KΩ1000-.0015取系列值R3 = R4 = 10KΩb 选择ICIC 选用MC4558CG 型集成运放,其基本参数如下:nodes: 3=+ 2= - 1=out 5=V+ 4=V-* V CC = 18 V EE = -18 C C = 1e-011 A= 200000 R I = 2e+006* R O = 75 V OS = 0.002 I OS = 2e-008 I BS = 8e-008C 选择 R 1 R 2 VD 2 VD 3采用非线性元件VD 2 VD 3 来自动调节反馈强弱,即利用二极管正向伏安特性的非线形可实现正弦波发生器的自动稳幅。