第三节 凸函数

合集下载

凸函数上凸下凸凹函数

凸函数上凸下凸凹函数

凸函数上凸下凸凹函数凸函数、上凸函数、下凸函数和凹函数是数学中常见的函数类型,它们在经济学、物理学、计算机科学等领域中都有广泛的应用。

本文将详细介绍这些函数类型的定义、性质和应用。

一、凸函数的定义和性质凸函数是定义在实数区间上的一类函数,它具有很好的几何性质。

具体来说,如果函数f在定义域上的一些区间上满足以下条件,那么它就是凸函数:1. 对于区间上的两个点a和b,以及任意介于a和b之间的数t∈[0,1],都有f(ta+(1-t)b)≤tf(a)+(1-t)f(b)。

这个条件称为凸函数的Jensen不等式。

从几何上来看,Jensen不等式意味着函数图像上任意两点之间的连线位于函数图像的下方。

这个性质被称为凸函数的上凸性。

凸函数的性质包括以下几个方面:1.凸函数的上凸性。

对于凸函数f,任意两点a和b以及他们之间的连线位于函数图像的下方。

2.凸函数的上确界性质。

如果函数f在一些区间上凸且上有界,那么在该区间上必存在一个唯一的点c,使得f(x)≤f(c),对于任意的x∈区间。

3.凸函数的导数性质。

凸函数的导函数是非递减的。

也就是说,如果函数f在一些区间上凸,那么它的导函数f'(x)在该区间上非负。

凸函数有许多应用,特别是在经济学和运筹学中。

经济学家和决策者常常使用凸函数来描述效用函数、成本函数、收益函数等。

在运筹学中,凸函数被广泛应用于线性规划、非线性规划和凸优化等问题的建模和求解。

二、上凸函数和下凸函数的定义和性质上凸函数和下凸函数是凸函数的两个特殊情况。

上凸函数是指函数f在定义域上的一些区间上满足以下条件:1. 对于区间上的两个点a和b,以及任意介于a和b之间的数t∈[0,1],都有f(ta+(1-t)b)≥tf(a)+(1-t)f(b)。

上凸函数的性质包括:1.上凸函数是凸函数的一种特殊情况。

也就是说,任何一个上凸函数都是凸函数。

2.上凸函数的导数是非递增的。

也就是说,如果函数f在一些区间上上凸,那么它的导函数f'(x)在该区间上非正。

第3讲凸集、凸函数、凸规划

第3讲凸集、凸函数、凸规划

凸集-----性质
推论: 设 Di , i 1,2,, k 是凸集, 则 i Di 也是凸集, 其中 i 是实数.
i 1 k
(4) S 是凸集当且仅当S中任意有限个点的凸 组合仍然在S中.
凸集-----性质
注: 和集和并集有很大的区别,凸集的并集 未必是凸集,而凸集的和集是凸集.
(c)凸组合为连接这两点的线段;
(b)凸锥组合为以原点为锥顶并通过这两点的锥.
凸集---定义
凸集---定义
定义1 设集合 D R n , 若对于任意两点
x , y D , 及实数 0 1 , 都有:
x 1 y D, 则称集合 D 为凸集.
常见的凸集:单点集 { x },空集 ,整个欧氏空间 Rn,
定理215直观解释我们不妨把一个闭凸集想象为一个三维的充满了气体的气球不一定为标准球形但必须是凸的那么在气球外一点到气球各点包括内部的距离是不一样的但直觉告诉我们肯定在气球上有一点它到该点的距离是所有距离中最小的
第 3讲
凸集、凸函数、凸规划
凸性(Convexity)是最优化理论必须涉及到基本概念.具有凸性 的非线性规划模型是一类特殊的重要模型,它在最优化的理 论证明及算法研究中具有非常重要的作用.
x1 xn
x1p x2p xnp ( p 1), n n 1 P41 2.36 p p p p x1 xn x1 x2 xn ( p 1), n n
1 p
性质
定理2
凸函数
f1 , f 2 ,..., f k 是凸集S上的凸函数, 则
f(αx1+(1-α)x2 )
f(X1)
X1

Ch3 凸函数

Ch3 凸函数
2
f ( x) log(e x1 ... e xn )
n f ( x) (i 1 xi )1/ n , domf n
n f ( X ) log(det X ), domf S
/
Example—下水平集(sublevel set)
Examples
指数函数 幂函数
e
a
ax
×
log x x log x
x , x , a 1 or a 0.
负对数函数
负熵函数
范数函数
x
p
/
Examples
f ( x) max( x1 ,..., xn )
f ( x) x / y
/
保拟凸运算

非负权值函数的最大值函数 复合函数 最小值函数
/
对数凸函数
2. f ( x) 0 3.log f ( x) 为凸函数。
定理:
拟凸函数
定义:函数 f ( x)称为对数凸函数,若函数 f ( x) 满足: 1.domf 为凸集
f ( p ( x) xdx) p ( x) f ( x)dx.
S S
应用:EM算法
/
保凸运算
凸函数的非负加权和
凸函数与仿射变换的复合 逐点最大、最小值
f ( x) 1 f1 ( x) ... n f n ( x) g ( x) f ( Ax b)
拟凸函数:定义、例子、3个性质、保拟凸运算 对数凹函数&对数凸函数:定义、例子、定理、性质
广义不等式的凸性:单调性定义、凸性定义、定理
/
凸函数定义
n f : 函数 ,满足
严格凸 凹 严格凹

凸函数

凸函数

凸函数,是数学函数的一类特征。

凸函数就是一个定义在某个向量空间的凸子集C(区间)上的实值函数。

凸函数是一个定义在某个向量空间的凸子集C(区间)上的实值函数f,而且对于凸子集C中任意两个向量, f((x1+x2)/2)>=(f(x1)+f(x2))/2,则f(x)是定义在凸子集c中的凸函数(该定义与凸规划中凸函数的定义是一致的,下凸)。

凸函数的主要性质有:1.若f为定义在凸集S上的凸函数,则对任意实数β≥0,函数βf 也是定义在S上的凸函数;2.若f1和f2为定义在凸集S上的两个凸函数,则其和f=f1+f2仍为定义在S上的凸函数;3.若fi(i=1,2,…,m)为定义在凸集S上的凸函数,则对任意实数βi≥0,函数βifi也是定义在S上的凸函数;4.若f为定义在凸集S上的凸函数,则对每一实数c,水平集Sc={x|x∈S,f(x)≤c}是凸集微积分如果f和g是凸函数,那么m(x) = max{f(x),g(x)}和h(x) = f(x) + g(x)也是凸函数。

如果f和g是凸函数,且g递增,那么h(x) = g(f(x))是凸函数。

凸性在仿射映射下不变:也就是说,如果f(x)是凸函数,那么g(y) = f(Ay + b)也是凸函数。

初等运算1、如果f和g是凸函数,那么m(x)=max{f(x),g(x)}和h(x)=f(x)+g(x)也是凸函数。

2、如果f和g是凸函数,且g递增,那么h(x)=f(g(x))是凸函数。

3、凸性在仿射映射下不变:也就是说,如果f(x)是凸函数,那么g(y)=f(Ay+b)也是凸函数举例函数f(x) = x²处处有,因此f是一个(严格的)凸函数。

绝对值函数f(x) = | x | 是凸函数,虽然它在点x = 0没有导数。

当1 ≤p时,函数f(x) = | x | p是凸函数。

定义域为[0,1]的函数f,定义为f(0)=f(1)=1,当0函数x3的二阶导数为6x,因此它在x ≥0的集合上是凸函数,在x ≤0的集合上是凹函数。

凸函数

凸函数

一、凹凸函数的代数定义容易理解,若函数 f(x)为凸函数,那么 -f(x)为凹函数。

所以,讨论清楚了凸函数,等价于讨论清楚了凹函数。

现在我们来讨论凸函数,现设一函数 f(x)。

在该函数定义域的凸区内任取两点x1、x2(x1<x2)。

设一点x=q1x1+q2x2(q1,q2>0 ,且q1+q2=1)那么易得,该点必包含于x1,x2之间。

凸函数,是数学函数的一类特征。

凸函数就是一个定义在某个向量空间的凸子集C(区间)上的实值函数。

凸函数是一个定义在某个向量空间的凸子集C(区间)上的实值函数f,而且对于凸子集C中任意两个向量, f((x1+x2)/2)≤(f(x1)+f(x2))/2,则f(x)是定义在凸子集c中的凸函数(该定义与凸规划中凸函数的定义是一致的,下凸)。

注意:中国大陆数学界某些机构关于函数凹凸性定义和国外的定义是相反的。

Convex Function在某些中国大陆的数学书中指凹函数。

Concave Function指凸函数。

但在中国大陆涉及经济学的很多书中,凹凸性的提法和其他国家的提法是一致的,也就是和数学教材是反的。

举个例子,同济大学高等数学教材对函数的凹凸性定义与本条目相反,本条目的凹凸性是指其上方图是凹集或凸集,而同济大学高等数学教材则是指其下方图是凹集或凸集,两者定义正好相反。

在函数可导的情况下,如果一阶导娄在区间内是连续增大的,它就是凹函数; 在图形上看就是"开口向上" ,反过来,就是凸函数; 由于一阶导数连续增大,所以凹函数的二阶导数大于0; 由于一阶导数连续减小,所以凸函数的二阶导数小于0,凸函数就是:缓慢升高,快速降低; 凹函数就是:缓慢降低,快速升高.。

第三节 凸函数

第三节 凸函数

d)f(x)=x12+4x1x2-x22
解 a)
∂f( x ) ∂x
2 1
= 10x 1+
2
x
2
- 5,
∂f( x ) ∂x
2
=
x
1
+ 2x 2+ 4
∂ f( x ) ∂x
2 2 1
= 10,
∂ f( x ) ∂x
2 1
= 1
x
2
∂ f( x ) ∂x
2
= 1,
∂ f( x ) ∂x 2
2
= 2
x
表明▽2f(x)负定,f(x)是严格凹函数。
c)

2 2 f (x) 0 0
0 12 x 2 0
0 0 0
▽2f(x)的一阶主子式分别为2,12x2,0均非 负(x2≥0);二阶主子式分别为
2 0 0 12 x2 2 4 x 2≥ 0 , 2 0 0 0 =0, 12 x 2 0 0 0 0
凸函数。
证明:设x,y∈R,且x≠y,λ∈(0 ,1)都有:
f[λx+(1-λ)y]-[λf(x)+(1-λ)f(y)]
=[λx+(1- λ)y-1]2 - λ(x-1)2 - (1- λ)(y-1)2
= -λ(1- λ)(x-y)2<0
因此f(x)在(-∞,+∞)上是严格凸函数。
例2:试证线性函数是Rn上的凸函数。
f[λx1+(1-λ)x2]= ≤
fα i 1+(1-λ)x2) i (λx
i=1
k
αi [λfi(x1)+(1-λ)f(x2)]
i 1
k

凸函数的判定与应用

凸函数的判定与应用

凸函数的判定与应用凸函数是数学中一种常见的函数类型。

它在优化问题、经济学、工程和自然科学等领域中得到广泛应用。

本文将介绍凸函数的判定准则,以及凸函数在各个领域中的应用。

一、凸函数的定义与性质在数学中,凸函数可以通过其定义和性质来进行判定。

定义:设函数f在区间[a, b]上连续,在(a, b)内可导。

如果对于任意x1、x2∈[a, b],以及任意0≤t≤1,都满足f(tx1+(1-t)x2)≤tf(x1)+(1-t)f(x2),则称函数f为[a, b]上的凸函数。

性质:凸函数具有以下性质:1. 对于凸函数f(x),若f''(x)存在且恒大于等于0,则f(x)是凸函数。

2. 若函数f(x)在[a,b]上是凸函数且在(a,b)内可导,则在(a,b)内f'(x)是递增函数。

二、凸函数与判定方法凸函数的判定方法包括一阶导数、二阶导数和Jensen不等式等。

1. 一阶导数判定法若函数f(x)在区间[a,b]上可导,且对于任意x1、x2∈(a,b),有f'(x)在[a,b]上单调递增,则f(x)是在[a,b]上的凸函数。

2. 二阶导数判定法若函数f(x)在区间[a,b]上两次可导,且对于任意x∈(a,b),有f''(x)≥0,则f(x)是在[a,b]上的凸函数。

3. Jensen不等式对于凸函数f(x),若λ1、λ2、...、λn为非负实数,且满足λ1+λ2+...+λn=1,以及x1、x2、...、xn为任意n个区间[a,b]上的数,则有以下不等式成立:f(λ1x1+λ2x2+...+λnxn)≤λ1f(x1)+λ2f(x2)+...+λnf(xn)三、凸函数的应用领域凸函数广泛应用于各个领域,包括优化问题、经济学、工程和自然科学。

1. 优化问题在优化问题中,凸函数常被用来描述目标函数或约束条件。

由于凸函数具有良好的性质,如弱凹性和全局极小值,因此可以通过凸优化算法来求解各种优化问题。

凸函数的定义

凸函数的定义

凸函数的定义凸函数是数学中一种非常基础且重要的概念,其在优化理论、微观经济学等领域都有着广泛的应用。

本文就来介绍凸函数的定义及其一些基本性质。

一、凸函数的定义在介绍凸函数之前,我们先来了解一下凸集的概念。

凸集是指对于该集合中任意两个点,它们之间的连线上的所有点也都属于该集合。

例如,一个圆形就是一种凸集,而一条线段则不是。

有了凸集的定义,我们就可以引出凸函数的定义了。

如果函数f 的定义域上的任意两点构成的线段都落在函数的上方,则该函数被称为凸函数。

反之,如果这些线段都落在函数的下方,则该函数被称为上凸函数。

这里需要注意的是,对于凸函数来说,图形上的“上方”指的是函数图像的上面,即函数值更大的区域。

而对于上凸函数,则是函数图像的下面,即函数值更小的区域。

二、凸函数的基本性质1.一阶导数单调递增对于凸函数来说,其一阶导数具有单调性。

也就是说,如果 f是一个凸函数,则其一阶导数 f' 是单调递增的。

反之,如果 f 的一阶导数是单调递增的,则 f 是凸函数。

这个性质非常重要,因为它可以用来证明很多凸函数的性质。

例如,如果我们知道了某个函数的一阶导数的单调性,就可以进一步证明该函数的二阶导数不小于零,从而证明该函数是凸函数。

2.上凸函数和下凸函数的判定对于一个函数 f,如果其一阶导数 f' 单调递减,则该函数是上凸函数。

反之,如果其一阶导数 f' 单调递增,则该函数是下凸函数。

这个判定方法可以用来判断很多函数的凸性。

例如,如果我们知道某个函数的一阶导数的单调性,并且该函数的一阶导数单调递增,则该函数是下凸函数。

3.凸函数的次导数函数的次导数是指它的 n 阶导数。

对于凸函数来说,它的次导数也具有一定的性质。

如果 f 是一个凸函数,则其次导数都不小于零。

这个性质可以用于推断一个函数是否是凸函数。

例如,如果我们知道某个函数的一阶和二阶导数都不小于零,则可以推断该函数是凸函数。

三、凸函数应用实例凸函数在优化理论、微观经济学等领域都有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f(x2) ≥ f(x1) 令λ→0+,则有
+ ▽f(x1)T(x2 o(λλ)→0
-x1Leabharlann +o(λ) λ故
f(x2)≥ f(x1) + ▽f(x1)T(x2-x1)
(充分性)任取0<λ<1,记
由已知条件有
X= λx1+(1-λ)x2
所以
f(x1)≥ f(x) + ▽f(x)T(x1-x) f(x2)≥ f(x) + ▽f(x)T(x2-x) λ f(x1)≥ λ f(x) + λ ▽f(x)T(x1-x)
f[λx1+(1-λ)x2]表示在点λx1+(1-λ)x2处的 函数值。
所以一元凸函数表示连接函数图形上任意两点 的线段总是位于曲线弧的上方。
例1:设f(x)=(x-1)2,试证明f(x)在(-∞,+∞) 上是严格凸 函数。 证明:设x,y∈R,且x≠y,λ∈(0 ,1)都有:
f[λx+(1-λ)y]-[λf(x)+(1-λ)f(y)] =[λx+(1- λ)y-1]2 - λ(x-1)2 - (1- λ)(y-1)2 = -λ(1- λ)(x-y)2<0 因此f(x)在(-∞,+∞)上是严格凸函数。
k
αi
i=1
由凸函数的定义,可知f(x)是D上的凸函数。
• 定义3 (α-水平集)
设f(x)是定义在集合R上的实函数,α是 实数,则称如下的集合
Sα={x | x∈R , f(x)≤α} 是函数f(x)的α-水平集。
性质2 凸函数的任一α-水平集是凸集。
证明 设f(x)是定义在凸集D上的凸函数,α是任一给定的 实数。现任取Sα内两点x1,x2以及λ∈(0, 1),则由Sα的定 义
f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2)
则称f(x)是定义集D上的凸函数。
定义2 严格凸函数 f[λx1+(1-λ)x2]<λf(x1)+(1-λ)f(x2)
则称f(x)是定义集D上的凸函数。 注:将上述定义中的不等式反向,可以得到
凹函数的定义。
凸函数的几何性质
对一元函数f(x),在几何上λf(x1)+(1-λ)f(x2) (0≤α≤1)表示连接(x1,f(x1)), (x2,f(x2))的 线段。
定理1'(严格凸函数的一阶充要条件)
设D为开凸集,f(x)在D上具有一阶连续导 数。那么,f(x)是D上的凸函数的充要条 件是:对D上任意两个不同点x1,x2,恒有 f(x2)> f(x1) + ▽f(x1)T(x2-x1)
最优化设计
汕头大学工学院
学习目标
1、理解凸函数的定义,并能进行简单的 凸函数证明。
2、了解凸函数的基本性质。 3、掌握凸函数的一阶与二阶判定方法。
第三节 凸函数
凸函数的定义 凸函数的性质 凸函数的判定
一、凸函数的定义
定义1 设函数f(x)为定义在凸集D上的n元实函数。 如果任取D中的两个不同点x1,x2,以及 λ∈[0,1],都有
f(x1+ λ (x2-x1))= f(x1) + λ▽f(x1)T(x2-x1)+o(λ) (1) 而由于f(x)是D上的凸函数,又有
f(x1+ λ (x2-x1))=f(λ x2+ (1-λ )x1)
≤ λ f(x2) + (1-λ ) f(x1)
(2)
两式联立,有
λ f(x2) + (1-λ ) f(x1) ≥ f(x1) + λ▽f(x1)T(x2-x1)+o(λ)
例2:试证线性函数是Rn上的凸函数。 f(x)=cTx=c1x1+c2x2+…+cnxn
证明:设x,y∈R,α∈(0,1),则 f[αx+(1-α)y]=cT[αx+(1- α)y] = αcTx+(1-α) cTy=αf(x)+(1-α)f(y)
所以cTx是凸函数。 类似可以证明cTx是凸函数。
• 性质3 设D是内部非空的凸集,f(x)是定义 在D上的凸函数,则f(x)在D的内部连续。
注意:凸函数在定义域的边界有可能不连续。 例如,设f(x)的定义域是区间[1,4] x2,1<x<4
f(x)=
2,x=1 f(x)是区间[1,4]上的凸函数,但显然在边界点x=1处 不连续。
三、凸函数的判定
定理1 (凸函数的一阶充要条件) 设D是开凸集,f(x)在D上具有一阶连续导 数。那么,f(x)是D上的凸函数的充要条 件是:对D上任意两个不同点x1,x2,恒有
f(x2)≥ f(x1) + ▽f(x1)T(x2-x1)
• 证明 (必要性)
X1+ λ (x2-x1) = λx2+(1-λ)x1∈D 由一阶Taylor展式,有
f(xi)≤α,且xi∈D,i =1,2 D是凸集
λx1+(1-λ)x2∈D 又因为f(x)是D上的凸函数,所以有
f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2) λ)α=α
≤λα+(1-
表明,λx1+(1-λ)x2∈ Sα 所以, Sα是凸集。
下面的图形给出了凸函数 f(x,y) = x4 + 3x2 +y4 + y2 +xy的等值线的图形,可以看出水平集是凸集。
fi[λx1+(1-λ)x2] ≤λfi(x1)+(1-λ)fi(x2),i=1,2,…,k
k
f[λx1+(1-λ)x2]= fii(=1λαxi 1+(1-λ)x2)
k
≤ [λfi(x1)+(1α-iλ)f(x2)] i 1 k
=λ fi(x1)+(1i=-1αλi ) f(x2)
=λf(x1)+(1-λ)f(x2)
二、凸函数的性质
• 性质1:定义在同一凸集上的有限个凸函 数的非负线性组合是凸函数。
证明: 设fi(x),i=1,2,…,k是定义在同一凸集D上的k个 凸函数,α1,α2,…αk是k个非负数。记
k
f(x)= αifi(x) i 1
现任取D内的两个点x1,x2,以及λ∈(0,1),由于
fi ( x) 是D上的凸函数,必有
(1-λ) f(x2)≥ (1-λ) f(x) + (1-λ)▽f(x)T(x2-x) 两式相加,并进行整理,得 λ f(x1) +(1-λ) f(x2)≥f(x) + ▽f(x)T[λx1+(1-λ)x2 -x] 注意到正好有
X =λx1+(1-λ)x2 因此 λ f(x1) +(1-λ) f(x2)≥f(x) =f[λx1+(1-λ)x2 ] 表明λf(x)是凸集D上的凸函数。
相关文档
最新文档