开关电源噪声及纹波产生原因和测量方法
纹波和噪声

开关电源的纹波和噪声(图) 日期:2009-08-26 来源:本网作者:北京航空航天大学方佩敏开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。
但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。
本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。
纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。
纹波是输出直流电压的波动,与开关电源的开关动作有关。
每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。
纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。
噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。
开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。
噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。
噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。
利用示波器可以看到纹波和噪声的波形,如图1所示。
纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。
纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。
开关电源DCDC变换纹波噪声产生的原因以及解决方案

而噪声通常指开关动作引起的EMI(电磁辐射/干扰),可采用有扩频等降噪技术的片子;应用上可将芯片远离敏感电路,甚至加屏蔽装置。
开关电源DC/DC变换纹波噪声产生的原因以及解决方案
原因很多最主要的是斩波频率造成的,所以在选择DC-DC 芯片的时候要尽可能选择频率较高的,它的好处有:
1,频率高,其纹波的频率也就高,这样的纹波也就更容易滤除。
2,频率高,就可以选低感值的电感,这样就有更强的 负载能力。
第二,当前的开关频率都已经达到MHz级别,使得纹波主要由输出滤波电容的ESR(等效串联电阻)决定,因为电容在充电和放电的时候输出电压上会有一个与Iout×ESR相关的跳变,当负载电流越大时此值越大,即纹波越大。
解决办法,如果不是设计芯片,只是应用,选择ESR小的电容可以减小纹波,参考芯片的DATASHEET,若允许可采用非电解电容,其ESR较小。
3,频率高,在负载不是很大的情况下,可以实现用小的电容实现理想的滤波效果。
缺点是自声,
纹波,主要由两部分组成:一个是跟开关频率有关的电容电压的变化率,电感电流的充放电时间长,则电容电压变化大,若开关频率高,则充放电时间短,电容电压变化小,即纹波小;
一文搞定开关电源纹波的产生、测量及抑制

一文搞定开关电源纹波的产生、测量及抑制(开关电源)纹波不可避免,我们最终的目的是要把输出纹波降低到可以忍受的程度,达到这个目的最根本的解决方法就是要尽量避免纹波的产生,首先要清楚开关电源纹波的种类和产生原因。
上图是开关(电源)中最简单的拓扑结构-buck降压型电源随着SWITCH的开关,电感L中的(电流)也是在输出电流的有效值上下波动的。
所以在输出端也会出现一个与SWITCH同频率的纹波,一般所说的纹波就是指这个,它与输出(电容)的容量和ESR有关系。
这个纹波的频率与开关电源相同,范围为几十到几百KHz。
另外,SWITCH一般选用双极性(晶体管)或者(MOSFET),不管是哪种,在其导通和截止的时候,都会有一个上升时间和下降时间。
这时候在电路中就会出现一个与SWITCH上升下降时间的频率相同或者奇数倍频的噪声,一般为几十MHz。
同样(二极管)D在反向恢复瞬间,其等效电路为电阻电容和电感的串联,会引起谐振,产生的噪声频率也为几十MHz。
这两种噪声一般叫做高频噪声,幅值通常要比纹波大得多。
如果是AC/(DC)变换器,除了上述两种纹波(噪声)以外,还有AC噪声,频率是输入AC电源的频率,为50~60Hz左右。
还有一种共模噪声,是由于很多开关电源的功率器件使用外壳作为散热器,产生的等效电容导致的。
开关电源纹波的测量基本要求:使用(示波器)AC(耦合)20MHz带宽限制拔掉探头的地线1.AC耦合是去掉叠加的直流电压,得到准确的波形。
2.打开20MHz带宽限制是防止高频噪声的干扰,防止测出错误的结果。
因为高频成分幅值较大,测量的时候应除去。
3.拔掉示波器探头的接地夹,使用接地环测量,是为了减少干扰。
很多部门没有接地环,如果误差允许也直接用探头的接地夹测量。
但在判断是否合格时要考虑这个因素。
还有一点是要使用50Ω终端。
示波器的(资料)上介绍说,50Ω模块是除去DC成分,精确测量AC成分。
但是很少有示波器配这种专门的探头,大多数情况是使用标配100KΩ到10MΩ的探头测量,影响暂时不清楚。
纹波和噪声的测试方法

纹波和噪声的测试方法一、引言纹波和噪声是在电子设备和电路中常见的问题,它们会对系统的性能和稳定性产生不良影响。
因此,为了确保电子设备和电路的正常工作,需要对纹波和噪声进行测试和分析。
本文将介绍纹波和噪声的测试方法。
二、纹波的测试方法纹波是指电源输出中的交流成分,通常是由于电源的不稳定或电路的设计问题引起的。
纹波的测试方法主要包括以下几个方面:1. 输出纹波的测量:使用示波器将电源的输出信号进行测量,然后通过傅里叶变换等方法将信号分解成不同频率的成分,从而得到纹波的幅度和频率。
2. 纹波的评估标准:根据电子设备和电路的要求,确定纹波的允许范围。
通常使用峰峰值、均方根值等指标来评估纹波的大小。
3. 纹波的抑制方法:在设计电源和电路时,可以采取一些措施来抑制纹波的产生。
常见的方法包括使用滤波电容、稳压器等。
三、噪声的测试方法噪声是指电子设备和电路中的随机信号成分,通常是由于电子元件的热噪声、电源的电磁干扰等引起的。
噪声的测试方法主要包括以下几个方面:1. 噪声功率谱的测量:使用频谱分析仪等设备对电子设备和电路的输出信号进行测量,得到噪声功率谱的频率和幅度信息。
2. 噪声的评估标准:根据电子设备和电路的要求,确定噪声的允许范围。
常见的评估指标包括等效输入噪声、噪声系数等。
3. 噪声的抑制方法:在设计电子设备和电路时,可以采取一些措施来抑制噪声的产生和传播。
常见的方法包括屏蔽、隔离、降噪电路等。
四、纹波和噪声的测试仪器为了进行纹波和噪声的测试,需要使用一些专门的测试仪器。
常见的测试仪器包括示波器、频谱分析仪、信号发生器等。
这些仪器能够准确地测量和分析纹波和噪声的特性。
五、测试过程和注意事项在进行纹波和噪声的测试时,需要注意以下几个方面:1. 测试环境的准备:测试仪器和被测试设备应处于稳定的环境中,避免外部干扰对测试结果的影响。
2. 测试信号的选择:根据被测试设备的要求,选择合适的测试信号进行测试。
通常使用正弦波、方波等信号进行测试。
纹波和噪声的测试方法

纹波和噪声的测试方法纹波和噪声是测试中常见的两种问题,它们会对系统性能产生负面影响。
因此,了解纹波和噪声的测试方法是非常重要的。
本文将介绍纹波和噪声的定义、产生原因以及常见的测试方法。
一、纹波的定义和产生原因纹波是指信号或电压在周期性变化中的波动。
在电子电路中,纹波通常是由于电源或信号源的不稳定性引起的。
纹波会导致系统性能下降,影响信号的准确性和稳定性。
纹波的产生原因主要有以下几点:1. 电源质量不佳:电源的输出不稳定,会导致电压的波动,进而引起纹波。
2. 电源滤波不足:电源滤波电容不足或滤波电路设计不当,无法有效降低纹波。
3. 电源线路干扰:电源线路附近的干扰源,例如开关电源、电机等,会对电源线产生干扰,引起纹波。
4. 地线干扰:地线干扰是指由于地线阻抗不均匀或地线回路中存在干扰源,导致信号线受到干扰而产生纹波。
二、纹波的测试方法为了保证系统的稳定性和可靠性,需要对纹波进行测试和评估。
下面介绍几种常见的纹波测试方法。
1. 示波器测量法:示波器是最常用的测试工具之一。
通过将示波器探头连接到待测信号上,可以观察到信号的波形。
通过观察波形的峰峰值或有效值,可以评估纹波的大小。
2. 频谱分析法:频谱分析是一种通过将信号转换为频域来分析信号的方法。
通过频谱分析仪,可以将信号转换为频谱图,从而观察到信号中各个频率成分的强度。
通过观察频谱图中的纹波分量,可以评估纹波的大小。
3. 电压测量法:通过将待测信号连接到电压表上,直接测量信号的电压大小。
通过对比测量结果和标准值,可以评估纹波的大小。
三、噪声的定义和产生原因噪声是指在信号中存在的随机干扰。
在电子系统中,噪声是不可避免的,它会降低信号的质量和可靠性。
噪声分为各种类型,包括热噪声、量子噪声、互调失真噪声等。
噪声的产生原因主要有以下几点:1. 环境干扰:电子系统通常工作在复杂的环境中,周围的电磁场干扰、温度变化等都会对系统产生噪声的影响。
2. 元器件噪声:电子元器件本身存在噪声,例如晶体管、电阻、电容等都会对信号产生噪声。
开关电源 波纹与噪声

开关电源波纹与噪声一、开关电源输出波纹①开关电源输出纹波是输出直流电压的波动,与开关电源的开关动作有关。
每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。
②产生原因是开关电源的电流纹波作用在电容的ESR上。
③纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。
二、开关电源输出噪声①开关电源输出噪声是指全带宽下输出电压上叠加的交流量。
②产生的原因一种是开关电源自身产生的。
另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。
③开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成。
噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。
噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。
三、减小纹波和噪声电压的措施①减少EMI的干扰采用金属外壳做屏蔽减小外界电磁场辐射干扰。
为减少从电源线输入的电磁干扰,在电源输入端加EMI 滤波器。
②在输出端采用高频性能好、ESR低的电容采用高分子聚合物固态电解质的铝或钽电解电容作输出电容是最佳的,其特点是尺寸小而电容量大,高频下ESR阻抗低,允许纹波电流大。
它最适用于高效率、低电压、大电流降压式DC/DC转换器及DC/DC模块电源作输出电容。
③采用与产品系统的频率同步为减小输出噪声,电源的开关频率应与系统中的频率同步,即开关电源采用外同步输入系统的频率,使开关的频率与系统的频率相同。
④避免多个模块电源之间相互干扰在同一块PCB上可能有多个模块电源一起工作。
若模块电源是不屏蔽的、并且靠的很近,则可能相互干扰使输出噪声电压增加。
为避免这种相互干扰可采用屏蔽措施或将其适当远离,减少其相互影响的干扰。
⑤增加LC滤波器为减小模块电源的纹波和噪声,可以在DC/DC模块的输入和输出端加LC滤波器。
开关电源产生纹波和噪声的原因和测量方法

开关电源产生纹波和噪声的原因和测量方法关键字:噪声纹波开关电源本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。
纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。
纹波是输出直流电压的波动,与开关电源的开关动作有关。
每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。
纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。
噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。
开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。
噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。
噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。
利用示波器可以看到纹波和噪声的波形,如图1所示。
纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。
纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。
图1 纹波和噪声的波形纹波和噪声的测量方法纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。
目前测量纹波和噪声电压是利用宽频带示波器来测量的方法,它能精准地测出纹波和噪声电压值。
由于开关电源的品种繁多(有不同的拓扑、工作频率、输出功率、不同的技术要求等),但是各生产厂家都采用示波器测量法,仅测量装置上不完全相同,因此各厂对不同开关电源的测量都有自己的标准,即企业标准。
用示波器测量纹波和噪声的装置的框图如图2所示。
它由被测开关电源、负载、示波器及测量连线组成。
有的测量装置中还焊上电感或电容、电阻等元件。
图2 示波器测量框图从图2来看,似乎与其他测波形电路没有什么区别,但实际上要求不同。
纹波和噪声测试方法(一)

纹波和噪声测试方法(一)纹波和噪声测试介绍纹波和噪声是电子设备中常见的问题,会对设备的性能和稳定性产生一定的影响。
因此,进行纹波和噪声测试是非常重要的。
本文将详细介绍纹波和噪声测试的各种方法。
简介纹波和噪声是电子设备中输出信号中不想要的变动或干扰。
纹波是交流电源中直流电平的波动,而噪声则是来自各种干扰源的信号。
为了确保设备性能和信号质量,纹波和噪声测试至关重要。
纹波测试方法1. 电压纹波测试电压纹波指的是电源电压在周期性时间内的变动,通常以峰-峰值进行表示。
常用的测试方法包括: - 使用示波器进行观测和测量; - 使用交流电压表进行直接测量; - 使用信号发生器在电源输入上注入一个特定频率的信号,然后使用示波器观测输出信号。
2. 电流纹波测试电流纹波是电子设备输出电流中的高频变化。
常用的测试方法包括: - 使用电流探头和示波器进行测量; - 使用高频电流变压器进行测量。
噪声测试方法1. 热噪声测试热噪声是由于电阻内分子热运动引起的随机信号。
进行热噪声测试时,可以使用以下方法: - 使用热噪声测试仪进行直接测量; -使用带宽限制器和功率计进行间接测量。
2. 信号噪声测试信号噪声是指信号中包含的非期望信号。
为了进行信号噪声测试,可以采用以下方法: - 使用示波器、频谱分析仪等工具进行观测和分析; - 使用滤波器和带宽限制器进行信号噪声的滤波处理。
结论纹波和噪声是电子设备中常见的问题,会对设备的性能和信号质量造成影响。
通过电压纹波测试和电流纹波测试,可以评估设备的交流电源质量。
而热噪声测试和信号噪声测试则可以评估设备的噪声水平。
通过这些测试方法,可以帮助我们找出问题所在,并采取相应的措施来改进设备的性能和信号质量。
以上是关于纹波和噪声测试的各种方法的详细介绍。
希望本文对您理解和应用纹波和噪声测试有所帮助。
其他注意事项1. 测试环境在进行纹波和噪声测试时,需要确保测试环境符合要求。
例如,测试环境应该尽量减少干扰源,如降低外部电磁场和热噪声。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。
纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。
纹波是输出直流电压的波动,与开关电源的开关动作有关。
每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。
纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。
噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。
开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。
噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。
噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。
利用示波器可以看到纹波和噪声的波形,如图1所示。
纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。
纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。
图1 纹波和噪声的波形纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。
目前测量纹波和噪声电压是利用宽频带示波器来测量的方法,它能精准地测出纹波和噪声电压值。
由于开关电源的品种繁多(有不同的拓扑、工作频率、输出功率、不同的技术要求等),但是各生产厂家都采用示波器测量法,仅测量装置上不完全相同,因此各厂对不同开关电源的测量都有自己的标准,即企业标准。
用示波器测量纹波和噪声的装置的框图如图2所示。
它由被测开关电源、负载、示波器及测量连线组成。
有的测量装置中还焊上电感或电容、电阻等元件。
图2示波器测量框图从图2来看,似乎与其他测波形电路没有什么区别,但实际上要求不同。
测纹波和噪声电压的要求如下:●要防止环境的电磁场干扰(E M I)侵入,使输出的噪声电压不受E M I的影响;●要防止负载电路中可能产生的E M I干扰;●对小型开关型模块电源,由于内部无输出电容或输出电容较小,所以在测量时要加上适当的输出电容。
为满足第1条要求,测量连线应尽量短,并采用双绞线(消除共模噪声干扰)或同轴电缆;一般的示波器探头不能用,需用专用示波器探头;并且测量点应在电源输出端上,若测量点在负载上则会造成极大的测量误差。
为满足第2点,负载应采用阻性假负载。
经常有这样的情况发生,用户买回的开关电源或模块电源,在测量纹波和噪声这一性能指标时,发现与产品技术规格上的指标不符,大大地超过技术规格上的性能指标要求,这往往是用户的测量装置不合适,测量的方法(测量点的选择)不合适或采用通用的测量探头所致。
几种测量装置1双绞线测量装置双绞线测量装置如图3所示。
采用300m m(12英寸)长、#16A W G线规组成的双绞线与被测开关电源的+O U T及-O U T连接,在+O U T与-O U T之间接上阻性假负载。
在双绞线末端接一个4TμF电解电容(钽电容)后输入带宽为50M H z(有的企业标准为20M H z)的示波器。
在测量点连接时,一端要接在+O U T上,另一端接到地平面端。
图3双绞线测量装置这里要注意的是,双绞线接地线的末端要尽量的短,夹在探头的地线环上。
2平行线测量装置平行线测量装置如图4所示。
图4中,C1是多层陶瓷电容(M L C C),容量为1μF,C2是钽电解电容,容量是10μF。
两条平行铜箔带的电压降之和小于输出电压值的2%。
该测量方法的优点是与实际工作环境比较接近,缺点是较容易捡拾E M I干扰。
图4平行线测量装置3专用示波器探头图5所示为一种专用示波器探头直接与波测电源靠接。
专用示波器探头上有个地线环,其探头的尖端接触电源输出正极,地线环接触电源的负极(G N D),接触要可靠。
图5示波器探头的接法这里顺便提出,不能采用示波器的通用探头,因为通用示波器探头的地线不屏蔽且较长,容易捡拾外界电磁场的干扰,造成较大的噪声输出,虚线面积越大,受干扰的影响越大,如图6所示。
图6通用探头易造成干扰4同轴电缆测量装置这里介绍两种同轴电缆测量装置。
图7是在被测电源的输出端接R、C电路后经输入同轴电缆(50Ω)后接示波器的A C输入端;图8是同轴电缆直接接电源输出端,在同轴电缆的两端串接1个0.68μF陶瓷电容及1个47Ω/1w碳膜电阻后接入示波器。
T形B N C连接器和电容电阻的连接如图9所示。
图7同轴电缆测量装置1图8同轴电缆测量装置2图9T形B N C连接器和电容电阻的连接纹波和噪声的测量标准以上介绍了多种测量装置,同一个被测电源若采用不同的测量装置,其测量的结果是不相同的,若能采用一样的标准测量装置来测,则测量的结果才有可比性。
近年来出台了几个测量纹波和噪声的标准,本文将介绍一种基于J E I T A-R C9131A测量标准的测量装置,如图10所示。
图10基于J E I T A-R C9131A测量标准的测量装置该标准规定在被测电源输出正、负端小于150m m处并联两个电容C2及C3,C2为22μF电解电容,C3为0.47μF薄膜电容。
在这两个电容的连接端接负载及不超过 1.5m长的50Ω同轴电缆,同轴电缆的另一端连接一个50Ω的电阻R和串接一个4700p F的电容C1后接入示波器,示波器的带宽为100M H z。
同轴电缆的两端连接线应尽可能地短,以防止捡拾辐射的噪声。
另外,连接负载的线若越长,则测出的纹波和噪声电压越大,在这情况下有必要连接C2及C3。
若示波器探头的地线太长,则纹波和噪声的测量不可能精确。
另外,测试应在温室条件下,被测电源应输入正常的电压,输出额定电压及额定负载电流。
不正确与正确测量的比较1探头的选择图11是用A A T1121芯片组成的降压式D C/D C转换器电路及测量正确和不正确的波形图。
若采用普通的示波器探头来测量(如图12所示),由于地线与探头组成的回路面积太大(由剖面线组成的面积),它相当于一根“天线”,极易受到E M I的干扰,其输出的纹波和噪声电压相当大(见图11中右面的示波器波形图中绿色的纹波和噪声波形)。
若采用专用的测量探头(如图13所示),它的地线极短,探头与地线组成回路面积较小,受到E M I干扰极小,其输出纹波和噪声波形如图11右面的红色线所示。
这例子说明一般通用示波器的探头是不能用的。
图11A A T1121电路测量波形图12用普通示波器探头测得的波形图13用专用测量探头测得的波2探头与测试点的接触是否良好以金升阳公司的1W D C/D C电源模块I F0505R N-1W为例,采用专用探头靠测法,排除外界E M I噪声干扰,探头接触良好时,测出的纹波和噪声电压为 4.8m V p-p,如图14所示。
若触头接触不良时,则测出的纹波和噪声电压为8.4m V p-p,如图15所示。
图14电源模块I F0505R N-1W测试波形(接触良好)图15电源模块I F0505R N-1W测试波形(接触不良)这里顺便再用普通示波器探头测试一下,其测试结果是纹波和噪声电压为48m V p-p,如图16所示。
图16电源模块I F0505R N-1W测试波形(普通探头)减小纹波和噪声电压的措施开关电源除开关噪声外,在A C/D C转换器中输入的市电经全波整流及电容滤波,电流波形为脉冲,如图17所示(图a是全波整流、滤波电路,b是电压及电流波形)。
电流波形中有高次谐波,它会增加噪声输出。
良好的开关电源(A C/D C转换器)在电路增加了功率因数校正(P F C)电路,使输出电流近似正弦波,降低高次谐波,功率因数提高到0.95左右,减小了对电网的污染。
电路图如图18所示。
图17开关电源整流波形图18开关电源P F C电路开关电源或模块的输出纹波和噪声电压的大小与其电源的拓扑,各部分电路的设计及P C B设计有关。
例如,采用多相输出结构,可有效地降低纹波输出。
现在的开关电源的开关频率越来越高;低的是几十k H z,一般是几百k H z,而高的可达1M H z以上。
因此产生的纹波电压及噪声电压的频率都很高,要减小纹波和噪声最简单的办法是在电源电路中加无源低通滤波器。
1减少E M I的措施可以采用金属外壳做屏蔽减小外界电磁场辐射干扰。
为减少从电源线输入的电磁干扰,在电源输入端加E M I滤波器,如图19所示(E M I滤波器也称为电源滤波器)。
图19开关电源加E M I滤波2在输出端采用高频性能好、E S R低的电容采用高分子聚合物固态电解质的铝或钽电解电容作输出电容是最佳的,其特点是尺寸小而电容量大,高频下E S R阻抗低,允许纹波电流大。
它最适用于高效率、低电压、大电流降压式D C/D C转换器及D C/D C 模块电源作输出电容。
例如,一种高分子聚合物钽固态电解电容为68μF,其在20℃、100k H z时的等效串联电阻(E S R)最大值为25mΩ,最大的允许纹波电流(在100k H z时)为2400m A r m s,其尺寸为:7.3m m(长)×4.3m m(宽)×1.8m m(高),其型号为10T P E68M(贴片或封装)。
纹波电压ΔV O U T为:ΔV O U T=ΔI O U T×E S R(1)若ΔI O U T=0.5A,E S R=25mΩ,则ΔV O U T=12.5m V。
若采用普通的铝电解电容作输出电容,额定电压10V、额定电容量100μF,在20℃、120H z时的等效串联电阻为 5.0Ω,最大纹波电流为70m A。
它只能工作于10k H z左右,无法在高频(100k H z以上的频率)下工作,再增加电容量也无效,因为超过10k H z时,它已成电感特性了。
某些开关频率在100k H z到几百k H z之间的电源,采用多层陶电容(M L C C)或钽电解电容作输出电容的效果也不错,其价位要比高分子聚合物固态电解质电容要低得多。
3采用与产品系统的频率同步为减小输出噪声,电源的开关频率应与系统中的频率同步,即开关电源采用外同步输入系统的频率,使开关的频率与系统的频率相同。
4避免多个模块电源之间相互干扰在同一块P C B上可能有多个模块电源一起工作。
若模块电源是不屏蔽的、并且靠的很近,则可能相互干扰使输出噪声电压增加。
为避免这种相互干扰可采用屏蔽措施或将其适当远离,减少其相互影响的干扰。
例如,用两个K7805-500开关型模块组成±5V输出电源时,若两个模块靠的很近,输出电容C4、C2未采用低E S R电容,且焊接处离输出端较远,则有可能输出的纹波和噪声电压受到相互干扰而增加,如图20所示。