药物合成反应—第七章还原反应
药物合成反应_第七章_还原反应

肼NH2-NH2或二酰亚胺NH=NH,可选择性还原非极性重键(如C=C、碳碳叁键、N=N), 而不影响极性重键(如C=N、腈基、硝基等)。
Ph
C
C
Ph
NH2 NH2 Cu2 + 空气
Ph CH2CH2 Ph
(80%)
烯 ︑ 炔 烃 的 还 原
C7H7SO2NHNH2 CH2 CH CH2 S S CH2 CH CH2 △ C3H7SSC3H7
硝基可被还原为氨基,常用的条件为铁粉+酸、锌或锡+酸、硫化物(如Na2S,Na2S2等)。
O2N
C C C H H O COOEt Fe/HOAc EtOH+H2O NO2
NH2 COOEt
Fe/NH4Cl
H2N
C C C H H O NH2 Na2S
NH2
NO2
硝 基 的 还 原
NO2 NH2
NO2
NaBH4-AlCl3不影响硝基;
HOOO (CH2)4 COOEt
B2H6 / THF -18 C, 10h
0
HOCH2 (CH2)4 COOEt
(88%)
硼烷或乙硼烷与羧基反应最快,如果控制低温和用量,可选择性优先还原羧基而不影响硝
基、卤素、酰卤、氰基、酯基、醛、酮等,选择性非常优秀。
4
硝基的还原 肟和亚甲胺的还原 偶氮、叠氮的还原
OH
NO2
饱 和 醛 酮 的 活 性 大 于 α,β-不 饱 和 醛 酮
2
醇铝为还原剂(Meerwein-Ponndorf-Verley反应)
在异丙醇铝中,醛、酮被还原为醇,取而代之的是异丙醇被氧化为丙酮;此反应可看做是 Oppenauer氧化的逆反应。
第七章还原反应7课件1

LiAlH4 LiBH4 NaBH4 KBH4
+
+
+
+
+
-
-
-
+
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+2)
+2)
+
+
+
+
RSSR 或 RSO2Cl
RSH
+
+
+
+
1). 脂肪族(RCOOR1)被还原成RCH2OH+R1OH 2). 还原成氧化偶氮化合物Ph-N=NPh
2+02表4年示8月能1日还星期原四,-
原
CN
实
例
CH2CN N
Cl
COOH
CH2NH2 Cl
供氢体
2024年8月1日星C期H四=CHCOOCH3
催化 剂
Pd
产物 CH3CH2(CH2)5CH3
收率 %
70
Pd
CH3CH2CH2Ph
90
Pd-C H2N
COCH3 98
Pd-C Pd-C
O2N
80 NH2
CH3
90
Pd-C N
Pd-C H
CH2CH3
所有非均相催化反应都在催化剂表面进行
影响催化反应的因素:反应物的浓度、反应温度、压力、 搅拌、催化剂的表面面积、助催与中毒现象等
非均相催化反应的过程:五个连续步骤
1). 作用物分子向催化剂界面扩散 2). 作用物分子在催化剂表面吸附(物理吸附和化学吸附) 3). 作用物分子在催化剂表面进行化学反应 4). 产物分子在催化剂表面解吸 5). 产物分子在从催化剂界面向介质扩散解吸
还原反应

9 还原反应通过还原反应,可将不饱和结构转化为饱和结构,将羰基化合物转化为醇,等等,可以实现多种官能团的转化,在药物合成中有着广泛的应用。
本章主要内容为,碳-碳(杂)不饱和结构的还原,多种含氧不饱和结构的化学还原以及氢解等,催化多相加氢等大工业生产常见的还原过程以及生物法还原不在本章重点讨论范围之内。
9.1多相催化加氢、催化转移氢化和均相催化加氢多相催化加氢可以完成从酰卤、炔烃、酮、硝基物、芳烃到羧酸,几乎所有不饱和结构的还原。
多相催化加氢以氢气为氢源,适应面广,但有时需加压,而且当底物中存在多个活性基团时,存在还原的选择性问题。
不同官能团被还原的反应活性不同,催化剂及反应条件也不同。
通常情况下,表9.1的内容可作为催化加氢活性顺序(及反应条件)的参考。
表9.1 不同官能团加氢难易顺序表(易→难)当底物分子中含多个可还原基团时,处在表的前部的基团将被优先还原。
例如还原不饱和醛的羰基,可用加氢法,如果是还原其双键,则加氢法不合适。
催化加氢反应示例:Finasteride中间体的合成。
与多相催化加氢用氢气作氢源不同,催化转移氢化的氢源为有机化合物,通常为不饱和脂环烃、不饱和萜类或醇,如环己烯、alpha-蒎烯和异丙醇等。
所用催化剂可以是钯黑或钯/碳,铂和铑的活性较低,而镍一般用于醇作氢源的反应。
催化转移氢化主要适用于碳-碳不饱和键、硝基、偶氮基、亚胺基和氰基的还原,也可用于碳-卤键、苄基及烯丙基的氢解。
具有反应条件温和,操作简单,基团选择性好等优点。
表9.2列举了更多的应用实例。
表9.2 一些催化转移氢化应用实例均相催化加氢的主要特点是催化剂以分子态溶解在反应介质中,起催化作用,其氢源为氢气。
选择性好,反应条件温和。
催化剂一般为第VIII族过渡元素Rh、Ru、Ir、Co以及Pt等的配合物。
常见的配体是Cl、CN、PPh3、CO和胺等给电子体。
在药物合成中,均相催化法主要应用于碳-碳双键的选择性还原,见表9.3。
第七章 还原反应

• 一、概述 • 1.定义: 在化学反应中,使有机物分子中碳原子总的氧
化态降低的反应称还原反应。 • 在还原剂的作用下,使有机物分子得到电子或使参加反
应的碳原子上的电子云密度增加的反应称还原反应。 • 有机分子增加氢或减少氧的反应。
3.应用
意义: NO2
O
NH2
C
OH
C
CC
H
CH CH OH
10036,U.S.A
第二节不饱和烃的还原 一 炔、烯烃的还原1多相催化氢化
多相氢化因素:
a 催化剂:活性高 稳定性 不易中毒,再生 用量 Ni 10%~15%被催化物质质量 Pd/C 1%~5%被催化物质质量 Pt 0.5%~1%被催化物质质量
载体:为增大催化剂的表面在催化剂制备中加入的多孔物质
氯霉素
Ph
C H
C H
CHO Al(OEt)3 Ph EtOH
C H
C H
CH2OH
还原有选择性
第四节 羧酸及其衍生物的还原二酯及酰胺的还原1 酯还原成醇
1 酯还原成醇
①金属复氢化合物为还原剂
(a)LiAiH4 O
R C OR' + LiAiH4
R
OAlH3 C OR'
-AlH3(OR')
H
酯:LiAiH4=1:0.5
Al-Ni+NaOH H2O Na2AlO4+Ni+H2↑
第二节不饱和烃的还原 一 炔、烯烃的还原1多相催化氢化
亚当斯1889年生于美国波士顿,1908年毕业于哈佛大学,曾 在柏林E·费歇尔实验室从事博士后研究工作。这一年的国外学习为 他以后一生的事业奠定了基础,使他成长为美国化学界最有代表性的 人物之一
药物合成反应(全)

O
O
C2H5 C2H5
NH ONa
HCl
C2H5
NH
C2H5
NH O
NH
O
O
盐酸普鲁卡因(ProcaineHydrochloride)的合成
➢ 盐酸普鲁卡因为局部麻醉药,作用强,毒性低 ➢ 临床上主要用于浸润、脊椎及传导麻醉 ➢ 化学名为对氨基苯甲酸2-二乙胺基乙酯盐酸盐 ➢ 化学结构式为:
H2N
化学选择性 化学选择性
区域选择性
化学选择性
我国抗癌药物紫杉醇合成成功
文章来源: 健康报
第四军医大学化学教研室张生勇教授课题组经过9年攻关, 在国内首次利用手性催化技术合成出抗癌药物紫杉醇。
紫杉醇和多烯紫杉醇是高效、低毒、广谱的抗癌药,广 泛用于治疗乳腺癌、卵巢癌、子宫癌等妇科肿瘤,对于某些 晚期肿瘤也有明显疗效。
Br2 CH3 COOH
P
O BrCH2 C-Br
X
溴乙酰溴
Br2 PCl3
BrCH2COOH
NH3 NH2-CH2COOH
第三节 醇、醚的卤素置换反应
一、醇的卤素置换反应
1 与HX反应 HI﹥HBr﹥HCl﹥HF 叔﹥仲﹥伯
2 与氯化亚砜、氯化砜的反应
S O2Cl
o C2O H H P y
o C2C H l
1S,2S (+)
仅1R,2R(-)型有抗菌活性, 临床使用
合成路线如下
O2N
Br2 , C6H5Cl COCH3
O2N
COCH2Br (CH2)6N4 , C6H5Cl O2N
COCH2Br(CH2)6N4
C2H5OH HCl , H2O O2N
(CH3CO)2O COCH2NH2 . HCl CH3COONa O2N
药物合成反应习题集.

《药物合成技术》习题集适用于制药技术类专业第一章 概论一、本课程的学习内容和任务是什么?学好本课程对从事药物及其中间体合成工作有何意义?二、药物合成反应有哪些特点?应如何学习和掌握? 三、什么是化学、区域选择性?举例说明。
四、什么是导向基?具体包括哪些类型?举例说明。
五、药物合成反应有哪些分类方法?所用试剂有哪些分类方法?举例说明。
六、查资料写一篇500字左右的短文,报道药物合成领域的新技术及发展动态?第二章 卤化技术(Halogenation Reaction )一、简答下列问题1.何为卤化反应?按反应类型分类,卤化反应可分为哪几种?并举例说明。
2.在药物合成中,为什么常用卤化物作为药物合成的中间体?3.在较高温度或自由基引发剂存在下,于非极性溶剂中,B r 2和NBS 都可用于烯丙位和苄位的溴取代,试比较它们各自的优缺点。
4.比较X 2、HX 、HOX 对双键离子型加成的机理、产物有何异同,为什么?5.解释卤化氢与烯烃加成反应中,产生马氏规则的原因(用反应机理)。
为什么Lewis 酸能够催化该反应?6.解释溴化氢与烯烃加成反应中,产生过氧化效应的原因?7.在羟基卤置换反应中,卤化剂(HX 、SOCl 2、PCl 3、PCl 5)各有何特点,它们的使用范围如何?二、完成下列反应C CH 3CH 3CHCH 3Ca(OCl)2/AcOH/H 2O1.Ph 2CHCH 2CH 2OH32.CH 3SO 2ClCl /AIBN3.OH4CH 3CH 35.2OC O CH 3OHI 2/CaOAcOK Me 2CO?6.三、为下列反应选择合适的试剂和条件,并说明原因。
(CH 3)2C CHCH 3CHCH 2Br(CH 3)2C 1.CH 3CH CH COOHCH 3CH CH COCl 2.HOCH 2(CH 2)4CH 2OH(CH 2)4CH 2I CH 2I 3.CH 3OCH 2CH 2CO 2HCH 2CHCOBrBrCH 3O 4.CH 3CH CH CO 2CH 3CH 2CH CH CO 2CH 3Br 5.O2CH 2OH CH 2CH 2OHOCH 2CH 2CH 2CH 2ClCl 6.CH 2OH3CH2Cl37.8.BrCH 2(CH 2)9COOH CH 3CH(CH 2)8COOHBrCH 2CH(CH 2)8COOHCH 32CH 2C(COOC 2H 5)NHCOCH 3CH 2Br2CH 2C(COOC 2H 5)39.CH 2NO 2CH 2N(CH 2CH 2OH)2C(COOC 2H 5)3(抗肿瘤药消卡芥)CH 2NO 2CH 2N(CH 2CH 2Cl)2CHCOOH 2CH 2NO 2CH 2N(CH 2CH 2Cl)2C(COOC 2H 5)310.CH 3(CH 2)5OCH 3C 2H 5CH 3(CH 2)5OCH 2BrC 2H 5CH3(CH 2)5OOHC 2H 5CH 3(CH 2)4CH 2OHCH 3(CH 2)4CH 2Cl CH 3(CH 2)4CH 2Cl (构型反转)(构型保持)11.OC 2H 5OC 2H 5Br12.四、分析讨论1.试预测下列各烯烃溴化(Br 2/CCl 4)的活性顺序。
chapter还原反应

PhCH=CHCO2Na
Na-Hg H2O
PhCH2CH2CO2Na H+ PhCH2CH2CO2H
1.以甲苯和C3以下的有机物合成PhCH2CH(Li、Na 、K)与液氨、醇组成的混合物进行的还原 谓Birch还原。碱金属在液氨中的溶解度次序为:Li>K>Na。 醇作为质子供给剂。进行还原时,务必除去存在于未经蒸馏的液 氨中的铁盐及其它杂质,少量的这些杂质将促进金属氢化物的 形成,从而抑制碱金属的还原。由于有机反应物在液氨中溶解 度较小,往往于反应体系中加入除去过氧化物和水的干醚和THF 等溶剂溶解。
镁汞齐能还原酮为相应的仲醇,并发生双分子还原反应 生成片呐醇。
1.Mg-Hg/PhH
2 (CH3)2C=O 2.H2O
(CH3)2C C(CH 3)2 OH OH
2PhC=O 1.Al-Hg /THF Ph2C CPh2
2.H2O
OH OH
O + (CH3)2C=O Mg-Hg
Ti C l4
CH3 C CH3 OH OH
NaHB4, LiAlH4, Al(OCH(CH3)2)3: 羰基还原成羟基, 不还原双键 Mg(-Hg) /苯; 双分子还原,得到邻二醇
Zn-Hg/HCl: 羰基---亚甲基 与羰基 共轭的双键也被还原
NH2NH2 + NaOH/O(CH2CH2OH)2 Fe+HCl, 如果芳环上有易被还原的羰基(如醛基),用SnCl2+HCl 较好
O CH3 Na,NH3 EtO H
O CH3
Li ,EtNH2
EtO H Na,NH3
1,4-二氢萘
EtO H
1,4,5,8 四氢萘
COOH Na,NH3 EtO H
药物合成反应

四.缩合反应定义:两个及两个以上有机化合物通过反应形成一个新的较大分子或同一分子内部发生分子内的反应形成新分子的反应称为缩合反应。
Aldol:定义:在稀酸或稀碱催化下(通常为稀碱),一分子醛(或酮)的 氢原子加到另一分子醛(或酮)的羰基氧原子上,其余部分加到羰基碳上,生成 -羟基醛(或酮),这个增长碳链的反应称为α-羟烷基化反应。
但该类化合物不稳定,易消除脱水生成α,β-不饱和醛酮,又称Aldol缩合反应。
Aldol特点:酮:活性小于醛,反应速度慢。
1. 对称酮产物较单纯。
2. 不对称酮的自身缩合,在碱性或酸性催化下,反应都发生在取代较少的羰基碳原子上。
羟醛缩合催化剂碱:弱碱(如Na3PO4、NaOAc、Na2CO3、K2CO3、NaHCO3),强碱(如NaOH、KOH、NaOEt、NaH、NaNH2)酸:盐酸、硫酸、对甲苯磺酸、三氟化硼以及阳离子交换树脂等Cannizzaro反应(歧化反应)定义:凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。
此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇。
甲醛的羟甲基化反应和交叉Cannizzaro反应能同时发生,是制备多羟基化合物的有效方法。
定向醇醛(酮)缩合方法:A.烯醇盐法:醛或酮与具位阻的碱如LDA(二异丙胺锂)作用,形成烯醇盐再与另一分子醛或酮作用,B.烯醇硅醚法:醛、酮转变成烯醇硅醚,在TiCl4催化下与另一分子醛、酮分子作用。
C. 醛、酮与胺形成亚胺,与LDA形成亚胺锂盐,再与另一分子醛、酮作用。
Diels-Alder反应含有一个活泼的双键或叁键的烯或炔类和二烯或多烯共轭体系发生1,4-加成,形成六员环状化合物的反应称为Diels-Alder反应。
该反应易进行且反应速度快,应用范围广,是合成环状化合物的一个非常重要的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 3 3.还原醛、酮
4 4反应
1 1.锌汞齐直接还原为烃(Clemmensen反应) 2 2.乌尔夫-凯惜钠-黄鸣龙反应 3 3 3.催化氢化还原 4 4.金属氢化物还原 3
举例
CO
Clemmensen反应
乌尔夫-凯异纳-黄鸣龙 催化剂
AlCl3/LiAlH4
CH2
C N NH2
CH2
CH2
CH2
Clemmensen反应
1 1.概:Clemmensen反应是在酸性条件下,用锌汞
齐或锌粉还原醛基、酮基为甲基或亚甲基的反应称
2 2.还原剂处理:锌汞齐是将锌粉或锌粒用5%~10%
的二氯化汞水溶液处理后制得。
3 3.操作:将锌汞齐与羰基化合物在约5%盐酸中回流
,醛基还原成甲基,酮基则还原成亚甲基
案例分析
案例:抗凝血吲哚布芬的合成:
还原成醇的反应
1 1.金属复氢化物为还原剂 2 2.醇铝为还原剂
案例分析
案例:避孕药炔诺酮中间体合成。
OHC CH
KBH4/EtOH 回 流
OHC CH
O
HO
分析:在该底物中除了羰基外还有叁键、双键,故用氢化铝 锂可能会一起被还原,而用氢化硼钾则可避免这样的情况。只 还原羰基,还不影响其它基团。
醛、酮的还原
1 1.醛、酮通过还原反应可直接得到烃 2 2.还原得到相应的醇、酚 3 3.还原胺化反应,是转变羰基为胺或取代胺基
举例
O R C R( H ) [ H ]R C H 2 R( H )
O
OH
R C R/(H) [H] R CH R/(H)
R R / COR / /N H 2
R R / CN H- H 2 O R R / CN R / / [ H ] R R / C HN H R / / O H
1 1.在催化剂的存在下,有机物(底物)与氢气反应
,使一些C-O,C-X,C-S等键断裂,生成C-H键的 过程称为催化氢化
催化氢化的类型
1 1.非均相催化反应 2 2.均相催化反应 3
催化氢化的影响因素和 安全技术
1 1.催化氢化的基本过程 2 2.催化剂 3 3 3.在药物合成中的应用
在药物合成中的应用
物选择性还原为醛,此反应称Rosenmund反应
O CH CHCCl
LiAl-H[OC(CH3)]3 (CH3OCH2CH2)2O ,50 ,r.t
NO2
O CH CH CH
(84%) NO2
催化氢化反应
1 1.催化氢化的概念 2 2.催化氢化的类型 3 3 3.催化氢化的影响因素和安全技术
催化氢化的概念
还原胺化反应
1 1.羰基还原胺化反应 2 2.Leuckart反应
羰基还原胺化反应举例
R R ' COR ''N H 2
R R ' CN H- H 2 OR R ' CN R ''[ H ] R R ' C HN H R '' O H
Leuckart反应举例
COCH3
HCOONH4 180 ~185
O S i ( C H 3 ) 3
O H O H
( 9 0 % )
硝基化合物和亚硝基化 合物的还原
1 1.金属还原剂 2 2.硫化物还原法 3 3 3.催化氢化法 4 4.复氢化物还原法 3
羧酸及其衍生物的还原
1 1.酰卤的还原 2 2.羧酸及酸酐的还原 3 3 3.酯及酰胺的还原
酰卤的还原
1 1.酰卤在适当的条件下反应,用催化氢化或金属氢化
O N
O
C H C O O HZ n /( C 2 H 5 ) O
H C l ( g )
C H 2C H 3
O N
O
C H C O O H( 8 4 % ) C H 2C H 3
分析:Clemmensen还原反应一般不能适用于对酸和热敏感的羟基 化合物的还原,如采用比较温和的条件,即在无水有机溶剂(醚、 四氢呋喃、乙酐、苯)中,用干燥氯化氢与锌,于0℃左右反应, 就可还原羰基化合物,扩大了本反应的应用范围。
乌尔夫-凯惜钠-黄鸣龙 反应
1 1.概:乌尔夫-凯惜钠-黄鸣龙反应是醛类或酮类在强碱
性条件下,与水合肼作用合成腙,进而放氮分解转变为 甲基或亚甲基。
2 2.收率一般在60%~95%之间,具有工业生产价值。
案例分析
案例:抗癌药苯丁酸氮芥中间体的制备:
C H 3 C O N H
O
CC H 2 C H 2 C O O H
H 2 N N H 2 / H 2 O / K O H 1 4 0 ~ 1 6 0 , 1 h
CH3CONH
CH2CH2CH2COOH (85%)
分析:乌尔夫-凯惜钠-黄鸣龙反应应用于本反应,适用于对酸敏感的吡 啶、四氢呋喃衍生物,对于甾族羰基化合物及难溶的大分子羰基化合 物尤为合适。分子中有双键、羰基存在,还原时不受影响,一般位阻 大的酮基也可被还原。
还原反应的类型
1 1.催化氢化反应 2 2.化学还原反应 3 3.生物还原反应 4 4.电解还原反应
举例
O2N
Fe /HOAc COO3CH 35-4oC 0 H2N
COO3CH
O C 6H 5 NO - + -氢 H H 22 O解 C 6H 5-N=加 +H O 2 氢 C 6H 5-N O HH + -氢 H H 2 2 O解 C 6H 5-N 2H
CH3CHNH2
(66%)
OH C O N ( C H 3 ) 2 / H C O O H
N( C H 3 ) 2 ( 7 5 % )
羰基化合物双分子还原 偶联反应
1 1.羰基化合物与镁汞齐或铝汞齐一起在苯中回流反
应,即发生双分子还原偶联,生成频哪醇。
O S i ( C H 3 ) 3 2 C 6 H 5 C H O ( C H 3 ) 2 S i C l / M gC 6 H 5 C H C H C 6 H 5 H 2 OC 6 H 5 C H C H C 6 H 5