1.1认识一元二次方程教学设计
苏科课标版初中数学九年级上册第一章一元二次方程1.1一元二次方程教案

苏科课标版初中数学九年级上册第一章一元二次方程11教学内容与学情本节课的教学内容是苏科版«义务教育教科书·数学»九年级上册第一章第1节〝一元二次方程〔第1课时〕〞.在七、八年级先后学习了一元一次方程、二元一次方程组、一元一次不等式〔组〕和分式方程,先生对〝元〞、〝次〞、〝方程〞、〝解〔根〕〞、〝解方程〞等概念已比拟明晰,并且知道方程是描写理想生活中数量关系的有效模型;一元二次方程是提醒理想世界数量关系的又一个重要的数学模型,它既是方程自身内容进一步丰实的需求,也是后续学习二次函数以及高中数学的基础.2教学目的〔1〕了解一元二次方程的概念,了解一元二次方程的解和解一元二次方程的意义;〔2〕能依据的一元二次方程编写相应的生活情境,也能依据实践效果中的数量关系列方程,从中感受一元二次方程是提醒理想世界数量关系的一个有效的数学模型;〔3〕阅历一元二次方程概念的生成与逻辑建构进程,体会由特殊到普通、分类和化归等数学思想方法,感受概念学习的基本方式,逐渐构成数学阅历体系.3教学重点、难点重点:了解一元二次方程的概念,感受一元二次方程是提醒理想世界数量关系的一个重要的数学模型;难点:阅历具表达实原型与笼统数学模型之间的数学化进程,用一元二次方程描画复杂效果中数量之间的相等关系.4教学进程设计4.1 概念构成〔是什么?〕概念构成普通阅历4个阶段:〝感知看法阶段〞、〝分化实质属性阶段〞、〝概括构成定义阶段〞和〝运用与强化阶段〞.4.1.1 感知看法本节课我们末尾学习〝一元二次方程〞,你能写出1个一元二次方程吗?你能再写出类型不同的一元二次方程吗?【有效性剖析】先生对〝元〞、〝次〞、〝方程〞的概念已比拟明晰,类比地写出几个一元二次方程,让先生构成直观感受;概念笼统需求典型实例,经过〝类型不同〞引发先生深度参与,逐渐向数学对象的实质属性迫近.4.1.2 分化实质以下方程是不是一元二次方程?为什么?①y 2=-3;② x 2+1x +2=0; ③ x 〔x -1〕=x 2;④ax 2+3x+1=0.【有效性剖析】应用正例和反例变换非实质属性特征,笼统特性特征,概括实质特征.〝群众化〞的方程没有争议,以无实根型、分式方程、化简后不含x 2型以及二次项系数不确定型等有〝特性〞的方程引发认知抵触,从而促进一种共同的认知愿望:必需明白〝一元二次方程〞的定义,这既是一个思想实质性参与进程,又是一个孕育概念生长点的进程.4.1.3 概括定义效果1:你以为什么叫做一元二次方程?⑴文字定义:只含有1个未知数,并且未知数的最高次数是2的方程叫做一元二次方程. ⑵符号定义:形如ax 2+bx+c=0〔a 、b 、c 是常数,a ≠0〕的方程叫做一元二次方程. 我们把ax 2+bx+c=0〔a 、b 、c 是常数,a ≠0〕叫做一元二次方程的普通方式,其中ax 2叫做二次项、bx 叫做一次项、c 叫做常数项,a 、b 区分叫做二次项系数、一次项系数.思索:①如何了解〝未知数的最高次数是2〞这个条件?②在普通方式中,假设b=0或c=0,那么一元二次方程具有怎样的方式?【有效性剖析】有以前学习方程的阅历和看法基础,先生具有由详细思想向方式化思想转变、归结一元二次方程定义的才干.数学思想方法孕育于知识的发作开展进程中,思索的两个效果是等价的,凸出了概念的外延和外延,一方面看法到一元二次方程方式的多样性,另一方面也加深了对概念实质的了解.4.1.4 运用强化例1 关于x 的方程〔m 2-4〕x 2+〔m +2〕x -m+2=0.⑴当m______时,该方程为一元二次方程;⑵假定该方程为一元一次方程,那么m=______.【有效性剖析】引导先生育成从基本概念动身思索效果、处置效果的习气,突出一元二次方程基本概念所包括的思想方法,在感受数学分类的必要性的同时,训练思想的缜密性. 4.2 建构活动〔学什么?〕效果2〔先留空〕:你以为,这个效果应该是什么? 或许说,此刻我们应该提出什么效果?【有效性剖析】先生自动提出效果也是需求引导的.这个留空效果的出现,激起先生思索,我们曾经知道了一元二次方程的定义〔从哪里来〕,接上去当然应该研讨一元二次方程的其它内容〔到哪里去〕,这是认知的自然趋向;先生应该有这种自主建构学习内容体系的学习倾向和自动提出效果的看法,这种把自动权还给先生的做法有益于促进学习方式的改动.经过回想与重构,〝我们应该如何学习一元二次方程?〞或许〝接上去我们应该学习一元二次方程的哪些内容?〞这类效果呼之欲出,〝⒈定义;2.解;3.解方程;4.列方程处置效果.〞的认知框架水到渠成.为了强化自动提出效果的看法,积聚提出效果的阅历,教员可以追问:〝你是怎样想到这样提出效果的?〞〝提这样的效果合理吗?〞.4.3 数学探求〔怎样学?〕4.3.1自主探求结合我们自己写出来的方程,同窗们先独立思索:刚才我们所提出的几个效果中,哪些你能处置?哪些你可以尝试处置?【有效性剖析】一元二次方程的方式多样、系数复杂,招致解方程的方法多样性与复杂性共存,这些需求先生自主看法与感受;这里不在于能否处置了效果,而在于思想的层次与实质——发现了悬而未决的效果,这既是突出中心概念的进程,也是打破难点的进程.4.3.2协作交流⑴一元二次方程的解的意义各组代表陈说〔可以结合已写出的方程,也可以重新写〕,突出以下几个效果:①什么叫〝一元二次方程的解〞?②如何验证一个值能否为一元二次方程的解?你发现一元二次方程的解与我们以前学过的方程的解有何异同?⑵解一元二次方程的感受如何确定〔或找到〕一元二次方程解?先生对照自己写出的方程说明.例如对9x2=4型的可以经过开平方,对〔x-1〕〔x+2〕=0或x2-5x=0型的可以经过因式分解,而x2=-5型的没有实数根;当然,像2x2-5x=1等型的方程目前尚难处置,这正是我们本章要学习的内容,前面将有十分巧妙的解法等候着我们!反过去,假设解,你能编写出一元二次方程吗?能编出不同的一元二次方程吗?①你能写出一个以1和-2为根的一元二次方程吗?许多先生会写出〔x-1〕〔x+2〕=0型的方程,教员可以用〝你是怎样想到这样编写的?〞初步构成编写的阅历.②你能写出一个只以3为根的一元二次方程吗?③你能写出一个没有实数根的一元二次方程吗?④你能写出一个有3个实数根的一元二次方程吗?【有效性剖析】先生阅历编写进程〔逆向思想〕,或容许以翻开解方程〔找方程的解〕的渠道,让数学活动由方程的〝解〞向〝解方程〞自然过渡;在尝试解方程的进程中感受化归求简的思想方法.⑶列一元二次方程处置效果的尝试在我们所写的一元二次方程中选择1个你喜欢的方程,举1个相应的生活效果,使得该方程可以描画其中数量之间的相等关系〔能处置其中的效果〕.先生能够会选择以下方程编写生活效果:①〔x -1〕2=2,应用正方形面积来编;一个正方形的边长减小1,失掉的新正方形的面积为2,那么这个一元二次方程就可以描画原正方形的边长与新正方形面积之间的数量关系;②x 〔x+1〕= 6,应用长方形面积来编;长方形的长比宽多1cm ,面积为6cm 2,假设设宽为xcm ,那么这个一元二次方程就可以描画长方形的宽与面积之间的数量关系.③x 2+〔x -1〕2=25,应用勾股定理来编;一个直角三角形两条直角边的差为1cm ,斜边长为5cm ,那么这个一元二次方程就可以描画直角边的长与斜边长之间的数量关系.教学时,还可以补充一些典型效果,例如:例2 某种品牌电脑延续两次降价〔降价率相反〕,单价由原来的6400元降到4900元,求每次降价率.独立作答,然后由1名同窗讲述.设每次降价率为x ,那么〔1—x 〕2=4964,这是一元二次方程,同窗们可以尝试去解它.【有效性剖析】这些效果源于生活,回归教材;例2经过一个相对完整的处置效果的进程,表达一元二次方程的适用价值,领悟到〝为什么要学?〞4.4 教学小结效果3:阅历了一元二次方程的〝第1节课〞,我们取得了哪些学习阅历?【有效性剖析】反思自己的学习进程,积聚学习阅历,用阅历了解数学,在了解中学会,在学会中会学.阅历提升:学习一个数学对象,我们往往先对它有一个结构性的看法,以以下方式展开,逐渐提醒它的实质.4.5 目的检测〔5分钟训练〕见«目的检测».5 教学设计说明与教后反思5.1 〝第1节课〞的义务作为本章〝第1节课〞,这节课的教学性质是以效果趋动的概念教学课,不是章头导学课,更不是单元教学课.〝第1节课〞的义务主要有三点:〔1〕胸中有〝森林〞,就是感知本章〔或单元〕的逻辑结构和学习蓝图,让学习一直坚持在〝抬头看路〞的微观形状;〔2〕眼前有〝树木〞,就是了解一些自然生成的数学对象和基本概念;〔3〕脑海有〝套路〞,就是阅历本章〔或单元〕框架的生成与构建进程,全体掌握知识间的逻辑关系,体会概念学习的基本套路.5.2 效果情境的价值效果情境的价值不外乎为教学活动提供三个方面的效劳:取得研讨的对象、提出研讨的效果、找到研讨的方法.数学对象有时是内隐的,人们对它的看法需求由具象〔生活原型〕到表象〔过渡雏形〕,再到笼统〔数学模型〕;数学对象不一定来自生活原型,有时来自先生实践,来自先生的阅历.下面回答两个疑问:⑴本节课的效果情境是什么?一元一次方程、二元一次方程组、分式方程的学习都表达了〝从效果到方程〞的看法观,本节课跳过生活实例〔预设的〝相关〞情境〕,直入课题,对〝元〞、〝次〞、〝方程〞、〝解〔根〕〞、〝解方程〞等概念停止回想与迁移,在罗列和区分一元二次方程的进程中构成认知抵触,一元二次方程的定义成为迫切的需求.数学概念来源于两方面:一是对生活效果的直接笼统;二是在已有知识和阅历上的逻辑建构.本节课的效果情境就是先生已有的知识与认知阅历,以及在自主建构中所构成的认知抵触.这种情境迎合先生的学习内趋,更能表达数学的实质,更能将留意力集结到主题下去.一个徒具方式的〝把先生塞进汽车〞的情境并不比开门见山值得一定.⑵对一元二次方程认知的笼统逻辑建构以及从效果情境动身突出方程模型思想的功用,哪个更有价值?对一个新的数学对象,我们普通阅历从外表到实质、从笼统到详细、从孤立到系统的看法进程.教学活动要特别关注知识的〝生长点〞和〝归结点〞,先生以往学习方程的阅历有利于一元二次方程新认知的异化,但一元二次方程对方程的认知既有量的添加,又有质的变化,先生会发生新的疑问:为什么一元二次方程有多种解法?为什么要研讨一元二次方程根的判别式?等等,这些新的疑问促使先生对原有认知结构停止改造〔新认知的顺应〕.让先生在自主建构进程中开掘数学概念包括的价值观资源,提高解读概念所反映的数学思想方法的才干,这是数学教育的价值所在.无须置疑,用方程描写效果成为先生的一种自觉的需求〔方程模型思想〕,是方程教学的中心价值.为了力图完成这一价值,本节课设计了两个不同思想层次的〝编写〞,先是编写方程,但先生所编写的方程未必从生活效果中来,不乏x2+x=0这些〝裸方程〞,后是依据方程编写效果情境,这时先生必需回到生活效果中去,经过逆笼统体会效果情境的价值.5.3 坚持为了解而教〔1〕了解数学开展的规律.数学概念、数学方法和数学思想的来源与开展都是自然的,一是知识的逻辑顺序自然,二是先生的心思认知自然.数学概念教学要让先生了解概念的背景和引入它的理由,知道它在树立、开展实际或处置效果中的作用,甚至要让先生体验数学家们发现数学规律的心路历程,这一历程闪耀着人类智慧的光芒,它对人类的贡献不只仅在于数学结论,更重要的是孕育了一种肉体质量和这种肉体质量的教育功用.〔2〕了解数学思想的方式.数学教学是对特定数学对象构成序列概念性看法的思想活动,数学学习是数学思想方式的学习.数学思想方式孕育于知识的发作开展进程中,在教学活动中,教员要引导先生从数学角度看效果,擅长自动提出效果,有条理地停止理性思想、严密求证、逻辑推理和明晰准确地表达,不时反思〝这么想对吗?〞、〝为什么应该这么想?〞,逐渐构成合理的数学思想方式.〔3〕了解数学教育的价值.数学教育的中心价值是经过数学教育人思想.教员要引导先生经过对数学迷信与人类社会开展之间的相互作用的了解,体会数学的迷信价值、运用价值和人文价值,培育严谨态度和探求肉体,以及能引发发明动力的价值观念,这种观念在以后仔细学习数学与运用数学处置效果的进程中将逐渐生成并强固起来,受益终身.。
青岛版数学九年级上册《认识一元二次方程》教学设计

青岛版数学九年级上册《认识一元二次方程》教学设计一. 教材分析《认识一元二次方程》是青岛版数学九年级上册的教学内容。
本节课的主要内容是一元二次方程的定义、性质和解法。
一元二次方程是初中数学的重要内容,是进一步学习高中数学的基础。
本节课的内容对于学生来说比较抽象,需要通过实例和练习来理解和掌握。
二. 学情分析九年级的学生已经具备了一定的代数基础,对于方程的概念和解法有一定的了解。
但是,对于一元二次方程的定义和性质还需要进一步的学习和理解。
此外,学生的学习习惯和思维方式也会影响他们对一元二次方程的学习。
三. 教学目标1.了解一元二次方程的定义和性质。
2.学会解一元二次方程的方法。
3.能够应用一元二次方程解决实际问题。
四. 教学重难点1.一元二次方程的定义和性质。
2.一元二次方程的解法。
五. 教学方法采用问题驱动法、实例教学法和练习法进行教学。
通过问题和实例引导学生思考和探索,通过练习巩固所学知识。
六. 教学准备1.PPT课件。
2.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入一元二次方程的概念,引导学生思考和探索。
2.呈现(15分钟)讲解一元二次方程的定义和性质,通过实例和PPT课件呈现一元二次方程的解法。
3.操练(20分钟)让学生分组练习解一元二次方程,教师巡回指导,及时纠正错误。
4.巩固(10分钟)通过一些练习题巩固学生对一元二次方程的理解和解法。
5.拓展(10分钟)引导学生思考一元二次方程的应用,解决实际问题。
6.小结(5分钟)对本节课的内容进行总结,强调一元二次方程的定义和性质,以及解法。
7.家庭作业(5分钟)布置一些练习题,让学生回家巩固所学知识。
8.板书(5分钟)板书一元二次方程的定义、性质和解法。
本节课通过问题驱动法、实例教学法和练习法,引导学生了解和掌握一元二次方程。
在教学过程中,注意调动学生的积极性,鼓励他们思考和探索。
通过练习和实际问题,让学生巩固所学知识,提高解题能力。
《一元二次方程》教学设计-优质教案

x x
3
活动意图说明1.了解一元二次方程的概念,并能判断方程是否是一元二次方程. 2.能将一元二次方程化为一般形式.
环节三:
教的活动3例2.已知关于x的方程
22
(9)(3)50
m x m x
-++-=.
(1)当m为何值时,此方程是一元一次方
程?并求出此时方程的解.
(2)当m为何值时,此方程是一元二次方
程?并写出这个方程的二次项系数、一次项
系数及常数项.
例3.长5米的梯子斜靠在墙上,梯子的底
端与墙的距离是3米。
如果梯子底端向右滑
动的距离与梯子顶端向下滑动的距离相等,
求梯子滑动的距离。
根据题意,列出方程.
学的活动3
活动意图说明1.了解一元二次方程的概念,并能判断方程是否是一元二次方程. 2.能将一元二次方程化为一般形式.。
一元二次方程优秀教案

一元二次方程优秀教案•相关推荐一元二次方程优秀教案(通用11篇)作为一名默默奉献的教育工作者,可能需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
那么大家知道正规的教案是怎么写的吗?以下是小编整理的一元二次方程优秀教案,仅供参考,大家一起来看看吧。
一元二次方程优秀教案篇1教学目标1.了解整式方程和一元二次方程的概念;2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式,一元二次方程。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:1.教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。
方程,只有当时,才叫做一元二次方程。
如果且,它就是一元二次方程了。
解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。
(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。
如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。
如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。
教学目的1.了解整式方程和一元二次方程的概念;2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
一元二次方程的概念教学设计

一元二次方程的概念教学设计教学设计:一元二次方程的概念1. 目标:学生能够理解和应用一元二次方程的概念,能够解决与一元二次方程相关的问题。
2. 引入:- 引导学生回顾线性方程的概念和解法,强调方程中只有一个未知数。
- 提问:如果方程中有两个未知数会怎样?学生可能会回答不知道如何解决。
- 引出一元二次方程的概念:一元二次方程是指只有一个未知数,并且该未知数的最高次数为2的方程。
3. 概念解释:- 解释一元二次方程的一般形式:ax^2 + bx + c = 0,其中a、b、c为已知常数,且a ≠ 0。
- 解释方程中的系数:a为二次项系数,b为一次项系数,c为常数项。
- 解释方程的解:解是使方程成立的未知数的值。
4. 解题步骤:- 提供解题步骤,包括将方程转化为标准形式、判断方程的根的情况、求解方程的根的方法。
- 举例说明每个步骤的操作方法。
5. 解题示例:- 提供一些具体的一元二次方程问题,引导学生通过解题来加深对概念的理解。
- 例如:已知一元二次方程 x^2 - 5x + 6 = 0,求解该方程的根。
- 将方程转化为标准形式:x^2 - 5x + 6 = 0- 判断方程的根的情况:计算判别式 D = b^2 - 4ac,若 D > 0,则有两个不相等的实数根;若 D = 0,则有两个相等的实数根;若 D < 0,则没有实数根。
- 求解方程的根的方法:使用求根公式 x = (-b ± √D) / (2a) 求解方程的根。
6. 练习:- 提供一些练习题,让学生通过解题巩固对一元二次方程概念的理解和应用能力。
7. 总结:- 对本节课所学的一元二次方程的概念进行总结,强调关键点和解题技巧。
这样的教学设计可以帮助学生理解一元二次方程的概念,并通过具体的解题步骤和示例来加深对概念的理解和应用能力。
《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点:正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?九年级数学《一元二次方程》教案篇二教学目标:知识与技能目标:经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。
《一元二次方程》教学设计

《1.1一元二次方程》教学设计一、教学内容分析“1.1一元二次方程”是苏科版教材九年级(上)第1章第一节内容,在初中数学中占有重要地位。
从知识的发展来看,一元二次方程的学习,是一元一次方程、方程组及不等式知识的延续和深化,也是今后学生学习其它数学知识的基础。
这节课是一元二次方程的概念课,通过丰富的实例,让学生建立一元二次方程,并通过观察类比归纳出一元二次方程的概念。
本节课的教学不仅使学生进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型,而且提高了学生分析、比较、抽象和类比概括的能力,为接下来的学习起到很好的铺垫作用。
二、学情分析:九年级的学生自主探究和合作交流的能力很强,并且他们比较、分析、抽象和概括的能力也有很大提高。
当他们在解决实际问题时,发现列出的方程不再是熟悉的一元一次方程或可化为一元一次方程的其它方程时,他们自然会想需要进一步研究和探索有关方程的问题。
而从学生的知识结构上看,前面已经系统的研究了整式、分式、二次根式、一元一次方程、二元一次方程和分式方程,已经具备了继续探究一元二次方程的基础。
三、教学目标根据《数学课程标准》中关于“一元二次方程”的相关教学要求,结合教材特点和九年级学生的好奇心、求知欲及已有的知识经验,我特制订如下的教学目标:知识技能:1、理解一元二次方程的概念。
2、掌握一元二次方程的一般形式,会正确识别一元二次方程的项和系数。
数学思考:1、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性。
2、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力。
解决问题:在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感态度:1、培养学生自主自主学习、探究知识和合作交流的意识。
2、通过对问题的分析,激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识。
初中数学教学课例《一元二次方程(1)》课程思政核心素养教学设计及总结反思

3.播放“未铺地毯区域有多宽”的课件,说明题 目的条件和要求,课件要求制作得精美并且可以清楚得 显示出各个量之间的关系。
4.给学生时间思考:如何明确并用数学式子表示
出题目中的各个量? 5.让学生回答他们的答案是什么,给予点评,让
学生核对答案,可以以学生举手示意的方式掌握全班的 情况。
没有深入的理解。通过本节课的学习,应该让学生进一
步体会一元二次方程也是刻画现实世界的一个有效数
学模型。
1、会根据具体问题列出一元二次方程,体会方程
的模型思想,提高归纳、分析的能力。
2、理解一元二次方程的概念;知道一元二次方程
的一般形式;会把一个一元二次方程化为一般形式;会
判断一元二次方程的二次项系数、一次项系数和常数 教学目标
10.设置悬念:有的同学猜测是 1 米,到底是多少, 我们后面来看一看。为后续学习做好铺垫。
11.让学生说出他们的答案,点评,其他学生核对 自己的答案;可以以学生举手示意的方式掌握全班的情 况。
12.肯定学生的表现:大家自己的探索已经很好地 打开了第二章“一元二次方程”的大门,相信同学们这 一章会学得很好。
①在这个问题中,梯子顶端下滑 1 米时,梯子底端 滑动的距离大于 1 米,那么梯子顶端下滑几米时,梯子 底端滑动的距离和它相等呢?②如果梯子长度是 13 米,梯子顶端下滑的距离与梯子底端滑动的距离可能相 等吗?如果相等,那么这个距离是多少?
3、观察下面等式:102+112+122=132 +142 你还能找到其他的五个连续整数,使前三个数 的平方和等于后两个数的平方和吗?
10.总结本节内容,记下作业。(分析学生在本课 中所需学习方法的掌握情况、学生的课堂学习行为与习 惯、合作学习氛围、学生认知障碍等)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1认识一元二次方程
一、学情分析:
学生在七年级和八年级已经学习了整式、分式、二次根
式、一元一次方程、二元一次方程、分式方程,在此基础上本节课将从实际问题入手,抽象出一元二次方程的概念及一元二次方程的一般形式.
二、教学目标
1、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.
2、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力。
三、教学重点:一元二次方程的概念及一般形式.
四、教学难点:正确识别一元二次方程一般形式中的“项”及“系数”.
五、教学过程
(一)自主学习
1、幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,如果设所求的宽度为x米,那么你能列出怎样的方程?
2、你能找到关于102、112、122、132、142这五个数之间的等式吗?如果设五个连续整数中间的数为x,其余四个数怎么用x表示?能列出怎样的方程
3、如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m.那么梯子的底
8
端滑动多少米?
设梯子底端滑动x米,列方程为:
(二)交流展示
结合上面三个问题得到的三个方程,观察它们的共同点,得到一元二次方程的概念及其各部分的名称。
(三)质疑点拨
(四)巩固归纳
1、把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.
2.已知直角三角形三边长为连续整数,求它的三边长?
设较短直角边为x,可列方程:
(五)课堂检测
从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.
1。