热力学知识点
热力学知识点归纳

热力学知识点归纳热力学是研究能量转化与能量传递的一门学科,它是物理学的重要分支之一。
在热力学中,有许多重要的知识点,本文将对其中一些主要的知识点进行归纳和总结。
一、热力学基本概念1. 系统和环境:在热力学中,我们通常将研究对象划分为系统和环境两部分。
系统是我们希望研究和描述的物体或者物质,而环境则是系统以外的其他部分。
2. 热力学平衡:热力学平衡是指系统中各个部分的热力学性质处于稳定状态,不发生变化。
在热力学平衡状态下,系统的温度、压力、物质的化学组成等参数都不发生变化。
3. 状态函数和过程函数:在热力学中,有两种类型的函数,分别为状态函数和过程函数。
状态函数的取值只与系统的初始和末状态有关,与过程无关;而过程函数的取值则取决于系统的路径和过程。
4. 热力学第一定律:热力学第一定律是能量守恒定律在热力学中的表述,它指出能量可以从一个系统转移到另一个系统,但总能量保持不变。
5. 热力学第二定律:热力学第二定律是指自然界中存在一种不可逆的趋势,使得热量只能从高温物体流向低温物体,而不能反向传播。
这个定律也可以理解为热力学过程的不可逆性。
二、热力学过程1. 等温过程:等温过程是指系统与外界保持恒温接触,系统的温度不发生变化的过程。
在等温过程中,系统对外界做的功与吸收的热量相等。
2. 绝热过程:绝热过程是指系统与外界隔绝热量交换的过程。
在绝热过程中,系统对外界不做功,也不吸收热量。
3. 等容过程:等容过程是指系统在不进行体积变化的条件下进行的过程。
在等容过程中,系统对外界的做功为零,吸收的热量等于内能的增量。
4. 绝热绝容过程:绝热绝容过程是指系统既不与外界交换热量,也不进行体积变化的过程。
在绝热绝容过程中,系统对外界既不做功,也不吸收热量。
5. 等压过程:等压过程是指系统与外界保持恒压接触的过程。
在等压过程中,系统对外界所做的功等于压强与体积的乘积,吸收的热量等于焓的增量。
三、热力学循环1. 卡诺循环:卡诺循环是一种理想的循环过程,用来描述理想热机的工作原理。
高中化学热力知识点总结

高中化学热力知识点总结一、热力学基本概念1. 热力学系统:被研究的对象,可以是固体、液体或气体。
2. 环境:系统之外的所有物体。
3. 边界:系统与环境之间的分界面。
4. 状态:系统在某一时刻的所有宏观性质的集合。
5. 状态函数:系统的宏观性质,其值只与系统的状态有关,如温度、压力、体积等。
6. 过程:系统从一个状态变化到另一个状态的一系列状态的集合。
7. 热力学平衡:系统与环境之间没有能量和物质交换的状态。
二、热力学第一定律1. 内能:系统内部所有微观粒子的动能和势能之和。
2. 热力学第一定律:能量守恒定律在热力学中的表现形式,即系统内能的变化等于系统与环境之间能量交换的净效应。
3. 热量:系统与环境之间因温度差而产生的热能传递。
4. 功:力作用在物体上并使物体发生位移所产生的能量转换。
5. 等容过程:系统体积不变的热力学过程。
6. 等压过程:系统压力不变的热力学过程。
7. 等温过程:系统温度不变的热力学过程。
三、热力学第二定律1. 熵:系统无序度的量度,也是能量分散程度的指标。
2. 热力学第二定律:自然过程总是向着熵增加的方向进行。
3. 可逆过程:系统和环境都能完全恢复原状的过程。
4. 不可逆过程:系统或环境不能完全恢复原状的过程。
5. 熵变:系统经历一个过程后熵的增加量。
四、化学反应热力学1. 化学反应:原子重新排列形成新物质的过程。
2. 反应热:化学反应发生时吸收或放出的热量。
3. 热化学方程式:表示化学反应及其伴随热量变化的方程式。
4. 燃烧热:1摩尔物质完全燃烧时放出的热量。
5. 中和热:酸和碱中和反应生成1摩尔水时放出的热量。
6. 电化学:研究化学反应与电能转换的科学。
五、溶液与电解质1. 溶液:一种或几种物质以分子或离子形式分散在另一种物质中形成的均匀混合物。
2. 饱和溶液:在一定温度下,溶质在溶剂中达到最大溶解度的溶液。
3. 电解质:在溶液或熔融状态下能导电的物质。
4. 非电解质:在溶液或熔融状态下不能导电的物质。
化学热学知识点总结

化学热学知识点总结一、热力学基本概念热力学是研究物体内部能量和物质间能量相互转化的物理学科,并且研究物体内能量的传递和扩散规律以及热现象的规律。
热力学研究的主要对象是热、功和能量。
热是由于温度差引起的能量传递。
功是由于力的作用引起的能量转化。
能量是物体具有的使其能够进行工作的物理量(如物体的动能、势能、内能等)。
热力学的热、功和能量是相互联系、相互转化的。
二、状态函数状态函数是在描述过程时与路径无关的,只与初始和终了状态有关的函数。
例如,压强、温度、体积等。
状态函数的改变与路径无关,只与初末状态有关,与路径无关意味着状态函数的变化值与过程取向无关,所以状态函数的变化必须是由初末状态决定的。
状态函数的改变与路径无关因为它们的改变只与初末态有关。
但对于某些状态函数来说,虽然它与系统的性质本身无关,但是它的改变却能使心理特性发生变化。
三、热力学定律热力学定律是热力学的基本规律,它描述了能量的转化和传递规律。
热力学定律包括零法则、第一定律、第二定律、第三定律。
零法则:如果两个系统与第三个系统分别处于热平衡状态,那么这两个系统之间也一定处于热平衡。
第一定律:能量守恒,即能量不能被创造或消灭,只能从一个物体转移到另一个物体,或从一个形式转化为另一形式。
它也可以表述为:系统的内能增量等于系统所吸收的热量与所作的功的代数和。
第二定律:热能不可能自发地从低温物体传递到高温物体,热力学过程不可逆的方向是从低温物体向高温物体传递热量的方向。
第三定律:当温度接近绝对零度时,是熵趋于常数。
这意味着,不可能通过有限数量次的操作使任何系统冷却至绝对零度。
四、热力学方程热力学方程是描述物质热力学性质的方程,其中包括理想气体状态方程、范德华方程等。
理想气体状态方程为P = nRT。
范德华方程为(P + a/V^2)(V - b) = RT。
热力学方程不仅可以用于计算压强、温度、体积等参数的关系,还可以从中推导出其他热力学性质的关系。
物理中的热力学知识点

物理中的热力学知识点热力学是研究热与能量之间相互转化关系的科学。
在物理学中,热力学是一门重要的学科,它涵盖了很多基本概念和重要定律。
这篇文章将介绍一些物理中的热力学知识点,包括热传导、热膨胀、理想气体定律等。
一、热传导热传导是物体内部或不同物体之间热量传递的过程。
根据热传导的原理,热量会从高温物体传递到低温物体,直到两者达到热平衡。
热导率是描述物质传导性能的物理量,单位是热导率每秒每米每开尔文(W/(m·K)),最常见的例子是热传导在金属中的传播。
二、热膨胀热膨胀是物体在升温时增大体积或长度的现象。
物体的热膨胀系数与物质的种类有关,通常用线膨胀系数、表膨胀系数和体膨胀系数来描述。
对于线膨胀来说,线膨胀系数α定义为单位长度的物体在温度升高1摄氏度时的长度变化比例。
热膨胀在日常生活中有很多应用,例如随温度变化引起的铁路、桥梁等建筑物的晃动和变形问题。
三、理想气体定律理想气体定律是研究气体行为的基本规律,包括Boyle定律、Charles定律和Avogadro定律。
Boyle定律表明,温度不变时,气体的压强与体积成反比。
Charles定律表明,压强不变时,气体的体积与温度成正比。
Avogadro定律表明,压强和温度不变时,气体的体积与所含粒子数成正比。
根据理想气体定律,我们可以推导出理想气体状态方程,即普遍适用于大多数气体的方程式。
它表示为PV = nRT,其中P是气体的压强,V是气体的体积,n是气体的物质量,R是气体常数,T是气体的温度。
热力学的其他重要知识点包括热容、热功和热效率等,它们在研究能量转化和热力学循环方面有着重要的应用。
总结:物理中的热力学知识点包括热传导、热膨胀和理想气体定律等。
通过对这些知识的学习和理解,我们可以更好地理解和应用热力学原理。
热力学在工程领域、天文学、地球科学等各个领域均具有重要的应用价值,为人们解决实际问题提供了理论基础。
在今后的学习和研究中,我们应该深入了解热力学的原理和定律,不断拓宽自己的知识面,为科学研究和实践工作做出贡献。
工程热力学知识点电子版

工程热力学知识点电子版
1.热力学基本概念:包括热力学系统、态函数、过程、平衡等基本概念。
2.热力学定律:包括热平衡第一定律(能量守恒),热平衡第二定律(熵增原理)以及热平衡第三定律(绝对零度定律)。
3.理想气体的热力学性质:包括状态方程、卡诺循环、理想气体的内能、焓、熵等性质,以及理想气体的不可逆过程等。
4.热功学:包括热力学势、热力学基本方程、热力学关系、开放系统
的热力学分析等。
5.蒸汽循环与汽轮机:包括蒸汽循环的基本原理、热力学效率、汽轮
机的工作原理和热力学分析等。
6.冷热交换过程:包括传热方式、传热定律、传热设备的热力学设计等。
7.蒸发和冷凝:包括蒸发和冷凝的热力学原理、热传导、传质机制等。
8.混合物与溶液的热力学性质:包括理想混合物的热力学分析、溶解度、等温吸收和等温蒸馏等。
9.平衡态的热力学:包括平衡态判定、化学反应的平衡和平衡常数等。
10.非平衡态的热力学:包括非平衡态的基本概念、非平衡态热力学
平衡准则等。
11.热力学循环与工作系统:包括往复式热机循环(如柴油循环、克
氏循环等)、蒸汽循环的分析、制冷循环等。
以上仅列举了一些工程热力学的基本知识点,具体内容还包括一些相关的热力学计算方法和应用,如热力学分析软件的应用、能源转化系统的分析等。
热学热力学知识点总结

热学热力学知识点总结热学热力学是物理学中的重要分支,研究物质热现象和热传递规律,深入了解这一领域的知识对于我们理解自然界的运行机制至关重要。
本文将对热学热力学的一些重要知识点进行总结。
一、热力学基本概念1. 系统与环境:热力学中,我们将要研究的物体或者系统称为“系统”,而其周围的一切称为“环境”。
2. 边界与界面:系统与环境之间通过一条虚线或者实际存在的物理情况进行分界,在这个分界线上,称为“边界”。
而边界之间的物理现象发生的地方称为“界面”。
二、热力学定律1. 第一定律:能量守恒定律,描述了能量的转化和守恒规律。
能量从一个系统传递到另一个系统,既不会凭空产生,也不会消失。
2. 第二定律:熵增原理,描述了自然界热现象的方向性。
热量不会自动从低温物体传递到高温物体,而是相反的。
这个定律也说明了热量的传递需要有势差。
3. 第三定律:绝对零度定律,描述了当温度接近绝对零度时,物体的一些性质将趋近于零。
三、热力学过程1. 等压过程:系统中的压强恒定,系统对外界做功或者从外界接收到的功相等。
2. 等温过程:系统内部温度恒定,根据热容量对外界做功或者从外界接收到的功相等。
3. 绝热过程:系统与环境没有热量交换,系统内部熵不变。
四、热力学函数1. 内能:系统中分子的热运动所具有的能量总和称为内能。
内能是状态函数,与系统的初始状态和末状态有关。
2. 焓:系统的内能加上对外做的功,称为焓。
焓也是状态函数。
3. 熵:描述了系统的无序程度,并且是一个状态函数。
熵增原理通过熵的变化来预测自然界的趋势,即系统熵会不断增大。
4. 自由能:描述了系统能做到的最大非体积功。
分为Helmholtz自由能和Gibbs自由能两种。
五、热力学循环1. 卡诺循环:由两个等温过程和两个绝热过程组成的循环,是一个理想的热力学循环。
卡诺循环的效率反映了热机的工作效率。
2. 标准焓:在25摄氏度和1 atm压强下,各物质的标准热力学性质,如标准焓变等。
热力学基础知识点总结

热力学基础知识点总结
热力学是研究能量转化与传递规律的科学,主要包括以下基础知识点:
1. 系统与环境:热力学研究的对象是一个被称为系统的物体、组织或区域,而系统与其周围的一切被称为环境。
2. 状态量与过程量:状态量是描述系统状态的量,如温度、压力、体积等,它们只依赖于系统的初始和最终状态;而过程量是描述系统变化过程中的性质,如热量、功等。
3. 热平衡与温度:当两个物体处于热平衡时,它们之间不存在热量的净传递,此时它们的温度相等。
4. 热传递与热传导:热传递是指热量从高温物体流向低温物体的过程,可以通过热传导、辐射和对流等方式实现。
热传导是通过物质分子间的碰撞传递热量的过程。
5. 热容与比热容:热容是指物体吸收或释放单位温度变化所需的热量,而比热容是单位质量物质所需的热量。
6. 理想气体状态方程:理想气体状态方程描述了理想气体的压力、体积和温度之间的关系,常用的方程有理想气体状态方程
(PV=nRT)和绝热过程公式(PV^γ=常数)。
7. 熵与熵增:熵是描述系统无序度的物理量,熵增原理表明在孤立系统中,熵总是增加的。
8. 热力学第一定律:热力学第一定律是能量守恒定律在热力学中的表现,它表明能量可以从一个形式转化为另一个形式,但总能量守恒。
9. 热力学第二定律:热力学第二定律是描述热量传递方向性的原理,它指出热量只能从高温物体传递到低温物体,不会自发地从低温物体传递到高温物体。
10. 吉布斯自由能:吉布斯自由能是描述系统在恒温、恒压条件下的可用能量,通过最小化吉布斯自由能可以预测系统的平衡态。
这些是热力学基础知识点的概述,它们在热力学的研究和应用中扮演着重要的角色。
热力学基本概念知识点总结

热力学基本概念知识点总结热力学是研究能量转化和能量传递规律的学科,它涉及到许多基本概念。
本文将对热力学中的一些基本概念进行总结和解析。
一、热力学系统和环境热力学系统指的是我们研究的对象,可以是一个物体、一个化学反应体系等。
而环境则是指与系统不相干的一切物体和能量。
系统和环境之间可以通过能量和质量的交换进行相互作用。
二、热和功热是指能量的传递方式,是由于温度差导致的能量交换。
而功则是指通过外界对系统施加的作用力所做的功。
在热力学中,热和功都是能量的表现形式,它们可以相互转化。
三、热力学第一定律热力学第一定律是能量守恒定律在热力学中的表述。
它指出,能量既不能被创造也不能被毁灭,只能在系统和环境之间进行转化。
系统所吸收的热量和所做的功等于系统所增加的内能。
四、热力学第二定律热力学第二定律是描述能量转化方向的定律,也被称为热力学不可逆性原理。
它指出,在孤立系统中,热能永远不能自发地从低温物体传递到高温物体,总是从高温物体向低温物体传递。
这是因为热能的传递总是伴随着有序度的降低。
五、熵熵是用来描述系统无序程度的物理量,也是热力学第二定律的量度。
熵的增加代表着系统的无序度增加,而熵的减少则代表着有序度的增加。
在自然界中,熵总是趋向于增加,这是热力学第二定律的基本表现。
六、温度和热力学温标温度是用来描述物体热平衡状态的物理量,它代表了物体内部粒子热运动的程度。
在热力学中,常用的温标是开尔文温标(K)。
开尔文温标与摄氏温标之间的换算关系是:K = °C + 273.15。
七、压力和热力学压强压力是指物体单位面积上受到的力的大小,它是由物体内部分子的碰撞引起的。
而热力学压强则是指单位面积上受到的压力大小。
在热力学中,常用的压力单位是帕斯卡(Pa),1 Pa = 1 N/m²。
八、状态方程状态方程是描述物体状态的数学关系式,它连接了物体的各个状态参量,如压力、温度、体积等。
热力学中最著名的状态方程是理想气体状态方程,即PV = nRT。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3混合物摩尔自由能的计算
4 A、B两组元形成的二元正规溶体,设其Spinodal曲线和溶解度间隙曲线的顶点温度为Ts,相互作用能为IAB,则顶点温度Ts和相互作用能IAB的关系式为
5偏摩尔Gibbs自由能就是化学势,二元溶体中i组元化学势的通式为:
论述题
1根据材料热力学原理解释为什么大多数纯金属加热产生固态相变时会产生体积膨胀的效应?
2试根据单元材料的两相平衡原理推导克拉伯龙(Clapeyron)方程。
3试用G-T图的图解法说明纯铁中的A3点相变是异常相变。
4试画出磁有序度、磁性转变热容及磁性转变(指铁磁-顺磁转变)自由能与温度的关系曲线。
计算题
3热容的定义是系统升高1K时所吸收的热量,它的条件是物质被加热时不发生相变和化学反应
4α-Fe的定压热容包括:振动热容、电子热容和磁性热容。
5纯Fe的A3的加热相变会导致体积缩小
6 Gibbs-Helmholtz方程表达式是
7铁磁性物质的原子磁矩因交换作用而排列成平行状态以降低能量的行为被称为自发磁化
2两相平衡的化学势相等条件也可以称公切线法则:平衡两相的摩尔自由能曲线公切线的切点成分是两相平衡成分,两切点之间成分的体系处于两相平衡状态
3若A-B二元系中存在化合物中间相AmBn(θ)时,化合物的摩尔自由能与化学势的条件是
4两个稀溶体平衡时,平衡两相的浓度差与溶质无关,而取决于温度和该温度下溶剂的相变自由能
5二元合金相图中,溶质元素会对γ相区产生影响,使得γ相区缩小(封闭γ区)的溶质元素称为αformer,使得γ相区扩大(扩大γ区)的溶质元素称为γformer
论述题
1向Fe中加入αformer元素将使γ相区缩小。试证明:无论加入什么元素,要使γ相区完全封闭,元素的加入量至少要达到0.6%(原子分数)
2试用Gm-X图说明,为什么bcc结构的金属溶质元素加入铁中后,大多会使Fe的γ相区缩小(封闭γ相区)?
第二章二组元相
名词解释:
溶体:以原子或分子作为基本单元的粒子混合系统所形成的结构相同,性质均匀的相
理想溶体:在宏观上,如果组元原子(分子)混合在一起后,既没有热效应也没有体积效应时所形成的溶体。
混合物:由结构不同的相或结构相同而成分不同的相构成的体系
化合物:两种或两种以上原子组成的具有特定结构的新相
Henry定律:稀溶体的溶质定律。在温度一定时,以A组元为溶剂,B组元为溶质的稀溶体中,溶质的活度系数为常数,
Raoult定律:即稀溶体的溶剂定律。当溶质的浓度极低时,溶剂的活度系数近似等于1,即aA=XA
填空题
1在恒压下,对二元溶体而言,摩尔自由能取决于温度和溶体成分。得出这一结论的原理是吉布斯相律
3第二相析出是指从过饱和固溶体中析出另一结构的相
4弯曲表面的表面张力 和附加压力P的关系式为 ,假设弯曲表面的半径为r.
5根据Trouton定律:多数物质的液体在沸点汽化时的熵变约是气体常数R的11倍
论述题
1如图所示A-B二元系中,成分低于 的γ单相可以通过无扩散相变,转变成同成分不同结构的α单相。若γ相及α相都可以用正规溶体近似描述,试写出其无扩散相变驱动力表达式并加以证明。
名词解释:
端际固溶体:当合金相的晶体结构保持溶剂组元的晶体结构时,这种合金相就称为一次固溶体。在相图中一次固溶体通常是出于两端,所以又被称作端际固溶体
分配比:溶质元素的重要性质,用以判断溶质元素对平衡两相稳定性的影响。定义为: ,其中 和 分别为溶质原子在α和β两相中的平衡成分。
区域熔炼:利用液固两相平衡时成分的差异而设计的获得高纯材料的方法。
计算题
1已知Fe-W合金中,W在γ相及α相中的分配系数 ,α中W的含量为 ,试求在1100OC下,纯铁的相变自由能
2在Fe-Sb合金中,Sb在γ相及α相中的分配系数 ,试计算在1100OC下两相的平衡成分。已知在1100OC下,纯铁的相变自由能 =-116J•mol-1
3如果A-B二元系中的固相的相互作用键能具有成分依存性,关系为 ,试求溶解度间隙的顶点温度。
通过移动加热环,让棒状待提纯材料从一端到另一端逐次熔化、凝固,使杂质原子聚集在一端,从而使材料得以提纯
相稳定化参数:是分配比的热力学表征。定义为 , 称作β相稳定化参数
填空题:
1两相平衡的基本判据即平衡态判据是体系的Gibbs自由能为极小值,即dG=0或G=min
在此基础上根据化学势的定义,派生出两相平衡时各组元的化学势必须相等
第一章单组元材料热力学
名词解释:
1可逆过程
2 Gibbs自由能最小判据
3空位激活能
4自磁化:
5熵:
6热力学第一定律热力学第二定律
7 Richard定律
填空题
1热力学第二定律指出:一个孤立系统总是由熵低的状态向熵高的状态变化,平衡状态则是具有最大熵的状态。
2按Boltzmann方程,熵S与微观状态数W的关系式为S=klnW
6溶体中组元的活度ai等于组元的浓度Xi乘以活度系数fi,活度系数产生的原因是相互作用能
论述题
1试证明混合物自由能服从混合律(Mixture law),即混合物的摩尔自由能 与两相的摩尔自由能 和 之间的关系式为
式中, 、 和 分别为混合物、α相和β相的成分
2试利用在Gm-X图中化学势的图解法,解释为什么有的固溶体当中会发生上坡扩散。
1已知纯钛α/β的平衡相变温度为882OC,相变焓为4142J•mol-1,试求将β-Ti过冷到800OC时,β→α的相变驱动力
2若某金属形成空位的激活能为58.2KJ•mol-1,试求在700OC下,该金属的空位浓度。
3纯Bi在0.1MPa压力下的熔点为544K。增加压力时,其熔点以3.55/10000K•MPa-1的速率下降。另外已知融化潜热为52.7J•g-1,试求熔点下液、固两相的摩尔体积差。(Bi的原子量为209g•mol-1.
6晶间偏析:固溶体中溶质原子分布不均匀,在晶界发生溶质原子的富集或是贫化,对材料的性能产生影响,本质上是一种热力学平衡状态。
填空题
1 A-B二元系固溶体,如果 >0,而且温度不高,则摩尔自由能曲线所形成拐点。这时整个成分范围可以分成三个区域,分别称为:稳定区、失稳区和亚稳区
2在固溶体的亚稳区成分范围内,固溶体会发生分解,但不能以失稳分解的机制发生,而要通过普通的形核长大机制进行。
2试证明晶界偏析这一热力学现象的平衡判据——平行线法则
3试在摩尔自由能成分曲线即Gm-X图中标出,一个二元固溶体α,析出同结构固溶体的相变驱动力和形核驱动力,并分析对两组元的相互作用能和温度有何要求,析出什么成分的晶核时驱动力最大。
计算题
1
计算题
1试用正规溶体模型计算一个IAB=16.7KJ•mol-1成分为XB=0.4的二元固溶体,其发生Spinodal分解的上限温度是多少?其发生Spinodal分解的顶点温度Ts又为多少?
2某A-B二元正规溶体的IαAB=20KJ•mol-1,试求800K发生Spinodal分解的成分范围
第三章二组元材料热力学
4一级相变:压力一定时,在可逆相变温度下,成分不变相变的母相和新相化学势相等,而化学势对温度、压力的一阶偏微分不等的相变。特点是发生一级相变时会伴随体积和熵(焓)的突变。
5二级相变:压力一定时,在可逆相变温度下,成分不变相变的母相和新相化学势相等,化学势对温度、压力的一阶偏微分也相等,但化学势对温度、压力的二阶偏微分不等。即有等压热容、膨胀系数和压缩系数的突变。
溶解度:溶体相在与第二相平衡时的溶体成分(浓度),固溶体在与第二相平衡时的溶解度也成为固溶度。
溶解度间隙:溶体的自由能-成分曲线上出现拐点时,溶体的结构稳定性会发生变化,导致同类原子偏聚在一起的失稳分解,从而形成形溶解度的的中断,也称为出现溶解度间隙。
有序化:如果原子的相互作用能IAB远小于零,溶体中异类组元的原子更倾向聚合在一起的现象称为有序化。
第四章相变热力学
名词解释
1无扩散相变:相变过程中不发生溶质元素的长程定向移动,相变产物(新相)和母相具有相同成分,只是结构发生了变化。
2 T0线:各温度下母相和转变产物相的摩尔自由能相等的各点成分的连线,即无扩散相变驱动力为0的成分和温度关系曲线
3马氏体点:原指Fe基合金冷却时奥氏体转变成马氏体的开始温度,后将所有冷却时发生的无扩散切变相变的开始温度称为马氏体点