高中数学讲义微专题52 证明等差等比数列

高中数学讲义微专题52  证明等差等比数列
高中数学讲义微专题52  证明等差等比数列

微专题52 等差等比数列的证明

在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。 一、基础知识:

1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差),

1

n n

a q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =?≠(等比)

(3)前n 项和:2n S An Bn =+(等差),n n S kq k =-(等比)

(4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比)

(2)也可利用等差等比中项来进行证明,即n N *

?∈,均有:

122n n n a a a ++=+ (等差) 2

12n n n a a a ++=? (等比)

二、典型例题:

例1:已知数列{}n a 的首项1133,,521

n

n n a a a n N a *+=

=∈+. 求证:数列11n a ??

-?

???

为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在

1n

a 这样的倒数,所以考虑递推公式两边同取倒数:113121

213n n n n n n

a a a a a a +++=

?=+

112133n n a a +=+,在考虑构造“1-”:112111

111333n n n a a a +??-=+-=- ???

即数列11n a ??-?

???

是公比为1

3的等比数列

思路二:代入法:将所证数列视为一个整体,用n b 表示:1

1n n

b a =

-,则只需证明{}n b 是等比数列即可,那么需要关于n b 的条件(首项,递推公式),所以用n b 将n a 表示出来,并代换

到n a 的递推公式中,进而可从n b 的递推公式出发,进行证明 解:令11n n b a =

-,则11

n n a b =+ ∴ 递推公式变为:113

1131

1113

211

n n n n n b b b b b +++=?=+++?++

111

3333

n n n n b b b b ++?+=+?=

{}n b ∴是公比为1

3的等比数列。即数列11n a ??-????

为等比数列

小炼有话说:

(1)构造法:在构造的过程中,要寻找所证数列形式的亮点,并以此为突破对递推公式进行变形,如例1中就是抓住所证数列有一个“倒数”的特点,进而对递推公式作取倒数的变换。所以构造法的关键之处在于能够观察到所证数列显著的特点并加以利用

(2)代换法:此方法显得模式化,只需经历“换元→表示→代入→化简”即可,说两点:一是代换1

1n n

b a =

-体现了两个数列{}{},n n a b 的一种对应关系,且这种对应是同序数项的对应(第n 项对应第n 项);二是经过代换,得到{}n b 的递推公式,而所证n b 是等比数列,那么意味着其递推公式经过化简应当形式非常简单,所以尽管代入之后等式复杂,但坚定地化简下去,通常能够得到一个简单的答案。个人认为,代入法是一个比较“无脑”的方法,只需循规蹈矩按步骤去做即可。

例2:数列{n a }的前n 项和为n S ,213

1(*)22

n n S a n n n N +=-

-+∈(*)

.设n n b a n =+,证明:数列{}n b 是等比数列,并求出{}n a 的通项公式

思路:本题所给等式,n n S a 混合在一起,可考虑将其转变为只含n a 或只含n S 的等式,题目中

n n b a n =+倾向于项的关系,故考虑消掉n S ,再进行求解

解:213

122n n S a n n +=-

-+ ① ()()()2

11131112,22

n n S a n n n n N --+=----+≥∈ ②

∴ ①- ②可得:112121n n n n a a n a a n ---=--?=--

()()()1112112n n n n a n a n a n a n --∴+=+-?+=

+-???? 即11

2

n n b b -=

{}n b ∴是公比为1

2的等比数列 111b a =+ 令1n = 代入(*)可得:

11131122S a +=--+=- 112a ∴=- 11

2

b ∴=

1

11122n n n b b -??

??∴=?= ?

???

?? 12n

n n a b n n ??

∴=-=- ???

小炼有话说:(1)遇到,n n S a 混合在一起的等式,通常转化为纯n a (项的递推公式)或者纯n S (前n 项和的递推公式),变形的方法如下:

① 消去n S :向下再写一个关于1n S -的式子(如例2),然后两式相减(注意n 取值范围变化) ② 消去n a :只需1n n n a S S -=-代换即可(2,n n N ≥∈)

(2),n n S a 混合在一起的等式可求出1a ,令1n =即可(因为11S a =)

(3)这里体现出n n b a n =+的价值:等差等比数列的通项公式是最好求的:只需一项和公差(公比),构造出等差等比数列也就意味这其通项可求,而通过n n b a n =+也可将n a 的通项公式求出。这里要体会两点:一是回顾依递推求通项时,为什么要构造等差等比数列,在这里

给予了一个解释;二是体会解答题中这一问的价值:一个复杂的递推公式,直接求其通项公式是一件困难的事,而在第一问中,恰好是搭了一座桥梁,告诉你如何去进行构造辅助数列,进而求解原数列的通项公式。所以遇到此类问题不要只停留在证明,而可以顺藤摸瓜将通项一并求出来

例3:已知数列{}n a 满足:1116,690,n n n a a a a n N *

--=-+=∈且2n ≥,求证:13n a ??

??-??

等差数列 解:设13n n b a =

-,则1

3n n

a b =

+代入11690n n n a a a ---+=可得: 11111336390n n n b b b --??????++-?++= ??? ???????

1111336

91890n n n n n b b b b b ---?

+++--+= 111330n n n n b b b b --?

-+=11

3

n n b b -?-= {}n b ∴为等差数列,即13n a ????-??

为等差数列

例4:已知曲线:1C xy =,过C 上一点(),n n n A x y 作一斜率为1

2

n n k x =-

+的直线交曲线C 于另一点()111,n n n A x y +++(1n n x x +≠且0n x ≠,点列{}n A 的横坐标构成数列{}n x ,其中

1117

x =

. (1)求n x 与1n x +的关系式; (2)令11

23

n n b x =

+-,求证:数列{}n b 是等比数列; 解:(1)曲线1

:C y x

=

()1:2n n n l y y x x x -=--+

()11111

121n n n n n n n n

n y x

y y x x x y x ++++?=??

?∴-=--?+?

?=??

12n n n x x x +∴=+

(2)111

21233

n n n n b x x b =

+?=+--,代入到递推公式中可得:

1111

2222111

333n n n b b b +???? ? ?+?+=++ ? ? ? ?---

???? 11111112211111133422=411133333333

n n n n n n n n n n b b b b b b b b b b +++++++

????????

?=+?++-+-- ??? ???????????---

()()1111121144

4439339

n n n n n n n n n b b b b b b b b b +++++?+++=-+-++

()()11124

33

n n n n n b b b b b +++?+=-+ 12n n b b +?=- {}n b ∴是公比为2-的等比数列

小炼有话说:本题(2)用构造法比较复杂,不易构造出n b 的形式,所以考虑用代入法直接求解

例5:已知数列{}n a 满足()()11

46410,21

n n n a n a a a n N n *

++++==

∈+,判断数列221n

a n +??

??+??

否为等比数列?若不是,请说明理由;若是,试求出n a 解:设()2

21221

n n n n a b a n b n +=

?=+-+ 代入到()14641021

n n n a n a n ++++=

+可得:

()()()146212410

23221

n n n n b n n b n +++-++????+-=

+

()()()()123214222321812410n n n n b n n n b n n +?++--=++--++ ()()()()1232122321n n n n b n n b +?++=++

12n n b b +?=

而112233

a a

b ++=

=

∴① 2a =-时,10b =,{}n b 不是等比数列

② 2a ≠-时,{}n b 是等比数列,即221n a n +??

?

?+??

为等比数列 1

1222213

n n a a n -++∴

=?+ ()()1221223n n a n a -++∴=

?- 例6:(2015山东日照3月考)已知数列{}n a 中,111

,1,33,n n n a n n a a a n n +?+?==??-?为奇数

为偶数

,求证:

数列232n a ?

?

-

????

是等比数列 思路:所证数列为232n a ??

-

???

?

,可发现要寻找的是{}n a 偶数项的联系,所以将已知分段递推关系转变为2n a 与()21n a -之间的关系,再进行构造证明即可

证明:由11

,33,n n n a n n a a n n +?+?=??-?为奇数

为偶数

可得:

()2211

213n n a a n -=+- ()2122322n n a a n --=-?-Q

()2221

322213

n n a a n n -∴=--+-???? 2222211

2221133

n n n a a n n a --∴=-++-=+

222223111323232n n n a a a --??∴-

=-=- ???

∴数列232n a ?

?-???

?是公比为13的等比数列

例7:(2015湖北襄阳四中阶段性测试)已知数列{}n a 满足11a =,且对任意非负整数

(),m n m n >均有: ()221

12

m n m n m n a a m n a a +-++--=

+ (1)求02,a a

(2)求证:数列{}1m m a a +-是等差数列,并求出n a 的通项公式 解:(1)令m n =可得:

202011m m a a a a +-=?=

再令0n =可得:

()201

212

m m a m a a +-=

+ 2423m m a a m ∴=+- 21413a a ∴=-= 021,3a a ∴==

(2)思路:考虑证明数列{}1m m a a +-是等差数列,则要寻找1m m a a +-,1m m a a --的关系,即所涉及项为11,,m m m a a a +-,结合已知等式令1n =,利用(1)中的2423m m a a m =+-,将

2m a 代换为m a 即可证明,进而求出通项公式

证明:在()221

12

m n m n m n a a m n a a +-++--=

+中令1n =得: ()11221

22

m m m a a m a a +-++-=

+ 11222224m m m a a m a a +-∴++-=+

由(1)得22423,3m m a a m a =+-=代入可得:

11222442m m m a a m a m +-∴++-=+

()()1111222m m m m m m m a a a a a a a +-+-∴+-=?---=

∴ 数列{}1m m a a +-是公差为2的等差数列

()()121212m m a a a a m m +∴-=-+-= ()121m m a a m -∴-=-

()-1222m m a a m --=- M 212a a -=

()()121211m a a m m m ∴-=+++-=-????L

()11m a m m ∴=-+

例8:(2010 安徽,20)设数列12,,,,n a a a L L 中的每一项都不为0,求证:{}n a 是等差数列的充分必要条件是:对n N *

?∈都有

1223111

111n n n n

a a a a a a a a +++++=L 思路:证明充要条件要将两个条件分别作为条件与结论进行证明,首先证明必要性,即已知

等差数列证明恒等式。观察所证等式可联想到求和中的裂项相消。所以考虑

11111111111n n n n n n n n a a a a a a d a a ++++????=-?=- ? ?-????

,然后恒等式左边进行求和即可证明。再证

明充分性,即已知恒等式证明等差数列:恒等式左侧为求和形式,所以考虑向前写一个式子两式相减,进而左边消去大量的项,可得:

121211

11n n n n n n

a a a a a a +++++=-,通过化简可得:

211n n n n a a a a +++-=-,从而利用等差中项完成等差数列的证明

证明:先证必要性:{}n a Q 是等差数列 ∴当0d =时

121n n a a a a -====L ∴左边22211111n a a a =

++=L 右边2

1n a =

当0d ≠时,考虑

11111111111n n n n n n n n a a a a a a d a a ++++????=-?=- ? ?-????

∴左边11

12231111111111111111n n n n n a a d a a a a a a d a a d a a ++++??????????-=

-+-++-=-=???

? ? ? ???????????L 1111

1n n nd n d a a a a ++=

?==右边 ∴所证恒等式成立

再证必要性:

1223111

111n n n n a a a a a a a a +++++=Q

L ① 122311212

11111

n n n n n n a a a a a a a a a a +++++∴

++++=L ② ①-②可得:

121211

11n n n n n n

a a a a a a +++++=-

两边同时乘以112n n a a a ++得:

()1121n n a n a na ++=+- ③

同理:()111n n a na n a +=-- ④

③-④可得:()121222n n n n n n na n a a a a a ++++=+?=+

{}n a ∴为等差数列

小炼有话说:(1)本题证明等差数列所用的是等差中项的方法,此类方法多在数列中存在三项关系时使用 (2)在充分性的证明中连续用到了构造新式并相减的方法,这也是变形递推公式的方法之一,当原递推公式难以变形时,可考虑使用这种方法构造出新的递推公式,尤其递推公式的一侧是求和形式时,这种方法可以消去大量的项,达到化简递推公式的目的。

例9:若数列{}n a 的各项均为正数,2

12,n n n n N a a a t *++?∈=+(t 为常数),且3242a a a =+

(1)求

13

2

a a a +的值 (2)求证:数列{}n a 为等差数列

解:(1)令1n =,则有2

213a a a t =+ ①

令2n =,则有2

324a a a t =+ ②

①-②可得:

()()2222231324224313224313a a a a a a a a a a a a a a a a a a -=-?+=+?+=+

1324

23

2a a a a a a ++∴

== (2)思路:所给的递推公式中含有t ,而且原递推公式也很难变形,所以考虑再写一个式子两式相减,构造新的递推公式,仿照(1)进行变形。

解:212n n n a a a t ++=+ ③ 2

213n n n a a a t +++=+④

∴③-④可得:

22221221311322n n n n n n n n n n n n a a a a a a a a a a a a ++++++++++-=-?+=+

()()11322n n n n n n a a a a a a +++++?+=+

132

21

n n n n n n a a a a a a +++++++∴

=

从而

1321124

213

2n n n n n n n n n a a a a a a a a a a a a +++-+++++++=====L

2

211

22n n n n n n a a a a a a +++++∴

=?+= 1+21n n n n a a a a ++∴-=-

∴ 数列{}n a 为等差数列

例10:在数列{}n a 中,10a =,且对任意k N *

∈,21221,,k k k a a a -+成等差数列,其公差为k d ,

若2k d k =,求证:22122,,k k k a a a ++成等比数列

思路:由21221,,k k k a a a -+的公差为2k d k =,而2121,k k a a -+表示数列中相邻的奇数项,所以可选择它们的关系作为突破口,即21214k k a a k +--=,从而可以求出{}n a 奇数项的通项公式,再利用2121,k k a a -+可求出2k a ,进而22122,,k k k a a a ++均可用含k 的式子表示,再从定义出发即可证明其成等比数列

解:21221,,k k k a a a -+Q 成等差数列且2k d k =

21214k k a a k +-∴-=

()212341k k a a k --∴-=-

M 314a a -=

[]()21141221k a a k k k +∴-=+++=+L

()()211121k a k k a k k +∴=++=+ ()2121k a k k -∴=-

21221,,k k k a a a -+Q 成等差数列

()222121122

k k k a a a k +-∴=

+= ()2

2221k a k +=+ ()2

222122

21222

221

41k k k k k k k a a a a a k k a a +++++∴=?=+?= 22122,,k k k a a a ++∴成等比数列

相关主题
相关文档
最新文档