声速的测定实验报告.doc

合集下载

声速的测量实验报告及数据处理

声速的测量实验报告及数据处理

声速的测量实验报告及数据处理一、实验目的与原理1.1 实验目的为了研究声速的测量方法,我们进行了一次声速的测量实验。

通过实验,我们希望能够了解声速的定义、测量原理以及影响声速的因素,从而为实际应用提供理论依据。

1.2 实验原理声速是指在某种介质中,声波传播的速度。

声音是由物体振动产生的机械波,当这种振动传播到介质中时,会引起介质分子的振动,从而形成声波。

声波在介质中的传播速度与其内部分子的振动速度有关,而分子的振动速度又受到温度、压力等因素的影响。

因此,声速的测量实际上是测量介质中分子振动速度的过程。

二、实验设备与材料2.1 设备本次实验使用的设备包括:声源(用于产生声波)、麦克风(用于接收声波)、计时器(用于计算声波传播时间)、数据处理软件(用于分析实验数据)。

2.2 材料实验所使用的材料包括:水、玻璃、铝箔等。

这些材料都是常见的介质,可以用于测量声速。

三、实验步骤与数据处理3.1 实验步骤1) 将水倒入一个透明的容器中,使其充满水。

2) 将玻璃和铝箔分别放在水中。

3) 用麦克风分别对玻璃和铝箔进行录音。

4) 使用计时器记录每次录音所需的时间。

5) 重复以上步骤多次,以获得较为准确的数据。

6) 使用数据处理软件对实验数据进行分析,得出声速的测量结果。

3.2 数据处理我们需要计算每次录音所需的时间。

由于实验过程中可能会受到环境噪声的影响,因此我们需要在每次录音前先将麦克风校准,以减小误差。

接下来,我们可以使用以下公式计算声波在介质中传播的距离:距离 = (时间 * 频率) / 声速其中,时间是以秒为单位的时间长度,频率是以赫兹为单位的声音频率,声速是以米/秒为单位的声波传播速度。

通过对所有数据的分析,我们可以得到不同介质中声波传播速度的测量结果。

四、实验结果与分析根据我们的实验数据,我们得到了不同介质中声波传播速度的结果。

通过对比实验数据与理论预测值,我们发现实验结果与理论预测值基本一致,说明我们的实验方法是可行的。

声速的测定实验报告.doc

声速的测定实验报告.doc

声速的测定实验报告 1、实验目的(1)学会用驻波法和相位法测量声波在空气中传播速度。

(2)进一步掌握示波器、低频信号发生器的使用方法。

(3)学会用逐差法处理数据。

2、实验仪器超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。

3、实验原理3.1 实验原理声速V 、频率f 和波长λ之间的关系式为λf V =。

如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。

常用的测量声速的方法有以下两种。

3.2 实验方法3.2.1 驻波共振法(简称驻波法)S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。

当波源的频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。

驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中,S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为:ΛΛ3,2,1,2==n nL λ(1)即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。

在示波器上得到的信号幅度最大。

当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。

移动S 2,可以连续地改变L 的大小。

由式(1)可知,任意两个相邻共振状态之间,即S 2所移过的距离为:()22211λλλ=⋅-+=-=∆+n n L L L n n (2)可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。

此距离2λ可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ⋅=λ,就可求出声速。

3.2.2 两个相互垂直谐振动的合成法(简称相位法)在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。

其轨迹方程为:()()φφφφ122122122122-=--⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛Sin Cos A A XY A Y A X (5)在一般情况下,此李沙如图形为椭圆。

声速测定实验报告

声速测定实验报告

声速测定实验报告实验目的:通过测定空气中声波传播的速度,了解声波在介质中传播的基本特性,掌握测量声速的方法。

实验原理:声波是一种机械波,是由介质中的分子之间的相互作用所引起的震动在介质内传播的一种波动现象。

声波的传播速度与介质的物理性质有关。

声波在理想气体中的速度可用下式表示:v = sqrt(γRT/M)其中,v为声速,γ为绝热系数(对于理想气体,γ=7/5),R为气体常量,T为温度(单位为开尔文),M为气体的摩尔质量。

实验仪器:1.声速测定装置(包括音叉、共振管等)2.温度计3.计时器实验步骤:1.将共振管调节到最低共振频率。

2.使用音叉激发声波,将音叉置于共振管上方,并振动使之共鸣。

3.同时开始计时,用计时器测量音叉振动的频率f,即共振管的共振频率。

4.记录此时的共振管长度L。

5.改变共振管的长度,使其共振频率逐渐增加,重新记录频率f和共振管长度L。

6.进行多组实验数据的记录。

实验数据:示例数据如下:实验组,频率f/Hz,共振管长度L/m-------,-----------,-------------1,169.7,0.52,337.2,0.253,507.8,0.1664,678.3,0.125数据处理:根据共振管的长度和频率的变化关系,可以绘制出频率f与共振管长度L的曲线图。

曲线的斜率即为共振频率随共振管长度的变化率,其倒数即可计算出声速。

实验结果和分析:根据实验数据,在不同的共振管长度下测得的频率,可以绘制出频率与共振管长度的曲线。

通过计算斜率的倒数,即可得到声速的值。

在本次实验中,通过多次重复实验,测得共振管长度与频率的相关数据。

根据这些数据,可以绘制出频率与共振管长度的图形,根据其斜率的倒数计算出空气中的声速。

实验误差分析:1.共振管壁的损伤或污染,导致共振管长度的测量不准确。

2.音叉发出的声波可能会受到外界环境的干扰,导致频率测量不准确。

3.温度的变化可能会影响声速的测量结果,需要对温度进行严密控制。

在声速测定实验报告

在声速测定实验报告

一、实验目的1. 了解声波在空气中传播速度的测量原理。

2. 掌握使用示波器、低频信号发生器等实验仪器的方法。

3. 学会运用逐差法处理实验数据。

4. 理解声速与空气温度、湿度等参数的关系。

二、实验原理声波是一种机械波,在弹性媒质中传播。

声速是指声波在媒质中传播的速度。

在空气中,声速受温度、湿度等因素的影响。

本实验通过测量声波在空气中的传播时间,结合声源频率,计算声速。

三、实验仪器与材料1. 声速测量仪2. 示波器3. 低频信号发生器4. 测量线(用于测量声源与接收器之间的距离)5. 温度计6. 湿度计四、实验步骤1. 将声速测量仪、示波器和低频信号发生器连接好。

2. 打开低频信号发生器,调整输出频率至实验要求。

3. 将声源与接收器放置在测量线上,测量两者之间的距离。

4. 打开声速测量仪,记录实验时的温度和湿度。

5. 观察示波器上接收到的信号,记录信号的最大振幅。

6. 重复步骤3-5,进行多次实验,记录数据。

五、实验数据处理1. 计算声波的传播时间,公式为:t = d / v,其中t为传播时间,d为声源与接收器之间的距离,v为声速。

2. 根据实验数据,绘制声速与温度、湿度的关系曲线。

3. 利用逐差法处理实验数据,计算声速的平均值和标准偏差。

六、实验结果与分析1. 实验测得的声速平均值与理论值较为接近,说明实验方法可靠。

2. 通过实验结果分析,得出声速与温度、湿度之间的关系,验证了声速与这些参数的关系。

3. 实验过程中,可能存在一些误差,如仪器精度、操作误差等。

通过多次实验,可以提高实验结果的准确性。

七、实验结论1. 通过本次实验,掌握了声速测定的原理和方法。

2. 理解了声速与空气温度、湿度等参数的关系。

3. 学会了使用示波器、低频信号发生器等实验仪器。

八、实验反思1. 实验过程中,注意仪器的操作规范,避免误差的产生。

2. 实验数据要准确记录,以便后续处理和分析。

3. 通过多次实验,提高实验结果的准确性。

大学物理实验声速测量实验报告

大学物理实验声速测量实验报告

大学物理实验声速测量实验报告在我们进行的大学物理实验中,测量声速的实验让我对声音的传播有了更深刻的理解。

这次实验不仅仅是对数字的记录,更是对物理现象的一次亲身体验,让我领悟到声音在空气中是如何穿梭的。

一、实验准备1.1 实验目的实验的主要目标是测量空气中声速的具体数值,并通过实验数据验证理论值。

这听起来简单,但要做到准确、科学,还是需要细致的准备。

1.2 实验器材为了进行这项实验,我们准备了一些基本的设备。

首先是一个音源,我们选择了一个电子音响,因为它能够发出稳定的声音。

接着,我们需要一个麦克风,来接收声音并进行数据记录。

此外,还需要一个计时器和一个测量距离的工具,比如卷尺。

这些工具的选择都是为了保证我们能够精准地进行测量。

二、实验过程2.1 设定实验环境实验前,我们特意选择了一个相对安静的环境,尽量避免其他噪音对实验结果的影响。

这个细节很重要,因为外界的干扰可能会使我们的测量结果不够准确。

我们在教室里将音响和麦克风的距离调整到大约10米,这是一个合适的距离,既能清晰接收到声音,又不会因为距离过远而导致信号减弱。

2.2 进行测量一切准备就绪后,我们开始了实验。

首先,由一名同学负责操作音响发出声音,另一个同学则准备好麦克风和计时器。

当音响发声的瞬间,计时器开始计时,同时麦克风记录下声音到达的时间。

这一过程需要非常协调,任何一点小的失误都可能影响最终的结果。

我们进行多次测量,每次都记录好对应的时间,以便后续的数据处理。

2.3 数据处理实验结束后,我们收集了多次测量的数据。

在处理数据时,我们计算出声音传播的平均时间,并用已知的距离和时间计算出声速。

理论上,声速在空气中约为343米每秒。

通过我们的测量,结果略有偏差,但在可接受范围内。

这让我意识到,尽管我们在实验中尽力追求精确,但总会受到多种因素的影响,比如温度、湿度等环境条件。

三、实验结果与反思3.1 声速的测量结果通过计算,我们得到了一个接近理论值的声速。

声速测量实验报告范文(共五则)

声速测量实验报告范文(共五则)

声速测量实验报告范文(共五则)第一篇:声速测量实验报告范文实验时间:2019 年月日,第批签到序号:【进入实验室后填写】福州大学【实验一】声速测量(303 实验室)学学院班班级学学号姓姓名实验前必须完成【实验预习部分】登录下载预习资料携带学生证提前 10 分钟进实验室实验预习部分【实验目的】】【实验仪器】(名称、规格或型号)【实验原理】(文字叙述、主要公式、原理图)实验预习部分【实验内容和步骤】】实验预习部分一、写出示波器以下标号的功能(用中文表述),并复习它们的位置(参本考课本 P148 图图 19-13):39(或 11)25。

二、在下图方框中标出函数信号发生器的四个部位分别对应哪个选项。

A、CH1B、CH1使能C、CH2D、CH2使能三、实验中在测量声波波长之前,必须确定系统的。

频率。

动调节方法是:先移动 S1 到距 S2 为为 5 ~10 cm,缓慢调节函数信号发生器频率(在~kHz 连续调节),观察哪个频率下接收波电压动幅度最大。

然后移动S1,使示波器显示的正弦幅度最大,再细调信号以频率(以0.01kHz。

为步长调节),直到接收波振幅最大。

记下此时频率。

注意:本实验用的声速测定装置动子是发射端,定子是接收端。

于两个换能器之间的距离最好大于 5 cm,严禁将两个换能器接触。

数据记录与处理【一】测量系统的谐振频率 f =k H z此时换能器间距 L=mm 【二】用共振干涉法测波长((v 公 =340.00 m/s)1L =mm,11L =mm,λ=mm声速 v =百分偏差 B=【三】用相位比较法测波长(v 公 =340.00m/s)数次数 i L i /mm 数次数 i+6 L i+6 m/mm6()/6()i iL L mmλ+=-()mm λ声速 v =百分偏差 B=思考题:用相位法测量波长时,指出本实验用哪两个图形之间的距离:测量波长:(在正确的图下画√)进入实验室后,按实验指导老师要求撰写。

声速的测定实验报告

声速的测定实验报告

一、实验目的1. 理解声速的概念及其影响因素。

2. 掌握使用驻波法和相位法测量声速的方法。

3. 熟悉示波器、低频信号发生器等仪器的使用。

4. 学会使用逐差法处理实验数据。

二、实验原理声速是指声波在介质中传播的速度。

声速的大小受介质性质(如密度、弹性模量等)和温度的影响。

本实验采用驻波法和相位法测量声速。

1. 驻波法:当两列频率相同、振幅相等的声波在同一直线上传播并相遇时,它们会相互叠加形成驻波。

驻波的波腹(振动幅度最大的点)和波节(振动幅度为零的点)之间的距离等于声波的波长。

通过测量波腹间距,可以间接求出声波的波长,进而计算出声速。

2. 相位法:声波是一种振动状态的传播,即相位的传播。

当超声波发生器发出的声波是平面波时,沿传播方向移动接收器,总能找到一个位置使得接收到的信号与发射器的激励电信号同相。

继续移动接收器,当接收到的信号再次与激励电信号同相时,移过的距离即为声波的波长。

通过测量波长和频率,可以计算出声速。

三、实验仪器1. 驻波法实验:- 超声波发射器- 超声波接收器- 示波器- 低频信号发生器- 测量尺2. 相位法实验:- 超声波发射器- 超声波接收器- 示波器- 低频信号发生器- 测量尺四、实验步骤1. 驻波法:1. 将超声波发射器和接收器分别固定在支架上,使其在同一直线上。

2. 连接示波器、低频信号发生器和超声波发射器、接收器。

3. 调节低频信号发生器的频率,使超声波发射器产生稳定的声波。

4. 观察示波器上的波形,找到波腹和波节的位置,并测量波腹间距。

5. 计算声波的波长和声速。

2. 相位法:1. 将超声波发射器和接收器分别固定在支架上,使其在同一直线上。

2. 连接示波器、低频信号发生器和超声波发射器、接收器。

3. 调节低频信号发生器的频率,使超声波发射器产生稳定的声波。

4. 观察示波器上的波形,找到相位差为零的位置。

5. 测量超声波发射器和接收器之间的距离,即为声波的波长。

6. 计算声速。

声速测定实验报告_清华

声速测定实验报告_清华

一、实验目的1. 理解声波在空气中传播速度与温度、湿度等状态参量的关系。

2. 掌握超声波的产生和接收原理,学习一种测量空气中声速的方法。

3. 深入理解相位的概念,并运用相位法进行声速测量。

二、实验原理1. 声波在空气中的传播速度声波在空气中的传播速度受温度、湿度等因素的影响。

在理想气体中,声波的传播速度可用以下公式表示:\[ v = \sqrt{\frac{\gamma \cdot R \cdot T}{M}} \]其中,\( v \) 为声速,\( \gamma \) 为比热容比,\( R \) 为普适气体常数,\( T \) 为绝对温度,\( M \) 为气体的摩尔质量。

在室温下,干燥空气中的声速约为 343 m/s。

然而,实际空气中总含有一定量的水蒸气,因此需要根据相对湿度和饱和蒸汽压对声速进行修正。

2. 超声波的产生和接收超声波的产生和接收一般通过压电效应和磁致伸缩效应来实现。

本实验采用压电陶瓷制成的换能器(探头),这种换能器可以在机械振动与交流电压之间双向换能。

3. 相位法测量声速相位法是一种常用的声速测量方法。

其基本原理是利用声波的相位差来计算声速。

具体步骤如下:1. 将超声波发射器产生的声波信号传递给接收器。

2. 接收器接收到的信号与发射器产生的信号进行相位比较。

3. 通过测量相位差,计算出声波的波长。

4. 根据波长和传播距离,计算出声速。

三、实验仪器1. 超声波发射器2. 超声波接收器3. 函数信号发生器4. 示波器5. 测量仪器(如尺子、计时器等)四、实验步骤1. 连接电路将函数信号发生器的输出端与超声波发射器的输入端相连,超声波接收器的输出端与示波器的通道1相连。

2. 测量声速1. 调整函数信号发生器的输出频率,使其接近超声波发射器的共振频率。

2. 观察示波器上接收器接收到的信号波形,当信号波形与发射器产生的信号波形同相时,记录此时的频率。

3. 改变接收器的位置,重复步骤2,记录不同位置下信号波形同相时的频率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

声速的测定实验报告 1、实验目的(1)学会用驻波法和相位法测量声波在空气中传播速度。

(2)进一步掌握示波器、低频信号发生器的使用方法。

(3)学会用逐差法处理数据。

2、实验仪器超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。

3、实验原理3.1 实验原理声速V 、频率f 和波长λ之间的关系式为λf V =。

如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。

常用的测量声速的方法有以下两种。

3.2 实验方法3.2.1 驻波共振法(简称驻波法)S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。

当波源的频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。

驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中,S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为:3,2,1,2==n nL λ(1)即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。

在示波器上得到的信号幅度最大。

当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。

移动S 2,可以连续地改变L 的大小。

由式(1)可知,任意两个相邻共振状态之间,即S 2所移过的距离为:()22211λλλ=⋅-+=-=∆+n n L L L n n (2)可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。

此距离2λ可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ⋅=λ,就可求出声速。

3.2.2 两个相互垂直谐振动的合成法(简称相位法)在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。

其轨迹方程为:()()φφφφ122122122122-=--⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛Sin Cos A A XY A Y A X (5)在一般情况下,此李沙如图形为椭圆。

当相位差12=-=∆φφφ时,由(5)式,得xA A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

当212πφφφ=-=∆时,得1222212=+A y A x ,轨迹为以坐标轴为主轴的椭圆当πφφφ=-=∆12时,得xA A y 12-=,轨迹为处于第二和第四象限的一条直线。

改变S 1和S 2之间的距离L ,相当于改变了发射波和接受波之间的相位差(φφφ12-=∆),荧光屏上的图形也随之变化。

显然,L 每变化半个波长(即)21π=-=∆+L L L n n ,位相差φ∆就变化π。

随着振动相位差从0→π的变化,李沙如图形就按图16——2(a) →(b )→(c)变化。

因此,每移动半个波长,就会重复出现斜率符号相反的直线。

测得波长和频率f ,根据λf V =,就可计算出声速。

4、实验内容(1) 熟悉声速测定仪该仪器由支架、游标卡尺和两只超声压电换能器组成。

两只超声压电换能器的位置分别与游标卡尺的主尺和游标相对定位,所以两只换能器相对位置距离的变化量可由游标卡尺直接读出。

两只超声压电换能器,一只为发射声波用(电声转换),一只为接收声波(声电转换),其结构完全相同。

发射器的平面端面用以产生平面声波;接收器的平面端面则为声波的接收面和反射面。

压电换能器产生的波具有平面性、单色性好以及方向性强的特点。

同时可以控制频率在超声波范围内,使一般的音频对它没有干扰。

(2) 驻波法测量声速1)按图接好线路,把换能器S 1引线插在低频信号发生器的“功率输出孔”,把换能器S 2接到示波器的“Y input ”。

2)打开电源开关,把频率倍乘按钮×10K 压入,调节幅度电位器,使数码显示屏读数5--8V 电压,电压衰减按钮为20dB ;波形选择为正弦波(弹出状态)。

3)压入示波器电源开关,把示波器Y 衰减开关VOLTS/DIV 置0.5v 档,Y 输入方式置AC 位。

扫描档TIME/DIV 为20us ,触发源(触发TRIG )选择“内同步INT ”;触发方式为“自动”。

4)移动S 2位置,目测S 1与S 2的距离为3cm 左右,调整低频信号发生器的“频率调节”波段开关,调节频率微调电位器,使数码显示屏的频率读数为34.000—36.000KHz 范围。

观察示波器,当屏幕的波形幅度最大时,说明换能器S 1处于共振状态。

记下频率f 值(实验过程中,频率f 不许改变,否则影响实验数据)。

5)示波器荧幕的波形若不在中央,可调节垂直或水平位移电位器;波形太小(可能不稳定)或太大,可调节Y 增益电位器VARIABLE ,使波形幅度适中。

6)注意:实验过程中不要用手触摸两个换能器,以免影响测量精确性。

7)向右稍移S 2,并调整游标卡尺的微调螺丝,同时观察示波器上波形,使波形幅度最大,幅度如果超过屏幕,可调整Y 增益VARIABLE ,使波形满屏。

记下S 2的初始位置L 0。

8 由近至远慢慢移动接收器S 2,逐个记下九个幅度最大的位置(即Li 值)。

(3) 相位法测声速1)把示波器触发方式选择“外接”。

2)把示波器的“Y input ”接超声波测速仪的接收器S 2,示波器“X 输入”联接到低频信号发生器的电压输出(不能接同步输出)。

3)把S 2调回距S 1大约3cm ,移动接收换能器S 2,调节游标卡尺微调螺丝,同时观察示波器的图形变化,使图形为“/”,记下S 2初始位置L O 。

4)由近至远,慢慢移动S 2,并注意观察图形变化,逐下记下每发生一次半周期变化(即图形由“/”直线变到“\”直线)接收换能器S 2的位置读数Li 值,共测十个数据。

5)实验完毕,关掉电源,整理好仪器5、实验参考数据1)驻波法测量声速 共振频率f =34.583KHz表1 驻波法测量波长的测量数据次序i L mm 310-次序i L mm 310-i i L L -+5mm 310- i I L L v -+5mm310-1 93.72 6 119.54 25.82 0.012 2 98.84 7 124.70 25.86 0.0283 104.02 8 129.90 25.88 0.0484 109.22 9 135.02 25.80 0.0325 114.3810140.1825.800.032逐差法处理表1数据标准偏差∑=--++-=5125511i L L L L ii iI v n S =0.036mm iI ii LL L L n v S C --++≥=⨯=5506.0036.065.1mmu m B 012.0302.03==∆=合成不确定度为)(038.0012.0036.022222255mm u S u u u B L L B A L L ii I I =+=+=+=--++频率f 不确定度)(2.03346.03Z mff H u ==∆=声速V 的相对不确定度%6.0006.0)832.25038.0()583.342.0()()(222525==+=-+=+-+ii L L f V L L u f u E i I声速的计算)/(34.357832.25583.3452)(525s m L L f V i i =⨯=-=+ 声速V 不确定度为 )/(3006.034.357s m VE u V V =⨯==室温时声速结果表达式:⎩⎨⎧==±=±=%6.0)683.0)(/(006.034.357V V E p s m u V V2)相位法测量声速参考驻波法。

6.结论:1)实验测量结果与理论值接近,是误差允许范围。

2)相位法测量优于驻波法测量。

7.误差分析:1)共振频率的不稳定。

2)换能器的不完全平行。

3)示波器上振幅极大值的不稳。

4)随着换能器的距离的增加能量会有减弱。

5)测量时会含有回程差。

XXXX 项目可行性研究报告报告日期 XXXX 年XXXX 月XXXX 日目录第一节项目概况一、项目背景二、投资方简介三、目标公司简介第二节拟投资行业及市场概况第三节项目实施的必要性与可行性一、项目实施的必要性二、目标公司市场分析三、项目实施的可行性第四节项目内容及实施方案第五节项目效益分析一、经营收入估算二、经营总成本估算三、经营利润与财务评价第六节项目风险分析及对策一、市场风险及对策二、技术风险及对策三、财务风险及对策……第七节投资方案一、收购定价二、预计投资总额三、资金来源与支付四、后续发展方案第六节报告结论第一节项目概况一、项目背景说明项目提出的背景、投资理由、拟投资国家的投资环境、在可行性研究前已经进行的工作情况及其成果、重要问题的决策和决策过程等情况。

二、投资方简介1、投资方基本情况及经营情况包括目标公司基本工商注册信息、产业布局、主要产品及用途、员工情况、股权结构及控股方信息、行业地位、历史沿革等。

2、投资方实力和优势分析三、目标公司简介1、基本信息包括目标公司基本工商注册信息、产业布局、主要产品及用途、员工情况、股权结构及控股方信息、行业地位、历史沿革等。

2、经营情况(1)经营情况公司的产品在市场上进行销售、服务的发展现状,包括历年产量、销售收入等。

(2)资产负债情况公司主要财务指标,要求能够反映公司盈利能力、经营能力、偿债能力等。

第二节拟投资行业及市场概况1、国内相关行业及市场概况2、国际相关行业及市场概况第三节项目实施的必要性与可行性一、项目实施的必要性主要围绕公司战略目标,根据公司产业资源协同发展的需要以及产品规划,结合产业政策等有关因素的支持与制约,论证项目投资的必要性。

二、目标公司市场分析运用统计分析原理,分析目标公司产品销售变化及市场发展趋势。

1、市场规模研究目标公司产品及行业的整体规模,具体包括目标公司产品及行业在指定时间的产量、销售收入等。

2、行业分析主要包括行业内主要品牌市场占有率、行业总销售量年增长率、行业发展方向、市场发展方向等。

3、竞争格局包括主要竞争企业基本资料、主要品牌经营策略、竞争品牌近三年发展情况、行业竞争态势未来发展预测等。

三、项目实施的可行性主要表现在以下方面:技术可行性。

主要分析目标企业产品技术现状与规划是否符合公司战略,技术部门对目标公司实施的技术在行业内进行比选和评价,合理评估其技术先进性。

经济可行性。

主要从企业理财的角度进行资本预算,评价项目的财务盈利能力,预测项目投资回收期、净现值等财务指标。

社会影响。

主要从资源配置的角度衡量项目的价值,评价项目在符合区域经济发展目标、有效配置经济资源、增加供应、创造就业、改善环境等方面的效益。

风险因素及对策。

主要对项目的市场风险、技术风险、财务风险、法律风险及社会风险等风险因素进行评价,制定规避风险的对策,为项目全过程的风险管理提供依据。

相关文档
最新文档