污水处理厂计算书

合集下载

污水厂设计计算书

污水厂设计计算书

目录第一章设计任务书01.1设计题目 01.2设计原始资料 01.3设计容 (1)1.4成果 (1)1.5设计时间 (2)1.6评分标准3第二章设计指导书42.1设计准备 (4)2.2设计步骤 (4)2.3设计进度计划〔不含周末〕...................... 错误!未定义书签。

2.4主要设计参考资料.............................. 错误!未定义书签。

第三章设计容计算说明书53.1 污水厂设计的一般原那么53.2污水厂的设计规模63.2.1 水量确实定63.2.2 水质确实定73.3污水处理厂工艺流程83.3.1 工艺方案分析83.3.2工艺类型的介绍 (9)3.3.3工艺流程确实定 (10)3.4 污水处理构筑物的计算与说明103.4.1格栅113.4.2 污水提升泵房173.4.3 旋流沉砂池183.4.4配水井 (20)3.4.5 A2/O反响池213.4.6 曝气系统工艺计算213.4.7 二沉池错误!未定义书签。

3.4.8消毒设施计算263.4.9 污水计量设备293.5 污泥处理构筑物的计算与说明323.5.1 剩余污泥量计算错误!未定义书签。

3.5.2 污泥井333.5.3污泥浓缩333.5.4 污泥脱水373.6 污水处理厂平面布置403.6.1 平面布置原那么403.6.1厂区平面布置形式说明413.7 污水处理厂高程布置423.7.1 高程布置原那么423.7.2 高程布置计算433.8主要设计参考资料43评分:第一章设计任务书1.1设计题目某城市污水处理厂工艺设计。

1.2设计原始资料〔一〕工程概况拟建污水处理厂地处某城市郊,总占地依据场地情况确定。

〔二〕设计根底资料污水厂设计水量以近期人口和工业污水排放量为依据。

厂区平面布置度预留远期建设用地。

1、设计人口近期设计人口:〔班级人数〕×300+〔学号后四位数-600〕×40〔人〕城镇人口平均综合生活用水定额250L/〔人٠天〕,生活污水排放系数一般为0.8-0.9。

污水处理厂计算书

污水处理厂计算书

污水处理厂计算书设计参数:近期Q=2.5 ×104 m 3/d ,远期Q=4.5 ×104 m 3/d ,K Z =1.47。

污水厂按照近期设计,预留远期用地。

最高日最大时流量:1531.25 m 3/h平均日平均时流量:1041.66m 3/h1、粗格栅(1)尺寸计算设计流量:Q=1531.25 m 3/h ;栅槽道数:N=2道;过栅流速:v=0.80m/s ;安装角度:A=75°;栅前水深:h=0.85m ;栅条间隙:b=20mm ;栅条宽度s=10mm 。

格栅间隙数n==⨯NbhvSINA Q 30.74个,取整31个。

格栅宽度:B==+-⨯bn n s )1(0.01×(31-1)+0.02×31=0.92m 格栅宽度设计值取1m 。

(2)设备选择格栅:选择回转式格栅清污机2套,设备宽度0.94m ,功率2.5kw ,格栅渠道深度8.5m ,排渣高度1m 。

格栅前闸板:铸铁镶铜材质,大小0.8m ×1.2m ,配手动启闭机; 格栅后闸板:铸铁镶铜材质,大小0.8m ×1.2m ,配手动启闭机; 螺旋输送机:输送能力3m 3/h ,长度3.2m ,配用电机功率1.5kW2、提升泵房设计流量:Q=2958.33 m 3/h ;水泵台数:5;旱季四用一备,雨季全部工作。

泵房水池内最低水位标高-3.5m ,提升后水位8.95m ,水泵进口及出口损失1.5m ,管道损失约0.5m ,富裕水头1m 。

水泵扬程为:8.95+3.5+1.5+0.5+1=15.45m水泵选择:Q=592 m 3/h ,扬程h=16m ,功率47kw (参考上海凯泉样本,P66页WQ2445-617型号)3、细格栅(1)尺寸计算设计流量:Q=2958.33 m 3/h ;栅槽道数:N=2道;过栅流速:v=0.80m/s ;安装角度:A=60°;栅前水深:h=1.0m ;栅条间隙:b=5mm ;栅条宽度s=10mm 。

污水处理厂工艺设计计算书(案例)

污水处理厂工艺设计计算书(案例)

=3.5m3/d>0.2 m3/d 故采用机械清渣. 粗格栅的选型:选用江苏天雨集团的 LHG 型回转式格栅除污机.
型号为:LHG—1.2×5.03,功率:1.5KW。选用的螺旋输送压榨机的 型号:LYZ300,功率:3KW。 详细内容:选用的格栅除污机的起吊设备是CD15—9D型电动葫芦。
1
电动葫芦的运行电机:型号为:ZDY121—4;功率:0.8KW; 转速:1380r/min; 电动葫芦的主起升电机:型号:ZD141—4;功率:7.5KW; 转速:1400 r/min; 工字钢:型号:28a—63c GB 706—65; 电源:3 相,380(220)V,50HZ。 2:提升泵房的计算: 采用潜污泵,泵房与集水池合建。集水池根据泵的安装要求决定。泵房 的尺寸:9.3m×13.6m×4.5m。采用 6 台泵,4 用 2 备,一台变频。泵的 型号:CP3306/605 75KW 潜污泵。电压:380V;额定轴功率:75 千瓦; 输入配用功率:82 千瓦;水利效率:82% ;含偶合装置及 10 米潜水电 缆。单价:人民币 35 万元(含增值税关税)。 潜水搅拌机的型号:QJB2.2/8-320/3-740/C/S,两台,单台的功率:2.2KW。 3:水头损失的计算: 污水管进入溢流井的损失h1: 根据流量Qmax=1.39 m3/s,充满度 0.8,管径DN1200,查水利计算表得流速v=1.43。
格栅的间隙数: n = Q max sinα 2bhv
1.39× sin 75°
=
2× 0.02× 0.8× 0.95
≈45 (1):栅槽的宽度:
B=S×(n-1)+b×n =0.01×(45-1)+0.02×45=1.33m
选取 B=1.2m 与格栅机配套. (2): 通过格栅的水头的损失:(由手册取β=1.83,k=3)

污水处理厂计算书(计算式)

污水处理厂计算书(计算式)

四、曝气池1.设计条件曝气池采用平均日流量作为设计基准,并配合检验尖峰小时流量时情形。

依平均日质量平衡计算结果,初沉池出流水性质:Q =24,459CMDTSS =2,069Kg/d =84.6mg/LBOD5 =3,530Kg/d =144.3mg/LTP =183.8Kg/d =7.5mg/L依尖峰小时质量平衡计算结果,初沉池出流水性质:Q =48,763CMDTSS =4,138Kg/d =84.9mg/LBOD5 =7,062Kg/d =144.8mg/LTP =367.6Kg/d =7.5mg/L二沉池设计面积:二沉池面积 =1,257m2 =13,526ft22.计算结果摘要回流污泥(RAS)Q = 3.95MGD =14,962CMD废弃污泥(WAS)Q =287.5CMD =0.076MGDTSS =2,300Kg/dBOD5 =2,002Kg/d反应槽出流水Q =38,581CMDTSS =3,107mg/L二沉池出流水Q =23,331CMD = 6.16MGDTSS =20.0mg/L总非溶解性 BOD5 = 6.7mg/L溶解性 BOD5 = 1.8mg/L总磷 =0.5mg/L3.设计生物反应槽(1)原进流水水质特性基本假设(参考"Theory, Design and Operation of Nutrient Removal-Activated Sludge Process"一书)A.污染负荷平均日流量时:流量,Qin,MGD=24,459CMD BOD5 ,lb/d=144.3mg/L 总悬浮固体物,TSS,lb/d=84.6mg/L 总凯氏氮,TKN,lb/d=40.0mg/L 总磷,TP,lb/d=7.5mg/L 碱度,lb/d as CaCO3=200.0mg/L 硫化氢,lb/d= 1.0mg/L 尖峰小时流量时:流量,Qin,MGD=48,763CMD BOD5 ,lb/day=144.8mg/L 总悬浮固体物,TSS,lb/d=84.9mg/L 总凯氏氮,TKN,lb/d=40.0mg/L 总磷,TP,lb/d=7.5mg/L 碱度,lb/d as CaCO3=200.0mg/L 硫化氢,lb/d= 1.0mg/LB.进流水质特性总 BOD/BOD5, R1 =难分解性总凯氏氮(%), TKN1 =难分解溶解性COD(%), COD1 =总悬浮固体物(TSS)挥发性固体物(VSS) (%), VSS1难分解之挥发性固体物(%), VSS2Volatile content of nonbiodegradable VSS (%), VSS3COD/VSS , R2VSS之氮含量 (%,N/VSS), N1VSSVSS之磷含量 (%,P/VSS), P1VSSCOD/BOD之估计值, R3 2.21溶解性 BOD5/总 BOD5之估计值 (%), R475初沉池中各污染物去除率:TSS 去除率 (%),R TSSBOD5,RBOD = RTSSx进流水TSS/进流水BOD5xVSS1x(1-VSS2)xR2/R1 =总凯氏氮,RTKN = RTSS x 进流水 TSS/ 进流水TKN x VSS1 x N1VSS =总磷,RTP = RTSS x 进流水 TSS/ 进流水TP x VSS1 x P1VSS =(2)曝气池中之生化反应机制常数及水质特性A.喜气槽μmax 20 =-1,Φ forμmax 20 =μmax T =-1Ks =Y g =5Kd 20 =-1,Φ for Kd 20 =Kd T =-1挥发性TSS (%),VSS4 =难分解性VSS (%), VSS5 =VSS之氧当量数 (mg COD/mg VSS) , CODVSS =VSS中之氮含量 (%, N/VSS) N2VSS =BOD5/总磷 (mg BOD5/mg TP-P), R5 =B.硝化槽μmax T =0.28day-1Kn =K DO =Yn =3Kdn T =-1挥发性TSS (%), VSS6 =VSS中之氮含量 (%, N/VSS), N3VSS =VSS中之磷含量 (%, P/VSS), P3VSS =硝化菌之 MCRT ,MCRT N = 4.3dayC.硝化作用单位需氧量(mg O2/mg NO3 generated) =碱度消耗量(mg as CaCO3/mg NO3) =D.脱硝作用单位需氧量 (mg O2/mg NO3 denitrified) =碱度产生量 (mg as CaCO3/mg NO3) =E.硫化氢氧化作用单位需氧量 (lb O2/lb H2S) =(3)操作参数 由于设计一VIP生物处理法所须考虑之设计参数相当多,除一般活性污泥法所常采用之MLSS、F/M及HRT外,尚考虑硝化液回流率(NRCY),厌气池回流率(ARCY),回流污泥(RAS)等,西图公司以多年发展VIP系统之经验,建议各参数之设计准则如下:A.基本设计条件假设水中溶氧 =细胞停留时间(MCRT) = pH =水温 =MLSS =好氧槽脱硝率ANR =废弃污泥浓度NRCY =B.反应槽体积计算依前述设计准则,假设好氧槽之HRT = 6.0hours缺氧槽之HRT = 1.0hours厌氧槽之HRT = 1.0hours则可得好氧槽总体积 (AER Vol)=Qin x TAER = 6.46MGD x 6.0hours= 1.62MG 缺氧槽总体积 (ANX Vol)=Qin x TANX = 6.46MGD x 1.0hours=0.27MG 厌氧槽总体积 (ANA Vol)=Qin x TANA = 6.46MGD x 1.0hours=0.27MG已知初沉池出流水 =24,459CMDRAS =(Q in x MLSS - Q 2nd x BOD out - Q was x WAS) / (WAS - MLSS)= 3.73MGD =14,122CMD总进流量 =24,459CMD +14,122CMD =10.19MGD 选择反应槽池数 =选择反应槽水深 =已知各槽体之体积如下:总体积 (TOT Vol) = 2.15MG =8,153m 3好氧槽总体积 (AER Vol) = 1.62MG =6,115m 3厌氧槽总体积 (ANA Vol) =0.27MG =1,019m 3缺氧槽总体积 (ANX Vol) =MG =1,019m 3选择四个反应槽总宽度 =m 每一反应槽宽度 =m /4=8.0 选择反应槽的渠道数 =每一渠道宽度 =8.0 m /1=8.0每一反应槽之好氧槽长度 ==6,115m 3/ 6.0m /8.0m /4=31.8m 选择好氧槽之长度 =m好氧槽每一分区长度=28.0/4=7.0缺氧槽及厌氧槽长度=1,019.1m 3 /6.0m /4.0m /12= 3.5m选择厌氧槽或缺氧槽之长度为m每一反应槽总长度 ==28.0m + 3.5m + 3.5m + 3.5=38.5m每一渠道长度 =38.5m /1=38.5m厌氧槽总体积 (ANA Vol)= 3.50m x 4.00m x 6.00m x12=1,008m3 =0.27MG缺氧槽总体积 (ANX Vol)= 3.50m x 4.00m x 6.00m x12=1,008m3 =0.27MG好氧槽总体积 (AER Vol)=7.00m x8.00m x 6.00m x16=5,376m3 = 1.42MG反应槽总体积 (TOT Vol)=7,392m3 = 1.95MGCheck :厌氧槽之HRT =ANA Vol/ Q in =0.99hours缺氧槽之HRT =ANX Vol/ Q in =0.99hours好氧槽之HRT =AER Vol/ Q in = 5.27hours反应槽之总 HRT =7.25hoursMLSS = (Total TSS x MCRT)/(8.34 x Total Vol)=3,107mg/L(其中Total TSS系指废弃污泥中之TSS量,请见4.固体物产量)F/M = BOD Loading/ (TOT Vol x MLSS ) =0.11缺氧槽之 F/M =0.81day-1好氧槽之 MCRT AER = (AER Vol/TOT Vol) x MCRT =7.27C.脱氮计算 脱氮速率常数 (Specific Denitrification Rate, SDRN) 系指单位时间之单位MLSS所能去除之氮量,其计算式为:SDNR20 = 0.03 x F/M + 0.029 (在 20o C下)SDNR T = SDNR20 x 1.06 (T-20)因此本反应槽之SDNR15 = 1.87mg/g/hrNOX-N (mg/L)浓度计算:无脱硝反应时DNo=(1+MCRT x Kdn T) x nitrifier TSS/(Qin x 8.34 x Yn) =20.2 (其中 Nitrifier TSS 系指废弃污泥中由硝化反应产生之TSS量,请见(4)固体物产量)考虑好氧槽脱硝反应时DN1=(1- ANR) x DN o =18.2考虑缺氧槽脱硝反应时=DN1 - SDNR x ANX HRT x MLSS / 1000 =12.4考虑回流NRCY时=DN1 /(1+ RAS/Qin + NRCY/100) =8.3D.回流污泥量计算已知假设回流污泥浓度 =mg/LRAS =(Q in x MLSS - Q2nd x BOD out - Q was= 3.95MGD =14,962CMDArea =13,5262SOR =477.7CMD/m2RAS Cap = =19.4SLR =12.4lb/sf-day= 2.52Kg/m2-hr(4)固体物产量,SOLIDS PRODUCTION (lb/d)A.初沉污泥,Primary SludgeTSS = 进流水TSS x RTSS=6,834lb/d =3,107Kg/dVSS = 进流水TSS x RTSS x VSS1=5,126lb/d =2,330Kg/d生物可分解性VSS = 进流水TSS x RTSS x VSS1 x (1-VSS2)=3,075lb/d =1,398Kg/dB.废弃污泥,Waste Activated Sludge (WAS)(a)进流之难分解固体物VSSA= 进流水 TSS x (1-RTSS) x VSS1 x VSS2=1,367lb/d =621.3Kg/dTSS = 进流水 TSS x(1-RTSS)x(1-VSS1/VSS3x(1-VSS2))=2,278lb/d =1,036Kg/d(b)好氧槽之固体物活性TSS = 进流水 BOD5 x (1-RBOD)-Qin x BODeff x 8.34) xYg /(MCRT + (1/MCRT+KdT)=1,849lb/d =840.4Kg/d非活性TSS = 活性TSS x Kd T x VSS5 x MCRT ==823.5lb/d =374.3Kg/d(c)硝化槽TSS = Yn x (1- N3VSS x VSS6) x ( 进流水TKN x (1-RTKN)-VSSA x N1VSS - 好氧槽固体物 x VSS4 x N2VSS - Qin x NH3eff x 8.34 -TKN x TKN1) / (MCRT x (1/MCRT+Kdn T))=108.8lb/d =49.4Kg/d总固体物,Total TSS =5,059lb/d =2,300Kg/d净污泥产生率 = Total TSS / (进流BOD5x(1- RBOD))=0.91lb TSS/lb BOD5 Applied总 BOD5 = 总固体物 / 净污泥产生率=5,578lb/d =2,535Kg/d废弃污泥所含BOD5 ==总固体物 x 0.9 x 1.42 x 0.68 + 液体中所含 BOD5=1,999Kg/d + 2.5Kg/d=2,002Kg/d挥发性固体物比率 ==(VSSA+好氧槽固体物xVSS4+硝化槽TSSxVSS6)/ (Total TSS)=76.5%活性TSS比率 = 活性TSS / Total TSS =36.5%硝化槽污泥比率 = 硝化槽 TSS / Total TSS = 2.2% N-Content = (VSSA x N1VSS+好氧槽固体物 x N2VSS x VSS4+硝化槽TSS x VSS6 x N3VSS) / (硝化槽挥发性固体物比率 x Total TSS)=10.6%,N/VSSP-Content = ( 进流水TP x(1-RTP)- Qin x 出流水之TP) /(硝化槽挥发性固体物比率 x Total TSS)=8.6%,P/VSS(5)出流水水质预估水质项目平均日流量尖峰时流量BOD5 (mg/L)难分解性 6.77.6溶解性 1.8 2.7TSS (mg/L),假设值20.020.0 TKN-N (mg/L) 4.013.1 NH3-N (mg/L)0.89.9NO X-N (mg/L)12.47.9TN (mg/L)16.421.0 Total-P (mg/L)0.50.5 Alkalinity (mg/L as CaCO3)82.6123.2 Note: Residual Alkalinity Less Than 50 mg/L as CaCO3 Indicate Need for Supplemental Alkalinity.附注 :BOD eff=出流水之溶解性BOD=Ks x (1/MCRT+Kd T)/(μmaxT-1/MCRT-Kd T)== 1.8mg/LNH3eff = 出流水之NH3=Knx(1/MCRT AER+Kdn T)/(μmaxT-1/MCRT AER-Kdn T)==0.8mg/LTKNeff = 出流水之TKN=NH3eff +进流水TKN x TKN1 / (Qin x 8.34) + (硝化槽之挥发性固体物比率 x N-Content x 出流水TSS) == 4.0mg/LPeak NO X Possible =23.36Max F/M = 1.62SRDN = 2.72NO X w/ Sim Denite =12.1NO X Based on Denite =7.9NO X Based on Recycle =7.54.空气需求量理论需氧量为碳水化合物分解、硝化作用及硫化氢氧化各项需氧量之和,再扣除脱硝之释氧量,由下表计算:OXYGEN REQUIREMENTS (lb/day)Item日平均值每日尖峰值(Average)(Diurnal Peak) Carbonaceous5,81711,695 Nitrogeneous5,0046,640 Denitrification Credit1,1961,701H2S108215Net9,73316,849 Carbonaceous Oxygen Demand 1.04lb O2/lb BOD5 Applied Total Oxygen Demand 1.74lb O2/lb BOD5 Applied Diurnal Peaking Factor 1.73理论需氧量(取每日尖峰值)TOR =16,849lb/d =7,649Kg/d依下式计算标准需氧量SOR =TORAlpha x (Beta x Cw x Dc)- CL x Theta (Tw-20)C20 x Dc其中:Alpha=Dc=Beta =CL=Cw =C20 =Theta= 1.024Tw =20计算标准需氧量SOR =7,649 /0.64=11,995Kg/d传氧效率OTE设为0.28空气密度为 1.20Kg/m3空气中氧含量为23%(重量比)计算空气量 =11,995Kg/d0.28x 1.20Kg/m3x0.23x1,440=105.6CMM各曝气池需要空气量 =105.6CMM /4=26.428.3 19.0 11.3天℃% %ANA ANX ANXmmmOK ! OK ! OK ! OK !OK ! Days峰值(Diurnal Peak)min/dCMM。

污水处理厂计算书

污水处理厂计算书

精心整理污水厂设计计算书一、粗格栅1.设计流量a.日平均流量Q d=30000m3/d≈1250m3/h=0.347m3/s=347L/sKz取1.40b.最大日流量Q max =Kz·33332.设:3.4.5.L1=6.其中ε=β(s/b)4/3k—格栅受污物堵塞时水头损失增大倍数,一般为3h--计算水头损失,mε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=2.4将β值代入β与ε关系式即可得到阻力系数ε的值7.栅后槽总高度(H)设:栅前渠道超高h2=0.4m则:栅前槽总高度H 1=h+h 2=0.8+0.4=1.2m栅后槽总高度H=h+h 1+h 2=0.8+0.18+0.4=1.38m8.格栅总长度(L)L=L 1+L 2+0.5+1.0+H 1/tan α=0.3+0.3+0.5+1.0+1.2/tan60°=2.80m9.每日栅渣量(W)设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水则:W 1=05.086400347.0864001⨯⨯=⨯⨯W Q =1.49/d1.2.设:3.4.则:m B L 3.020tan 29.01.1tan 2B 111=︒-=-=α 5.栅槽与出水渠道连接处的渐窄部分长度(L 2)6.过格栅的水头损失(h 1)设:栅条断面为矩形断面,所以k 取3则:m g v k kh h 88.060sin 81.929.0)006.0015.0(42.23sin 2234201=︒⨯⨯⨯⨯===αε 其中ε=β(s/b )4/3k —格栅受污物堵塞时水头损失增大倍数,一般为3h 0--计算水头损失,mε--阻力系数(与栅条断面形状有关,当为矩形断面时形状系数β=2.42),将β值代入β与ε关系式即可得到阻力系数ε的值。

7.栅后槽总高度(H)设:栅前渠道超高h 2=0.4m则:栅前槽总高度H 1=h+h 2=0.8+0.4=1.2m8.L=L 19.量(1)(2)(3) L=A V =43.216.29=12m ,取L=12m (4)每小时所需空气量q :设m 3污水所需空气量d=0.2m 3q=0.2×0.243×3600=174.96m 3/h=2.916m 3/min(5)沉砂池所需容积:式中取T=2d ,X=30污水=1.8m3(6)每个沉砂斗容积(7)沉砂池上口宽度设计取,,(82.71m(9设计中取(10)出水装置,=0.22m四、辐流沉淀池设计中选择两组辐流沉淀池,N=2组,每组平流沉淀池设计流量为0.243,从沉砂池流来的污水进入配水井,经过配水井分配流量后流入平流沉淀池1.沉淀部分有效面积A=——表面负荷,一般采用1.5-3.0设计中取=2A==437.42.沉淀池有效水深t3.=式中Q——平均污水流量;V==10.2辐流沉淀池采用周边传动刮泥机,周边传动刮泥机的线速度为2-3m/min,将污泥推入污泥斗,然后用进水压力将污泥排除池外。

(完整版)污水处理厂设计计算书

(完整版)污水处理厂设计计算书
2.格栅槽宽度
式中一一格栅槽宽度(m);
S――每跟格栅条的宽度(m)。
设计中取S=0.01m。
3.进水渠道渐宽部分的长度
式中——进水渠道渐宽部分的长度(m);
进水明渠宽度(m;
渐宽处角度(°),一般采用10°〜30
设计中=1.27m,=20°,此时进水渠道内的流速为0.67m/s,介于0.4〜0.9m/s之间。
1.格栅间隙数
式中一一格栅栅条间隙数(个);
3
Q――最大设计流量(m /s);
――格栅倾角(°);
b――栅条净间距(m);
h——栅前水深(m);
v――过栅流速(m/s),宜采用0.6〜1.0m/s。
栅前水深:根据水力最优断面公式计算得,0.57=X0.7/2,=1.28m ,/2=0.64m
设计中取=0.64m,0.9m/s,0.02m,60°。
4.出水渠道渐窄部分的长度
式中一一出水渠道渐窄部分的长度(m;
——渐窄处角度(°),。
设计中=1.27m,=20°。
5.通过格栅的水头损失
式中——水头损失(m;
――格栅条的阻力系数;
――格栅受污染物堵塞时的水头损失增大系数,一般采用=3。
因栅条为矩形截面,取=2.41o
6.栅后明渠总高度
式中 一一栅后明渠总高度(m);
(三)平面布置67
十七、污水处理厂高程布置68
(一)主要任务68
(二)高程布置的原则68
(三)污水处理构筑物的高程布置68
参考文献72
第一部分污水处理
一、
格栅按照远期规划进行设计。
3
Q=8.16万m/d=944.4L/s
总变化系数=1.2,Qmax=944.4X1.2=1133.28 L/s

污水处理厂工程(细格栅、提升泵站及平流沉砂池)计算书

污水处理厂工程(细格栅、提升泵站及平流沉砂池)计算书

集中区污水处理厂及配套管网工程计算书子项名称:--细格栅、提升泵站及平流沉砂池专业:计算:校对:审核:一、设计规模本次厂区近期规模(2020年)0.1×104m3/d,Kz=2.11,远期期工程总规模(2030年)0.2×104m3/d,Kz=1.93。

二、设计计算1、近期处理水量:最大时处理水量:0.1×104×2.11=2110m3/d=87.91m3/h=0.024m3/s平时处理水量:0.1×104m3/d=41.67m3/h=0.012m3/s2、远期期处理水量:最大时处理水量:0.2×104×1.93=3860 m3/d=160.83m3/h=0.045m3/s平时处理水量:0.2×104m3/d=83.33m3/h=0.023m3/s三、设计计算本工程设一组细格栅,采用提篮格栅。

1.细格栅远期最大处理水量:Q max=3860m3/d,分两格,每格Q1=1930m3/d=0.022m3/s远期平时处理水量:Q平时=2000m3/d,分两格,每格Q2=1000m3/d=0.012m3/s近期最大时处理水量:Q max =2110 m3/d,单格运行,每格=0.024 m3/s近期平时处理水量:Q平时=1000 m3/d,单格运行,每格=0.012m3/s所以每格过水流量为1000~2110m3/d,据此选型号为HF700回转式格栅除污机机,格栅间隙b=20mm,允许过栅流量800~2600m3/d,过栅流速v=0.5~1.0m/s,安装角度α=75º,电机功率1.1kW,渠宽700mm,栅前水位1.00m,过栅水头损失取0.10m。

粗格栅:栅条间隙b=20mm,栅条宽度S=10mm,渠宽B’=700mm;栅槽有效宽度B=700-100=600mm,格栅安装角度75o,经计算得:B=S(n-1)+bn,B Sns b+=+=20.3取栅条间隙数:n=21,栅前水深:h=1.0m;校核栅前渠道内实际流速:v=Q max√sin∝bnℎ=0.55m/s根据厂家提供资料,取h1=0.1m,则栅后水深为:1.0-0.1=0.9m;设栅渣量为每1000m3污水产0.05m3,估算每日栅渣量(近期)W =Q max ×W 1×86400K z ×1000=0.05m 3/d ;2. 提升泵站水泵选型出水采用水泵进行提升,进入旋流沉砂池出水端。

污水处理站计算书

污水处理站计算书

1。

设计污水流量1.1城市每天的平均污水量—-——城市每天的平均污水量(m³/d)---—各区的平均生活污水量定额[m³/(人·d)]----各区人口数(人)--—-工厂平均废水量(m³/d)=3125×0.08=250m³/d=2。

89L/s1.2设计秒流量---—设计秒流量(L/s)-———工业废水设计秒流量(L/s)——--各区的平均生活污水量(m³/s)---—总变化系数总变化系数根据《室外排水设计规范》(GB50014-2006)=2。

32。

污水的一级处理2。

1格栅计算设计中选择二组格栅,N=2,每组格栅单独设置,每组格栅的设计流量为0。

0033m³/s2。

2.1栅条的间隙数过栅流量Q=0.0033 m³/s栅条间隙数--考虑格栅倾角的经验系数2.2。

2栅槽宽度B=S—-——栅条宽度设计中取S=0。

01m2.2。

3进水渠道渐宽部分的长度设进水渠宽B1=0。

08m ,其渐宽部分展开角度=30o————进水渠道渐宽部分的长度(m)--——进水明渠宽度(取1.0m)----渐宽处的角度(°),一般采用10°~30°2。

2。

4栅槽与进水渠道连接处渐窄部分长度-——-出水渠道渐窄部分的长度(m)-—--渐窄处角度,取30°。

=0.5=0.015m2.2.5通过格栅的水头损失设栅条断面为锐边矩形断面=2。

42——-—水头损失(m)—-——格栅条的阻力系数,矩形断面为2。

42。

—--—格栅受污物堵塞时的水头损失增大系数,一般采用32。

2。

6栅后槽总高度设栅前渠道超高h2=0.1mH=h+h1+h2=0.05+0。

1+0.1=0。

25(m)2。

2。

7栅槽总长度L-———格栅的总长度(m)H1——格栅明渠的深度(m)2.2.8每日栅渣量应采用机械除渣及皮带输送机或无油输送机输送栅渣,采用机械栅渣机打包机将栅渣打包,汽车送走。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

污水厂设计计算书
一、粗格栅
1.设计流量
a.日平均流量Q d =30000m 3/d ≈1250m 3/h=0.347m 3/s=347L/s K z 取1.40
b. 最大日流量
Q max =K z ·Q d =1.40×30000m 3/d=42000 m 3/d =1750m 3/h=0.486m 3/s
2.栅条的间隙数(n )
设:栅前水深h=0.8m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾角α=60° 则:栅条间隙数4.319
.08.002.060sin 486.0sin 21=⨯⨯︒==bhv Q n α(取n=32) 3.栅槽宽度(B)
设:栅条宽度s=0.015m
则:B=s (n-1)+en=0.015×(32-1)+0.02×32=1.11m
4.进水渠道渐宽部分长度
设:进水渠宽B 1=0.9m,渐宽部分展开角α1=20°
m B B L 3.020tan 29.011.1tan 2111=︒
-=-=α 5.栅槽与出水渠道连接处的渐窄部分长度(L 2)
m B B L 3.020tan 29.011.1tan 2221=︒
-=-=α 6.过格栅的水头损失(h 1)
设:栅条断面为矩形断面,所以k 取3 则:m g v k kh h 18.060sin 81
.929.0)02.0015.0(42.23sin 2234
201=︒⨯⨯⨯⨯===αε 其中ε=β(s/b )4/3 k —格栅受污物堵塞时水头损失增大倍数,一般为3
h 0--计算水头损失,m
ε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=2.4将β值代入β与ε关系式即可得到阻力系数ε的值
7.栅后槽总高度(H)
设:栅前渠道超高h 2=0.4m。

相关文档
最新文档