高考复数专题及答案
高考数学复习专题:复数

考法一 高考数学复习专题:复数复数的实部与虚部【例1-1】(2023·山西临汾·统考一模)复数()+=+z i 2i 54i 2)(的虚部为( )A .−3iB .−6iC .−3D .−6【答案】D【解析】+−+−+−−=====−−+−−−−z i(2i)12i (12i)(12i)536i 5(4i )1515(12i)1530i2,虚部为−6.故选:D. 【例1-2】(2023·河南·长葛市第一高级中学统考模拟预测)已知复数=−z 1i ,则+z z212的实部为( ) A .101 B .−101 C .51D .−51【答案】A【解析】:因为=−z 1i ,所以+=−+−=−z z 2(1i)2(1i)24i 22, 所以+−−+====+++z z 224i (24i)(24i)20105i 1124i 24i 112,所以+z z 212的实部为101.故选:A.【例1-3】(2023·重庆·统考一模)设复数z 满足+⋅=z z i i 1,则z 的虚部为( )A .−21B .21C .−1D .1【答案】B【解析】设=+∈z a b a b i(,R),则=−z a b i ,所以+−+a b a b i(i)i=1i, −−+=a b a b (i )i+1,得=b 21,解得=b 21,所以复数z 的虚部为21.故选:B. 考法二 共轭复数【例2-1】(2023·黑龙江·黑龙江实验中学校考一模)复数z 满足+=−z (1i)24i 2,则复数z 的共轭复数=z ( ) A .−12i B .−−2i C .−+2i D .+2i【答案】C【解析】将式子+=−z (1i)24i 2化简可得,()+===−−−−z 1i 2i2i 24i24i2,根据共轭复数定义可知=−+z 2i ,故选:C【例2-2】(2023·陕西西安·统考一模)复数−=z 1i ()2i 2的共轭复数为( ) A .−2i B .−4iC .2iD .4i【答案】C 【解析】=−+−+==−+z ((1i)(1i))2i 1[]i 2i(1i)22,则=z 2i ,所以复数−=z 1i()2i 2的共轭复数为2i .故选:C【例2-3】(2023·全国·唐山市第十一中学校考模拟预测)已知复数z 满足−−+=z z 2i 3i 0,则z 的共轭复数=z ( ) A .+1i B .−1i C .+5i 1D .−5i 1【答案】B【解析】由−−+=z z 2i 3i 0,得−=−z 12i 3i −+=−+(12i)(12i)(3i)(12i)==++51i 55i ,所以=−z 1i .故选:B考法三 复数的模长【例3-1】(2022·北京·统考高考真题)若复数z 满足⋅=−z i 34i ,则=z ( ) A .1 B .5C .7D .25【答案】B【解析】由题意有()⋅−===−−−−−z i i i 43i 34i 34i i )()(,故==z ||5.故选:B .【例3-2】(2023秋·山西太原·高三太原五中校考期末)已知+=−zz 12i 3,则=z ( )AB .3C .2D 【答案】D 【解析】由+=−zz 12i 3,得−=+z z 3i 2i ,−=+z 12i 3i )(,所以()()−−+===++++z 12i 12i 12i 55i 3i 173i 12i )()(,所以=z D .【例3-3】(2023·全国·模拟预测)若复数z 满足⋅⋅+⋅−=z z z z 1112)()(,则+=z i ( )AB C .3D .5【答案】B【解析】设=+z x y i ,∈x y ,R .所以+⋅−⋅++⋅−+=x y x y x y x y (i)(i)1i 1i 12)()(, 所以+−−+x y x y xy ()(12i)=122222,所以−−−−++=x y x y xy x y 122()i 0442222,所以⎩+=⎨−−−−=⎧xy x y x y x y 2()0120224422,所以⎩+=⎨+−−−=⎧xy x y x y x y 2()0()(1)120222222, 当+=x y 022时,方程组无解;当=≠x y 0,0时,++=y y 12042没有实数解; 当x 0,y=0≠时,−−=∴=∴=±x x x x 120,4,2422,所以=z 2或−2.所以当=z 2时,+=+z i |2;当=−z 2时,+=−+z i |2所以+=z i 故选:B考法四 复数对应的象限【例4-1】(2021·全国·统考高考真题)复数−−13i2i在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】−===−++−+13i 101022i 55i 1i2i 13i )()(,所以该复数对应的点为⎝⎭ ⎪⎛⎫22,11,该点在第一象限, 故选:A.【例4-2】(2023·全国·模拟预测)若复数=−+z a 2i 1i )()(在复平面内对应的点位于第四象限,则实数a 的取值范围为( ) A .+∞2,)( B .−∞−,2)( C .−2,2)( D .0,2)(【答案】A【解析】由于=−+=+−−=++−z a a a a a 2i 1i 22i i i 22i 2)()()(,所以复数z 在复平面内对应的点的坐标为+−a a 2,2)(,则⎩−<⎨⎧+>a a 2020,解得>a 2,所以实数a 的取值范围为+∞2,)(,故选:A .【例4-3】(2023·湖南·模拟预测)已知i 是虚数单位,复数R =−=+∈z z a a 12i,2i 12)(在复平面内对应的点为P ,Q ,若OP OQ ⊥(O 为坐标原点),则实数a =( ) A .−2 B .−1 C .0 D .1【答案】D【解析】复数=−=+z z a 12i,2i 12,则−P 1,2)(,Q a 2,1)(,则(1,2OP =−),(2,1OQ a =), OP OQ ⊥,∴−=a 220,解得=a 1,故选:D.考法五 复数的分类【例5-1】(2023·全国·高三专题练习)已知i 为虚数单位,复数++=z a 2i 1i 3)()(为纯虚数,则=z ( ) A .0 B .21C .2D .5【答案】D【解析】由题意,在++=z a 2i 1i 3)()(中,=−+=+−+=++−z a a a a a 2i 1i 22i i 221i)()()(∵z 为纯虚数,∴,+=−≠a a 20210,∴=−a 2,∴=−z 5i ∴=z 5,故选:D . 【例5-2】(湖北省武汉市2023届高三下学期二月调研数学试题)若虚数z 使得z 2+z 是实数,则z 满足( ) A .实部是−21B .实部是21C .虚部是0D .虚部是21【答案】A【解析】设=+z a b i (∈a b ,R 且≠b 0)+=+++=+−++=+−++z z a b a b a ab b a b a a b ab b (i)(i)2i i (2)i 222222, +z z 2是实数,因此+=ab b 20,=b 0(舍去),或=−a 21.故选:A . 【例5-3】(2022秋·江苏南京·高三校考期末)设a 为实数,若存在实数t ,使得+−−t a 2i(1)i 12为实数(i 为虚数单位),则a 的取值范围是( )A .≥−a 2B .0a<C .≥−a 1D .−≤≤−a 21【答案】C 【解析】由题知,⎝⎭⎪+−=+−=−−⎛⎫−−−t t t a a a 2i 2i 2(1)i (1)i 1i 111i 2222)(, 因为存在实数t ,使得+−−t a 2i (1)i 12为实数,所以关于t 的方程−−=−t a 21012有实数根, 所以,=+t a 212有实数根,所以=≥+t a 2012,即≥−a 1所以,a 的取值范围是≥−a 1故选:C考法六 相等复数【例6-1】(2022·全国·统考高考真题)设++=a b (12i)2i ,其中a b ,为实数,则( ) A .==−a b 1,1 B .==a b 1,1 C .=−=a b 1,1 D .=−=−a b 1,1【答案】A【解析】因为a b ,R ,++=a b a 2i 2i )(,所以+==a b a 0,22,解得:==−a b 1,1.故选:A.【例6-2】(2023·云南红河· )A .⎝⎭⎝⎭ ⎪ ⎪−+−⎛⎫⎛⎫33cos isin ππB 2i 1C .−1iD .3i π【答案】A⎝⎭⎝⎭==211,由⎝⎭ ⎪−==⎛⎫332cos cos 1ππ,⎝⎭⎪−=−=−⎛⎫332sin sin ππ,A 正确,B 、C 、D 错误.故选:A .考法七 在复数范围内解方程【例7-1】(2022·高一课时练习)复数2i 的平方根是( ) A .+1i 或−−1i B .2iC .+1iD .−−1i【答案】A【解析】设2i 的平方根为+∈x y x y i(,R),则+=x y (i)2i 2,即−+=x y xy 2i 2i 22,从而⎩=⎨−=⎧xy x y 22,0,22解得⎩=⎨⎧=y x 11,或⎩=−⎨⎧=−y x 1.1,所以复数2i 的平方根是+1i 或−−1i ,故选:A【例7-2】(2021·湖南衡阳·衡阳市八中校考模拟预测)已知复数−i 2是关于x 的方程++=∈x px q p q R 0,2)(的一个根,则+=pi q ( )A.25 B .5C D .41【答案】C【解析】因为复数−i 2是关于x 的方程++=x px q 02的一个根,所以−+−+=i p i q 2202)()(,所以+=+−pi q i p 423,所以==−p q p 4,23,所以==p q 4,5,则+=+=pi q i 45 C.【例7-3】(2021·江苏·一模)已知+i 2是关于x 的方程++=x ax 502的根,则实数a =( ) A .−i 2 B .−4 C .2 D .4【答案】B【解析】因为+i 2是关于x 的方程++=x ax 502的根,则另一根为−i 2 由韦达定理得++−=−i i a 22)()(,所以=−a 4 故选:B考法八 复数的综合运用【例8-1】(2023春·浙江·高三校联考开学考试)复数=−−z 2211,复数z 2满足⋅=z z 112,则下列关于z 2的说法错误的是( )A .=−z 212B .=z 12C .z 2D .z 2在复平面内对应的点在第二象限【答案】C【解析】对于A ,由已知可得,==z z 112==21=−421)(=−21,故A 正确.对于B ,因为=−z 212,所以==z 12,故B 正确;对于C ,根据复数的概念可知z 2,故C 错误;对于D ,根据复数的概念可知z 2在复平面内对应的点为⎝⎭⎪ ⎪−⎛⎫221,故D 正确.故选:C.【例8-2】(2023·高一课时练习)已知z 1、∈z C 2,且=z 11,若+=z z 2i 12,则−z z 12的最大值是( ). A .6 B .5 C .4 D .3【答案】C【解析】设=+∈z a b a b i,,R 1)(,=z 11,故+=a b 122,+=z z 2i 12,则=−+−z a b 2i 2)(,−=+−===z z a b 222i 12)(∈−b 1,1][,当1b时,−z z 12有最大值为4.故选:C【例8-3】(2023江苏镇江)(多选)已知复数=+z a b i 111,=+z a b i 222(a 1,b 1,a 2,b 2均为实数),下列说法正确的是( ) A .若=z z 212,则>z z 12B .z 1的虚部为b 1C .若z z =12,则=z z 1222D .=z z 1122【答案】BD【解析】对于A ,复数不等比较大小,A 项错误;对于B ,复数=+z a b i 111,a 1是实部,b 1是虚部,B 项正确;对于C ,z z =12==−+z a b a b 2i 11111222,=−+z a b a b 2i 22222222,不能得到=z z 1222,所以C 项错误;对于D ,=+z a b 111222,=−+z a b a b 2i 11111222,==+z a b 111222,所以=z z 1122,D 项正确;故选:BD.强化训练1.(2022·全国·统考高考真题)若=−z 1,则−=zz z1( )A .−1 B .−1C .−31D .−31【答案】C【解析】=−=−−=+=z zz 1(1113 4.−==−zz z 131故选 :C2.(2023秋·湖北·高三湖北省云梦县第一中学校联考期末)若复数z 满足+⋅=+z (12i)34i (其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是115 B .z 的虚部是52C .复数z 在复平面内对应的点在第一象限D .=z 5 【答案】C【解析】由题设++−===−++−z 12i (12i)(12i)55i 34i (34i)(12i)112,==z ||=+z 55i 112, A 选项,z 的实部是511,故A 错误;B 选项,z 的虚部是−52,故B 错误; C 选项,复数z 对应的坐标为⎝⎭⎪⎛⎫55,112,在复平面内对应的点在第一象限,故C 正确;D 选项,z D 错误.故选:C3.(2023秋·江苏·高三统考期末)若复数z 满足≤−z 12,则复数z 在复平面内对应点组成图形的面积为( ) A .π B .π2 C .π3 D .π4【答案】D【解析】z 在复平面对应的点是半径为2的圆及圆内所有点,=S π4,故选:D.4.(2023·内蒙古赤峰·统考模拟预测)已知R ∈a ,+=+a (5i)i 15i (i 为虚数单位),则a =( ) A .−1 B .1 C .−3 D .3【答案】A【解析】由题意知,+=−+=+a a (5i)i 5i 15i ,则=−a 1.故选:A.5.(2023春·湖南·高三校联考阶段练习)若复数z 满足−=z z 2i ,则++=z 32i ( )A B C .D 【答案】B【解析】+==−z 1i1i 2,则++=+=z 32i 4i B. 6.(2023·辽宁·校联考模拟预测)已知复数=−z 2i ,且−+=z az b i ,,其中a ,b 为实数,则−=a b ( ) A .-2 B .0C .2D .3【答案】C【解析】由题意得=+z 2i ,则代入原式得:+−−+=a b 2i 2i i )(,即−+++=a b a i 221i )()(,所以⎩+=⎨⎧−+=a a b 11220,解得⎩=−⎨⎧=b a 20,所以−=a b 2.故选:C .7.(2023·四川凉山·统考一模)已知复数z 满足=+−z1i 13i,z 是z 的共轭复数,则+z z 等于( ) A .−2i B .−2C .−4iD .−1【答案】B【解析】由题意在=+−z 1i 13i 中,()()++−−====−=−−−−++−−z 1i 1i 1i 1i 212i 13i 3i 4i 14i 213i 1i 22)()( ∴=−+z 12i ∴+=−−−+=−z z 12i 12i 2故选:B.8.(2023·浙江·永嘉中学校联考模拟预测)若+=z 12i i (i 为虚数单位),则=z ( )A.5 B CD 【答案】B【解析】由+=z 12i i 得==−+z i2i 12i,所以==z ,故选:B 9.(2023·江苏南通·统考一模)在复平面内,复数z z ,12对应的点关于直线−=x y 0对称,若=−z 1i 1,则−=z z 12( )A B .2C .D .4【答案】C【解析】=−z 1i 1对应的点为1,1,其中1,1关于−=x y 0的对称点为−1,1)(,故=−+z 1i 2,故−=−−=−==z z 1i+1i 22i 12故选:C10.(2023·陕西西安·校考模拟预测)已知复数z 满足=+z i21,其中i 为虚数单位,则z 的共轭复数在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A【解析】=+z i2=2-i 1,所以z 的共轭复数为=+z 2i ,对应在复平面内的点为(2,1),在第一象限, 故选:A11(2023·陕西榆林·统考一模)已知+−−=−z z z z 282i )()(,则+=z i ( )A.B .CD 【答案】A【解析】设R =+∈z a b a b i ,)(,则+−−=+=−=−z z z z z z a b 2342i 82i )()(,则==a b 2,1,故+=+=z i 22i 故选:A12.(2023·贵州毕节·统考一模)已知复数=+++z a a a 1i 2)(为纯虚数,则实数a 的值为( ) A .0 B .0或−1C .1D .−1【答案】A【解析】因为复数=+++z a a a 1i 2)(为纯虚数,则⎩+≠⎨+=⎧a a a 1002,解得=a 0.故选:A.13.(2023·全国·模拟预测)已知复数z 满足−=+z z 2537i )(,则z 的虚部为( ) A .−1311B .511 C .1329 D .−529 【答案】C【解析】对−=+z z 2537i )(移项并整理,得−=+z 23i 57i )(, ∴()()−−+===−++++z 23i 23i 23i 1313i 57i 112957i 23i )()(,∴z 的虚部为1329.故选:C. 14.(2022·全国·统考高考真题)若=+z 1i .则+=z z |i 3|( )A .B .C .D .【答案】D【解析】因为=+z 1i ,所以+=++−=−z z i 3i 1i 31i 22i )()(,所以+==z z i 3 故选:D.15.(2023春·江苏常州·高三校联考开学考试)若复数R +=∈+z a a 3i3i)(是纯虚数,则=z ( ) A .−1 B .−iC .−a iD .3i【答案】B 【解析】==+−++−z a a a 10103i 3i 339i )()()(为纯虚数,=−=a z 1,i ,=−z i ,故选:B .16.(2023春·安徽阜阳·高三阜阳市第二中学校考阶段练习)i 是虚数单位,设复数z 满足−=+z i 113i )(,则z 的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】因为+==13i 2,所以−−+−====−+++−+z i 1(i 1)(i 1)222i 23i (23i)(i 1)15i 15, 所以=+z 22i 15,所以z 的共轭复数对应的点位于第一象限,故选:A 17.(2023秋·浙江·高三期末)已知复数=+∈=z b b z i2i(R),212(其中i 为虚数单位),若−z z 12=b ( ) A .1 B .−5 C .1或−5 D .−1或5【答案】C【解析】由题意得==−z i2i 22,则−=++z z b 2(2)i 12,所以−==z z 12−b =5或=b 1,故选:C18.(2023广东深圳)设复数z 满足⋅+=−+z 12i 34i )(,则z 的虚部为( ) A .−2i B .2iC .−2D .2【答案】D【解析】由⋅+=−+z 12i 34i )(可得++====−−−+z 12i 12i 512i 55(12i)34i ,故=+z 12i ,则z 的虚部为2,故选:D19.(2022·山东济南·山东省实验中学校考模拟预测)虚数单位i 的平方根是( ) A .−1B.−−i 22C+22D.+22或 【答案】D【解析】设i 的平方根为+∈a bi a b R (,),则+=−+=a bi a b abi i ()2222,所以⎩=⎨−=⎧ab a b 21022,解得⎩⎪=⎪⎨⎪⎪=⎧b a 22或⎩⎪=⎪⎨⎪⎪=−⎧b a 2. 所以i的平方根为+i 22或−22. 故选:D .20.(2023·山西大同·大同市实验中学校考模拟预测)若复数z 满足+−=+z z z z 2+323i )()(,则z =( ) A .+22i 11B .−22i 11C .+22iD .−22i【答案】A【解析】设=+∈z a b a b i ,R )(,则=−z a b i ,所以+=++−=z z a b a b a i i 2)()(,−=+−−=z z a b a b b i i 2i )()(,所以+−=++z z z z a b 2+346i=23i )()(,所以===+a b z 2222,,i 1111.故选:A 21.(2023·广东佛山·统考一模)设复数z 满足+=−z 1i 52i 2)(,则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵+=−z 1i 52i 2)(,则()+===−−−−z 1i 2i 21i 52i52i 52,∴z 在复平面内对应的点为⎝⎭ ⎪−−⎛⎫21,5,位于第三象限.故选:C.22.(2023·辽宁·辽宁实验中学校考模拟预测)已知复数+z1i 为纯虚数,且+=z 1i1 ,则z =( ) A .−1i B .+1i C .−+1i 或−1i D .−−1i 或+1i【答案】C【解析】设=+z a b i (a ,b ∈R ),则++===+++−+−z a b a b b aa b 1i 1i 222i i i 1i )()( , 因为复数+z 1i 为纯虚数,所以⎩⎪≠⎪−⎨⎪⎪=⎧+b a a b 20,20,解得⎩≠⎨⎧=−a b a b ,, 又+=z 1i 1,所以=−b a 21或=−−b a21,解得=b 1或1b ,所以=−+z 1i 或=−z 1i .故选:C23.(2023·安徽马鞍山·统考一模)若复数z 满足−=−zz z i 3i ,则z 的虚部为( ) A .−1 B .2C .1或2D .−1或2【答案】D【解析】设复数=+∈z a b a b i(,R),因为−=−zz z i 3i ,即+−−=−a b a b i 3i 22,所以⎩=⎨+−=⎧a a b b 1322,解得:1b或=b 2,所以z 的虚部为−1或2,故选:D .24.(2023·云南昆明·昆明一中校考模拟预测)已知复数z 满足−=z (12i)i 2023,则=z ( ) A .−55i 21 B .+55i 21C .−55i 12D .+55i 12【答案】A【解析】因为=⨯=−ii ii 202321011)(,所以()()−−−+====−−−+z 12i 12i 12i 12i 55i i i 21i 12i 2023)(,故选:A. 25.(2023·河南郑州·统考一模)已知i 是虚数单位,若复数z 的实部为1,⋅=z z 4,则复数z 的虚部为( )A.B .C .−1或1D .【答案】A【解析】由题意,设=+z b 1i ,则=−z b 1i ,所以⋅=+−=z z b b 1i 1i 4)()(,即+=b 142,所以=b =−z 1或z =+1,所以复数z 的虚部为故选:A.26.(2023·陕西宝鸡·校联考模拟预测)已知复数=++z 1i i 3)(,则复数z 的模为( )AB .CD 【答案】C【解析】因为=++=−+z 2i(1i)i 23i ,所以=z C.27.(2023·陕西咸阳·武功县普集高级中学统考一模)已知复数=−z i 12的共轭复数为z ,则−=z i2( ) A .−1i B .+2iC .+1iD .−+1i【答案】A【解析】由题知=+z 12i ,所以−+==−z i1i 1i 22故选:A 28.(2023·浙江·校联考模拟预测)已知复数=−z 12i 1,=+z 1i 2,则复数z z 12的模z z 12等于( )A B C .D .【答案】B【解析】复数=−z 12i 1,=+z 1i 2,则=−+=−z z (12i)(1i)3i 12,所以==z z 12故选:B29.(2023·广东梅州·统考一模)已知复数z 满足z +=−1i 2i )(,i 是虚数单位,则z 在复平面内的对应点落在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【解析】由z +=−1i 2i )(可得+===−−−−−z 1i 21i 2i (2i)(1i), 则z 在复平面内的对应点为−−(1,1),落在第三象限,故选:C 30.(2023秋·辽宁·高三校联考期末)已知z 是纯虚数,−+z 1i2是实数,那么=z ( ) A .2i B .iC .−iD .−2i【答案】A【解析】因为z 是纯虚数,故可设)=≠z b b i(0,所以()()−−−+=+−−+z b b 1i 1i 1i 1i =22i 2i 1i )()(=++−b b 222i)(,因为−+z 1i 2是实数,所以−=b 20,即=b 2,所以=z 2i .故选:A31.(2023秋·江苏南京·高三南京师范大学附属中学江宁分校校联考期末)设a 为实数,若存在实数t ,使+−−t a 2i(1)i i2为实数(i 为虚数单位),则a 的取值范围是( ) A .≥−a 2 B .0a< C .≤−a 1 D .≤−a 2【答案】A 【解析】⎝⎭⎪+−+−−−+−−+−−⎛⎫−−−t t t t a a a a 2i 222221i=1i=i 1i=1i i11i i 2222)()()()()(, 因为存在实数t ,使+−−t a 2i (1)i i 2为实数,a 为实数,所以存在实数t ,−−=t a2102,故存在实数t ,−=t a 222, 所以≥−a 2,故选:A.32.(2023·吉林·长春十一高校联考模拟预测)设复数z 满足+=z i 2,z 在复平面内对应的点为x y ,)(,则( ) A .−+=x y 1422)( B .++=x y 1422)( C .+−=x y 1422)( D .++=x y 1422)(【答案】D【解析】z 在复平面内对应的点为,x y (),则复数=∈z x y x y +i,,R ,则+=++=z x y i (1)i 2,由复数的模长公式可得++=x y (1)422,故选:D .33.(2023秋·广东广州·高二广东实验中学校考期末)设复数z 满足−=−z z z 1,则z 在复平面上对应的图形是( ) A .两条直线 B .椭圆 C .圆 D .双曲线【答案】A【解析】设=+z x y i ,则=−z x y i ,−=−z z z 1可得:−+=x y y 12222)()(,化简得:−=x y 1322)(,即−=x y 13或−=−x y 13,则z 在复平面上对应的图形是两条直线.故选:A34.(2022春·上海黄浦·高三上海市敬业中学校考开学考试)满足条件−=+z i 34i (i 是虚数单位)的复数z 在复平面上对应的点的轨迹是( ) A .直线 B .圆 C .椭圆 D .双曲线【答案】B【解析】因为+==34i 5,设=+z x y i ∈x y ,R )(,所以−=+−z x y i 1i )(,所以i −==z 5,两边平方得+−=x y 12522)(,满足条件的复数在复平面上对应的点的轨迹是圆, 故选:B35(2023春·湖南株洲·高二株洲二中校考开学考试)已知复数z 满足+=+ααz 1i sin i cos )((i 是虚数单位),则=z ( )A .21B C .2D .1【答案】B【解析】因为+=+ααz 1i sin i cos )(, 所以()()++−===+++−++−ααααααααz 1i 1i 1i 22i sin i cos sin cos sin cos sin i cos 1i )()(,解得==z 故选:B36.(2022秋·安徽阜阳·高三安徽省临泉第一中学校考期末)已知复数+1i 是关于x 的方程++=∈x px q p q 0(,R)2的一个根,则+=p q i ( )A.4 B .C .8D .【答案】D【解析】因为复数+1i 是关于x 的方程++=x px q 02的一个根,所以⎩+=⎨++++=⇒+++=⇒⎧+=p p q p q p p q 201i 1i 02i 002)()()(,解得=−=p q 2,2,所以+==p qi另解:因为复数+1i 是关于x 的方程++=∈x px q p q 0(,R)2的一个根, 所以复数−1i 也是关于x 的方程++=∈x px q p q 0(,R)2的一个根, 所以有++−==−+−==p q 1i 1i 2,1i 1i 2)()(解得=−=p q 2,2,所以+=p qi 故选:D37.(2023·全国·模拟预测)若复数=+++⋅⋅⋅+z n i i i i 23,∈n N *则z 的最大值为( )A.1 B C D .2【答案】B【解析】因为=i i 1,=−i 12,=−i i 3,=i 14,,=+k i i 41,=−+k i 142,=−+k i i 43,=k i 14,∈k N ,且+++=i i i i 0234,所以当=n k 4,∈k N *)(时=z 0,则=z 0,当=+n k 41,∈k N )(时=z i ,则=z 1,当=+n k 42,∈k N )(时=−+z 1i ,则==z当=+n k 43,∈k N )(时=−z 1,则=z 1,所以z 故选:B38.(2021秋·上海浦东新·高三上海南汇中学校考阶段练习)已知函数+=−−x f x x 1()log (1)212的定义域为A ,复数−=−−z a 12ii 3i,若∈a A ,则z ||的取值范围是( )A .<z 1B .≤<z 1C .≤≤z 1D .<≤z 1【答案】B 【解析】由+−>−x x 11021,得+>−+x x 102,即−<<x 12,所以=−A (1,2) 因为复数−=−=−+−=+−−z a a a 12i 5i (3i)(12i)i 1(1)i 3i 1所以z ||因为∈−a (1,2),所以z || 故选:B39.(2023春·上海浦东新·高三上海市实验学校校考开学考试)设z 1,z 2为复数,下列命题一定成立的是( )A .如果=z a 1,a 是正实数,那么=z z a 112B .如果z z =12,那z z =±12C .如果≤z a 1,a 是正实数,那么−≤≤a z a 1D .如果+=z z 01122,那么==z z 012 【答案】A【解析】设)(,=+=+∈z x y z x y x y x y i,i ,,,R 1112221122,对A :∵==z a 1,则+=x y a 11222,∴=+−=+=z z x y x y x y a i i 11111111222)()(,A 正确;对B :∵z z =12=+=+x y x y 11222222,不能得到=±=±x x y y ,1212,更不能得到z z =±12,例如==z z 1,i 12,则==z z 112,但≠±z z 12,B 错误;对C :∵=z a 1,则+≤x y a 11222,但只有实数才能比较大小,对于虚数无法比较大小,C 错误;对D :∵+=z z 01122,则+++=−++−+=+−−++x y x y x y x y x y x y x x y y x y x y i i 2i 2i 2i=0112211112222121211222222222222)()()()()()(,可得⎩+=⎨+−−=⎧x y x y x x y y 00112212122222,不能得到====x y x y 01122,例如==z z 1,i 12,则+=−=z z 1101122,但显然≠≠z z 0,012,D 错误.故选:A.40.(2022秋·山西阳泉·高三统考期末)已知复数1232023i i i i 1i +++++=z ,则复数z 的虚部是( ) A .21B .−21C .2i 1D .−2i 1【答案】A 【解析】1232023i i i i 1i 1i 1i++++===+++−−+−−+++++++z i 1i 505i 1i 1i i i 505i i i i 1231234)()()()(+===−−+−−1i 2211i1i )(,故虚部为21 ,故选:A 41.(2022春·广西)下列关于复数的命题中(其中i 为虚数单位),说法正确的是( )A .若关于x 的方程+++−=∈i x ax i a R 11402)()(有实根,则=−a 25B .复数z 满足+=z i i12020)(,则z 在复平面对应的点位于第二象限C .=−+++z a a a i 412312)(,=++i z a a a 222)((i 为虚数单位,∈a R ),若>−a 21,则>z z 12D .+i 12是关于x 的方程++=x px q 02的一个根,其中p 、q 为实数,则=q 5 【答案】D【解析】对于A 中,设方程的实数根为t ,代入方程可得+++−=i i t at 11402)(,所以⎩−=⎨++=⎧t t at 401022,解得=±a 25,所以A 不正确;对于B 中,复数+=z i i 12020)(,可得==−++=i i i i z 12112112020,则复数z 在复平面内对应的点为−22(,)11,位于第四象限,所以B 不正确;对于C 中,复数=−+++z a a a i 412312)(,=++i z a a a 222)(,当>−a 21时,可知当+≠a a 02时 ,因为虚数不能比较大小,所以C 不正确;对于D 中,+i 12是关于x 的方程++=x px q 02的一个根, 根据复数方程的性质,可得−i 12也是方程的根,可得⎩+−=⎨⎧++−=−i i q i i p (12)(12)1212,解得=−=p q 2,5,所以D 正确.故选:D.42.(2023秋·河北唐山·高三统考期末)(多选)已知i 为虚数单位,复数,,=−=+∈z a z a a 2i 2i R 12)(,下列结论正确的有( )A .z z =12B .=z z 12C .若+=⋅z z z z 21212)(,则=a 2D .若=−z i 2,则=a 0 【答案】AC【解析】A 选项,==z z 12,A 选项正确. B 选项,=+≠z a z 2i 12,B 选项错误. C 选项,+=++−z z a a 22424i 12)()(, ⋅=+−z z a a 44i 122)(,若+=⋅z z z z 21212)(,则⎩−=−⎨⎧+=a a a a 2442442,解得=a 2,所以C 选项正确. D 选项,当=a 0时,=≠−z 2i 2,所以D 选项错误. 故选:AC43.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)(多选)设i 为虚数单位,下列关于复数的命题正确的有( ) A .=⋅z z z z 1212B .若z z ,12互为共轭复数,则z z =12C .若z z =12,则=z z 1222D .若复数=++−z m m 11i )(为纯虚数,则=−m 1【答案】ABD 【解析】由题意得:对于选项A :令=+=+z a b z c d i,i 12则⋅=++=−++z z a b c d ac bd ad bc i i i 12)()()( =−++ac bd ad bc 22)()(=⋅z z 12所以=⋅z z z z 1212,故A 正确;对于选项B :令=+=−z a b z a b i,i 12,z z 12z z =12,故B 正确;对于选项C :令=+=−z a b z a b i,i 12,==z z 12,根据复数的乘法运算可知:=+=−+z a b a b ab i 2i 12222)(,=−=−−z a b a b ab i 2i 22222)( ,≠z z 1222,所以C 错误;对于选项D :若复数=++−z m m 11i )(为纯虚数,则+=m 10,即=−m 1,故D 正确. 故选:ABD44.(2023春·安徽·高三校联考开学考试)(多选)若复数=+z i 121,=−z 73i 2,则下列说法正确的是( ).A .=z 1B .在复平面内,复数z 2所对应的点位于第四象限C .⋅z z 12的实部为13D .⋅z z 12的虚部为−11 【答案】ABC【解析】由题意得,==z 1A 正确;在复平面内,复数z 2所对应的点为−7,3)(,位于第四象限,故B 正确; ∵⋅=+−=−++=+z z 12i 73i 73i 14i 61311i 12)()(, ∴⋅z z 12的实部为13,虚部为11,故C 正确,D 错误. 故选:ABC .45.(2023秋·浙江宁波·高三期末)(多选)已知∈z z C ,12,且=+=z z z 10112,则( )A .当R =−=+∈z z x y x y 1i,i(,)12时,必有++−=x y (1)(1)1022B .复平面内复数z 1C .−=z i 1min 1D .=+z z 1max12【答案】BD【解析】A 项:+=⇒++−=z z x y 10111001222)()(,故错误;B 项:因为=z 1,故正确;C 项:−≥−=z i z i ||||111,当z 1与i 对应向量同向时取等,故错误;D 项:==≤==+z z 112+z z 12与z 1对应向量反向时取等,故正确. 故选:BD.46.(2023秋·湖北·高三校联考阶段练习)(多选)设z 1,z 2为复数,则下列四个结论中正确的是( )A .−=+−z z z z z z 412121222)(B .−z z 11是纯虚数或零C .+≤+z z z z 1212恒成立D .存在复数z 1,z 2,使得<z z z z 1212【答案】BC【解析】对于A :+−=−z z z z z z 412121222)()(,令−=+z z x y i 12, 则−=+=−+z z x y x y xy i 2i 122222)()(,−==+z z x y 12222,+xy 22与−+x y xy 2i 22不一定相等,故A 错误;对于B :=+z a b i 1,则=−z a b i 1,−=z z b 2i 11,当=b 0时为零,当≠b 0时为纯虚数,故B 正确;对于C :=+=+==z x y z a b z z i,i,1212则+=z z 12+=z z ||||12,(ay bx −≥02),则+−≥a y b x abxy 202222,∴+++≥++a x b x a y b y a x b y abxy 442222222222222)()(∴++≥+x y a b ax by 42222222)()()(∴+ax by 22∴++++≥+++++x y a b x y a b ax by 2222222222,∴≥22,∴+−+≥z z z z ||||0121222)()(故C 正确;对于D :设=+=+==z x y z a b z z i,i,1212则z z ||||12=+++=−++z z ax xb ay by ax by xb ay i i i i 122)()(==z z 12z z ||||12,故D 错误.故选:BD.47.(2022秋·甘肃甘南)(多选)已知=+∈z a b a b i ,R )(为复数,z 是z 的共轭复数,则下列命题一定正确的是( )A .若z 2为纯虚数,则=≠a b 0B .若∈z R 1,则∈z RC .若−=z i 1,则z 的最大值为2D .⋅=z z z ||2【答案】BCD【解析】对于A ,=+=−+z a b a b ab (i)2i 2222)(为纯虚数,所以⎩≠⎨−=⎧ab a b 20022,即=±≠a b 0,所以A 错误;对于B ,()()++−++===−−z a b a b a b a b a ba b a bi i i i 11i 2222, 因为∈zR 1,所以=b 0,从而∈z R ,所以B 正确;对于C , 由复数模的三角不等式可得=−+≤−+=z z z i i i i 2)(,所以C 正确;对于D ,⋅=+−=+=z z a b a b a b z i i ||222)()(,所以D 正确.故选:BCD .48.(2023秋·吉林长春·高三长春市第二中学校考期末)(多选)已知复数z 1,z 2,则下列结论中一定正确的是( ) A .若=z z 012,则=z 01或=z 02B .若+=z z 01222,则==z z 012 C .若=z z 1222,则z z =12D .若z z =12,则=z z 1222【答案】AC【解析】对于A , 设=+=+∈z x y z a b x y a b i,i,,,,R 12)(, 若=z z 012,则=++=−=z z x y a b xa yb xb ya i i ++i 012)()()(,所以⎩=⎨⎧−=xb ya xa yb +00,即⎩=−⎨⎧=xb ya xa yb,所以=−x y ab ab 22,若0a b ,则=−x y ab ab 22成立,此时=z 02;若,=≠a b 00,由=xa yb 得=y 0,由=−xb ya 得=x 0,此时=z 01; 若,≠≠a b 00,由=−x y ab ab 22得=−x y 22,所以==x y 0,此进=z 01, 所以若=z z 012,则=z 01或=z 02,故A 正确;对于B ,设=+=−z z 1i,1i,12则+=+−=z z 1i +1i 0122222)()(,故B 不正确; 对于C ,设=+=+∈z x y z a b x y a b i,i,,,,R 12)(,所以=+−=−∈z x y x y xy z a b ab x y a b i =+2i,+2i ,,,R 12222222)()(,若=z z 1222,则⎩⎩==⎨⎨⇒⎧−=−⎧=xy ab y b x y a b x a 222222或⎩=−⎨⎧=−y b x a , 所以z z =12,故C 正确;对于D , 由z z =12,取=+z 1i 1,=−z 1i 2满足条件,而=≠=−z z 2i 2i 1222,故D 不正确. 故选:AC.49.(2023·高一课时练习)在复平面上的单位圆上有三个点Z 1,Z 2,Z 3,其对应的复数为z 1,z 2,z 3.若−=+=z z z 1213△Z Z Z 123的面积S =______.【解析】由题意知,===z z z 1123, 由复数的加减法法则的几何意义及余弦定理,得⋅∠==−+−−z z Z OZ z z z z 22cos 112121212222,即∠=︒Z OZ 12012,⋅∠=−=+−+z z Z OZ z z z z 22cos 113131313222,即∠=︒Z OZ 6013,当OZ 2与OZ 3反向,=⨯⨯=S 22221;当线段OZ3在∠Z OZ12的内部时,==S2211所以△Z Z Z123..50(2023·高三课时练习)已知复数=−θz cos i1,=+θz sin i2,则⋅z z12的最大值为______.【答案】23【解析】⋅=⋅== z z z z1212===∵∈θsin20,12][,∴当=θsin212时,⋅z z12=23.故答案为:23.51.(2023·=______.====21)52.(2023·高一课时练习)设z 1,z 2,∈z C 3,下列命题中,假命题的个数为______. ①z z −=11;②若=z z 1222,则⋅=⋅z z z z 1122;③⋅=z z z z z z 3333121222; ④若−+−=z z z z 0122322)()(,则==z z z 123;⑤+≤z z z z 2121222.【答案】2【解析】令+z a b =i 1,+z c d =i 2,则−z a b =i 1,−z c d =i 2.则①−==z z 11,判断正确;②若=z z 1222,则=z z 1222,则=z z 1222又⋅=z z z 1112,⋅=z z z 2222,则⋅=⋅z z z z 1122.判断正确;③==⋅z z z z z z z z z 333333121212222.判断正确; ④若令z =2i 1,z =i 2,+z =1i 3,则−+−=−+=z z z z 110122322)()(, 但此时≠≠z z z 123.判断错误; ⑤当+z =23i 1,+z =2i 2时,=<+−=−=−z z z z z z 22i 402212121222)()(,即+>z z z z 2121222.判断错误.故答案为:253.(2023·上海·统考模拟预测)设∈z z ,C 12且=⋅z z i 12,满足−=z 111,则−z z 12的取值范围为_____.【答案】⎣⎡0,2【解析】设=+=+∈z a b z c d a b c d i,i,,,,R 12,=−z c d i 2,则+=⋅−=+a b c d d c i i i i )(,所以⎩=⎨⎧=b c a d ,−=−+==z a b 11i 11)(,所以−+=a b 1122)(,即z 1对应点a b ,)(在以1,0)(为圆心,半径为1的圆−+=x y 1122)(上.=+=+z c d b a i i 2,z 2对应点为b a ,)(,a b ,)(与b a ,)(关于=y x 对称,所以点b a ,)(在以0,1)(为圆心,半径为1的圆+−=x y 1122)(上,−z z 12表示a b ,)(与b a ,)(两点间的距离,圆−+=x y 1122)(与圆+−=x y 1122)(,如图所示,所以−z z 12的最小值为0+=112所以−z z 12的取值范围为⎣⎡0,2.故答案为:⎣⎡0,254.(2023·高三课时练习)复数z 1与z 2在复平面上对应的向量分别为OZ 1与OZ 2,已知=z i 1,OZ OZ ⊥12,且=OZ OZ 12,则复数=z 2______.【答案】1或−1【解析】依题意,(3,1)OZ =1,设(,)OZ x y =2,由OZ OZ ⊥12得:30OZ OZ ⋅=+=x y 12,由=OZ OZ 12得:+=x y 422,联立解得⎩⎪=⎨⎪⎧=y x 1⎩⎪⎨⎪⎧=−y x 1(1,3)OZ =−2或(1,3)OZ =−2,所以=z 12或=−z 12.故答案为:1或−155(2023·高三课时练习)已知复数z 满足−−≤−−+z z 12log 11121,则z 在复平面上对应的点Z所围成区域的面积为______. 【答案】π21 【解析】12log 1,2,215z z z z −+−+−−−−≤−∴≥<−≤z 12121111,∴=−=s π(52)21π22. 故答案为: π2156(2022春·上海闵行·高三上海市七宝中学校考阶段练习)已知=+z x y i ,x 、∈y R ,i 是虚数单位.若复数++z1ii 是实数,则z ||的最小值为______.【【解析】复数++−+=+=+=++−++−+−+z x y x y y x x y y x 1i (1i)(1i)222i i i i (i)(1i)()i 2是实数, 所以=−+y x 202,得=+x y 2.所以===≥z ||当且仅当=−y 1,=x 1取等号,所以z ||.。
高考数学《复数》专项练习(含答案)

【复数】专项练习参考答案1.〔2021全国Ⅰ卷,文2,5分〕设(12i)(i)a ++的实部与虚部相等,其中a 为实数,那么a =( )〔A 〕−3 〔B 〕−2 〔C 〕2 〔D 〕3 【答案】A【解析】(12i)(i)2(12)i a a a ++=-++,由,得a a 212+=-,解得3-=a ,选A .2.〔2021全国Ⅰ卷,理2,5分〕设(1i)1i x y +=+,其中x ,y 是实数,那么i =x y +( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】B【解析】因为(1i)=1+i,x y +所以i=1+i,=1,1,|i |=|1+i |x x y x y x x y +==+=所以故应选B .3.〔2021全国Ⅱ卷,文2,5分〕设复数z 满足i 3i z +=-,那么z =( ) 〔A 〕12i -+ 〔B 〕12i - 〔C 〕32i + 〔D 〕32i - 【答案】C【解析】由i 3i z +=-得32i z =-,所以32i z =+,应选C .4.〔2021全国Ⅱ卷,理1,5分〕(3)(1)i z m m =++-在复平面内对应的点在第四象限,那么实数m 的取值范围是( )〔A 〕(31)-, 〔B 〕(13)-, 〔C 〕(1,)∞+ 〔D 〕(3)∞--,5.〔2021全国Ⅲ卷,文2,5分〕假设43i z =+,那么||zz =( ) 〔A 〕1 〔B 〕1- 〔C 〕43i 55+ 〔D 〕43i 55-【答案】D【解析】∵43i z =+,∴z =4-3i ,|z |=2234+.那么43i ||55z z ==-,应选D .6.〔2021全国Ⅲ卷,理2,5分〕假设z =1+2i ,那么4i1zz =-( ) (A)1 (B)−1 (C)i (D)−i 【答案】C【解析】∵z =1+2i ,∴z =1-2i ,那么4i 4ii (12i)(12i)11zz ==+---,应选C . 7.〔2021全国Ⅰ卷,文3,5分〕复数z 满足(z -1)i =1+i ,那么z =( )A .-2-iB .-2+iC .2-iD .2+i【答案】C【解析一】(z -1)i =1+i ⇒ zi -i =1+i ⇒ zi =1+2i ⇒ z =1+2i i=(1+2i)i i 2=2-i .应选C .【解析二】(z -1)i =1+i ⇒ z -1=1+i i⇒ z =1+i i+1 ⇒z =(1+i)i i 2+1=2-i .应选C .8.〔2021全国Ⅰ卷,理1,5分〕设复数z 满足1+z1z-=i ,那么|z|=( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】A 【解析一】1+z1z-=i ⇒ 1+z =i(1-z) ⇒ 1+z =i -zi ⇒ z +zi =-1+i ⇒ (1+i)z =-1+i ⇒9.〔2021全国Ⅱ卷,文2,5分〕假设a 为实数,且2+ai 1+i=3+i ,那么a =( )A .-4B .-3C .3D .4 【答案】D【解析】由得2+ai =(1+i)(3+i)=2+4i ,所以a =4,应选D .10.〔2021全国Ⅱ卷,理2,5分〕假设a 为实数,且(2+ai)(a -2i)=-4i ,那么a =( )A .-1B .0C .1D .2 【答案】B【解析】(2+ai)(a -2i)=-4i ⇒ 2a -4i +a 2i +2a =-4i ⇒ 2a -4i +a 2i +2a +4i =0⇒ 4a +a 2i =0 ⇒ a =0.11.〔2021全国Ⅰ卷,文3,5分〕设z =11+i+i ,那么|z|=( )A .12 B .√22 C .√32 D .2 【答案】B 【解析】z =11+i+i =1-i 2+i =12+12i ,因此|z|=√(12)2+(12)2=√12=√22,应选B .12.(1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i 【答案】D 【解析】(1+i )3(1-i )2=(1+i )2(1+i)(1-i )2·=(1+i 2+2i)(1+i)1+i 2-2i==2i(1+i)-2i=-(1+i)=-1-i ,应选D .13.〔2021全国Ⅱ卷,文2,5分〕1+3i 1-i=( )A .1+2iB .-1+2iC .1-2iD .-1-2i【答案】B 【解析】1+3i 1-i=(1+3i )(1+i )(1-i )(1+i )=-2+4i 2=-1+2i ,应选B .14.〔2021全国Ⅱ卷,理2,5分〕设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,那么z 1z 2=( )A .-5B .5C .-4+iD .-4-i【答案】A【解析】由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i)=-5,应选A .15.〔2021全国Ⅰ卷,文2,5分〕1+2i (1-i )2=( )A .-1-12i B .-1+12i C .1+12i D .1-12i 【答案】B 【解析】1+2i(1-i )2=1+2i -2i=(1+2i )i (-2i )i=-2+i 2=-1+12i ,应选B .16.〔2021全国Ⅰ卷,理2,5分〕假设复数z 满足(3-4i)z =|4+3i|,那么z 的虚部为( )A .-4B .-45 C .4 D .45 【答案】D【解析】∵|4+3i|=√42+32=5,∴(3-4i)z =5,∴z=53-4i=5(3+4i )25=35+45i ,虚部为45,应选D .17.〔2021全国Ⅱ卷,文2,5分〕|21+i|=( )A .2√2B .2C .√2D .1【答案】C 【解析】|21+i|=|2(1-i )2|=|1-i|=22)1(1-+=√2.选C .18〔2021全国Ⅱ卷,理2,5分〕设复数z 满足(1-i)z =2i ,那么z =( )A .-1+iB .-1-iC .1+iD .1-i 【答案】A【解析】由题意得z =2i1-i=2i ·(1+i )(1−i )(1+i)=2i +2i 22=2i−22=-1+i ,应选A .19.〔2021全国卷,文2,5分〕复数z =-3+i 2+i的共轭复数是( ) A .2+i B .2-I C .-1+iD .-1-i【答案】D【解析】z =-3+i 2+i=(-3+i )(2-i )(2+i )(2-i )=-5+5i 5=-1+i ,∴z =-1-i ,应选D .20.〔2021全国卷,文2,5分〕复数5i1-2i=( )A .2-iB .1-2iC .-2+iD .-1+2i【答案】C 【解析】5i 1-2i=5i (1+2i )(1-2i )(1+2i )=5(i -2)5=-2+i ,应选C .21.〔2021北京,文2,5分〕复数( ) 〔A 〕i 〔B 〕1+i 〔C 〕 〔D 〕【答案】A 【解析】,应选A .22.〔2021北京,理9,5分〕设,假设复数在复平面内对应的点位于实轴上,那么_____________. 【答案】-1【解析】(1+i)(a +i)=a +i +ai +i 2=a +i +ai -1=(a -1)+(1+a)i ,由题意得虚部为0,即(1+a)=0,解得a =-1. 23.〔2021江苏,文/理2,5分〕复数其中i 为虚数单位,那么z 的实部是____.【答案】524.〔2021山东,文2,5分〕假设复数21iz =-,其中i 为虚数单位,那么z =( ) 〔A 〕1+i〔B 〕1−i〔C 〕−1+i 〔D 〕−1−i【答案】B25.〔2021山东,理1,5分〕假设复数z 满足232i,z z +=- 其中i 为虚数单位,那么z =( )〔A 〕1+2i 〔B 〕1-2i 〔C 〕12i -+ 〔D 〕12i --【答案】B26.〔2021上海,文/理2,5分〕设32iiz +=,其中i 为虚数单位,那么z 的虚部等于_______. 【答案】-312i=2i+-i -1i -12i (12i)(2i)2i 4i 2i 2i (2i)(2i)5+++++-===--+a ∈R (1i)(i)a ++a =(12i)(3i),z =+-【解析】32i 23i,iz +==-故z 的虚部等于−3.27.〔2021四川,文1,5分〕设i 为虚数单位,那么复数(1+i)2=( )(A) 0 (B)2 (C)2i (D)2+2i 【答案】C【解析】22(1i)12i i 2i +=++=,应选C .28.〔2021天津,文9,5分〕i 是虚数单位,复数z 满足(1i)2z +=,那么z 的实部为_______.【答案】1【解析】2(1)211i i iz z +=⇒==-+,所以z 的实部为1.29.〔2021天津,理9,5分〕,a b ∈R ,i 是虚数单位,假设(1+i)(1-b i)=a ,那么ab的值为____.【答案】2【解析】由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab=,故答案为2.。
高考数学 真题分类汇编:专题(15)复数(理科)及答案

专题十五 复数1.【20xx 高考新课标2,理2】若a 为实数且(2)(2)4ai a i i +-=-,则a =( )A .1-B .0C .1D .2【答案】B【解析】由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B .【考点定位】复数的运算.【名师点睛】本题考查复数的运算,要利用复数相等列方程求解,属于基础题.2.【20xx 高考四川,理2】设i 是虚数单位,则复数32i i-( ) (A )-i (B )-3i (C )i. (D )3i【答案】C【解析】32222i i i i i i i i-=--=-+=,选C. 【考点定位】复数的基本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.3.【20xx 高考广东,理2】若复数()32z i i =- ( i 是虚数单位 ),则z =( )A .32i -B .32i +C .23i +D .23i -【答案】D .【解析】因为()3223z i i i =-=+,所以z =23i -,故选D .【考点定位】复数的基本运算,共轭复数的概念.【名师点睛】本题主要考查复数的乘法运算,共轭复数的概念和运算求解能力,属于容易题;复数的乘法运算应该是简单易解,但学生容易忘记和混淆共轭复数的概念,z a bi =+的共轭复数为z a bi =-.4.【20xx 高考新课标1,理1】设复数z 满足11z z+-=i ,则|z|=( )(A )1 (B (C (D )2【答案】A【解析】由11z i z +=-得,11i z i -+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 【考点定位】本题主要考查复数的运算和复数的模等.【名师点睛】本题将方程思想与复数的运算和复数的模结合起来考查,试题设计思路新颖,本题解题思路为利用方程思想和复数的运算法则求出复数z ,再利用复数的模公式求出|z|,本题属于基础题,注意运算的准确性.5.【20xx 高考北京,理1】复数()i 2i -=( )A .12i +B .12i -C .12i -+D .12i --【答案】A考点定位:本题考查复数运算,运用复数的乘法运算方法进行计算,注意21i =-.【名师点睛】本题考查复数的乘法运算,本题属于基础题,数的概念的扩充部分主要知识点有:复数的概念、分类,复数的几何意义、复数的运算,特别是复数的乘法与除法运算,运算时注意21i =-,注意运算的准确性,近几年高考主要考查复数的乘法、除法,求复数的模、复数的虚部、复数在复平面内对应的点的位置等.6.【20xx 高考湖北,理1】 i 为虚数单位,607i 的共轭复数....为( ) A .i B .i - C .1 D .1-【答案】A【解析】i i i i -=⋅=⨯31514607,所以607i 的共轭复数....为i ,选A . 【考点定位】共轭复数.【名师点睛】复数中,i 是虚数单位,24142434111()n n n n i i i i i i i n +++=-==-=-=∈Z ;,,,7.【20xx 高考山东,理2】若复数z 满足1z i i=-,其中i 为虚数为单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+【答案】A 【解析】因为1z i i=-,所以,()11z i i i =-=+ ,所以,1z i =- 故选:A. 【考点定位】复数的概念与运算.【名师点睛】本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解. 本题属于基础题,注意运算的准确性.8.【20xx 高考安徽,理1】设i 是虚数单位,则复数21i i-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限【答案】B 【解析】由题意22(1)2211(1)(1)2i i i i i i i i +-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,故选B.【考点定位】1.复数的运算;2.复数的几何意义.【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,复数z a bi =+在复平面内一一对应的点为(,)Z a b .9.【20xx 高考重庆,理11】设复数a +bi (a ,b ∈R ),则(a +bi )(a -bi )=________.【答案】3【解析】由a +得=,即223a b +=,所以22()()3a bi a bi a b +-=+=.【考点定位】复数的运算.【名师点晴】复数的考查核心是代数形式的四则运算,即使是概念的考查也需要相应的运算支持.本题首先根据复数模的定义得a +,复数相乘可根据平方差公式求得()()a bi a bi +-22()a bi =-22a b =+,也可根据共轭复数的性质得()()a bi a bi +-22a b =+.10.【20xx 高考天津,理9】i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .【答案】2-【解析】()()()12212i a i a a i -+=++-是纯虚数,所以20a +=,即2a =-.【考点定位】复数相关概念与复数的运算.【名师点睛】本题主要考查复数相关概念与复数的运算.先进行复数的乘法运算,再利用纯虚数的概念可求结果,是容易题.11.【20xx 江苏高考,3】设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.【解析】22|||34|5||5||z i z z =+=⇒=⇒=【考点定位】复数的模【名师点晴】在处理复数相等的问题时,一般将问题中涉及的两个复数均化成一般形式,利用复数相等的充要条件“实部相等,虚部相等”进行求解.本题涉及复数的模,利用复数模的性质求解就比较简便:2211121222||||||||||||.||z z z z z z z z z z ==⋅=,, 12.【20xx 高考湖南,理1】已知()211i i z -=+(i 为虚数单位),则复数z =( ) A.1i + B.1i - C.1i -+ D.1i --【答案】D.【考点定位】复数的计算.【名师点睛】本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代数形式四则运算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数的乘法则是按多项式的乘法法则进行处理.13.【20xx 高考上海,理2】若复数z 满足31z z i +=+,其中i 为虚数单位,则z = .【答案】1142i +【解析】设(,)z a bi a b R =+∈,则113()1412142a bi a bi i a b z i ++-=+⇒==⇒=+且 【考点定位】复数相等,共轭复数【名师点睛】研究复数问题一般将其设为(,)z a bi a b R =+∈形式,利用复数相等充要条件:实部与实部,虚部与虚部分别对应相等,将复数相等问题转化为实数问题:解对应方程组问题.复数问题实数化转化过程中,需明确概念,如(,)z a bi a b R =+∈的共轭复数为(,)z a bi a b R =-∈,复数加法为实部与实部,虚部与虚部分别对应相加.【20xx 高考上海,理15】设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】B【解析】若1z 、2z 皆是实数,则12z z -一定不是虚数,因此当12z z -是虚数时,则“1z 、2z 中至少有一个数是虚数”成立,即必要性成立;当1z 、2z 中至少有一个数是虚数,12z z -不一定是虚数,如12z z i ==,即充分性不成立,选B.【考点定位】复数概念,充要关系【名师点睛】形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.判断概念必须从其定义出发,不可想当然.。
高考数学最新真题专题解析—复数

高考数学最新真题专题解析—复数考向一 复数的概念及运算 【母题来源】2022年高考浙江卷【母题题文】已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A. 1,3a b ==-B. 1,3a b =-=C. 1,3a b =-=-D.1,3a b ==【答案】B【试题解析】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=,故选:B. 【命题意图】本题考查复数的四则运算,属于较为简单题目.【命题方向】这类试题在考查题型上主要以选择、填空题的形式出现.试题难度不大,多为低档题,是历年高考的热点,考查学生的基本运算能力. 常见的命题角度有:(1)求复数的概念;(2)复数的模;(3)复数相等的四则运算;(4)复数在复平面内对应的点. 【得分要点】 解复数问题方法:(1)理解复数的基本概念.(2)解答中熟练应用复数的运算法则化简.(3)复数的乘法:复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类项,不含i 的看作另一类项,分别合并同类项即可.一、单选题1.(2022·青海·海东市第一中学模拟预测(理))设()31i 2z -=,则z =( )A 2B 2C .1D .2【答案】A 【解析】 【分析】根据复数的四则运算法则及模的运算即可求得答案. 【详解】由题意,3(1i)2i(1i)2(1i)-=--=-+,2i 12(1i)2-=-+,2||z = A.2.(2022·全国·模拟预测)若复数z 满足()32i 3i z +=(i 为虚数单位),则在复平面内z 所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D 【解析】 【分析】根据复数的模长与乘法除法运算求解可得42i 55z =-,再根据复数的几何意义分析即可 【详解】因为()32i 3i z +=,即()2i 3i z +=,故()()()22i 242i 2i 2i 2i 55z -===-++-,所以在复平面内z 所对应的点为42,55⎛⎫- ⎪⎝⎭,位于第四象限.故选:D .3.(2022·全国·南京外国语学校模拟预测)已知复数211i 1iz =+-+(i 为虚数单位),则复数z 在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】根据复数的运算求解复数z ,得到z ,根据复数的几何意义即可求解. 【详解】()()()()()21i 211i 11311i i i 1i 1i 1i 1i 1i 1i 2222z +-=+=+=++-=+-+-++-, 则31i 22z =-,在复平面上对应的点的坐标为31,22⎛⎫- ⎪⎝⎭,位于第四象限故选:D . 4.(2022·海南海口·二模)复数213i+的虚部为( ) A .35B .15C .15-D .35【答案】D 【解析】 【分析】利用复数的除法运算法则即可求解. 【详解】由已知得()()()213i 226i 13i 13i 13i 13i 1055--===-++-,则复数13i 55-的虚部为35,故选:D.5.(2022·江苏无锡·模拟预测)已知复数z 满足()i i 43i z -=+,则z =( )A .25B .3C .3D .32【答案】D 【解析】 【分析】利用复数的除法运算求出z ,再利用共轭复数及模的意义求解作答. 【详解】 依题意,43ii iz +-=,则有(43i)(i)+i 34i i 33i i (i)z +-==-+=-⋅-,于是得33i z =+,所以223332z =+=故选:D6.(2022·全国·模拟预测)已知i 32i z -=,i 为虚数单位,则z =( ) A .23i + B .23i - C .23i -+ D .23i --【答案】B 【解析】 【分析】根据复数的代数运算法则即可解出. 【详解】因为i 32i z -=,所以()232i i 32i 23i23i i i 1z ++-+====--.故选:B . 7.(2022·青海·模拟预测(理))若2i21ix y -=+(x ,R y ∈,i 为虚数单位),则复数i x y +在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【分析】根据给定条件,利用复数乘法结合复数相等求出x ,y 即可求解作答. 【详解】因2i21i x y -=+,则有2i 22i x y y -=+,而,R x y ∈,有222x y y =⎧⎨-=⎩,解得2,1x y =-=-,所以复数i x y +在复平面内所对应的点(2,1)--位于第三象限. 故选:C8.(2022·广东茂名·二模)已知复数z 在复平面内对应的点为()11,,z 是z 的共轭复数,则1z=( )A .11i 22-+ B .11i 22+ C .11i 22- D .11i 22--【答案】B 【解析】 【分析】求出z ,再由复数的除法运算可得答案. 【详解】∵复数z 在复平面内对应的点为()11,,∴1i z =+,1i z =-,()()11i 1i 11i 1i 1i 222++===+-+z .故选:B . 9.(2022·浙江湖州·模拟预测)已知a R ∈,若复数(i)(1i)z a =+-,复数z 的实部是4,则z 的虚部是( ) A .2i - B .2-C .2iD .2【答案】B【分析】先化简复数z ,再根据复数z 的实部是4求解. 【详解】解:()(i)(1i)11i =+-=++-z a a a ,因为复数z 的实部是4,所以14a +=,解得3a =,所以42i z =-,则z 的虚部是-2,故选:B10.(2022·浙江绍兴·模拟预测)人们对数学研究的发展一直推动着数域的扩展,从正数到负数、从整数到分数、从有理数到实数等等.16世纪意大利数学家卡尔丹和邦贝利在解方程时,首先引进了2i 1=-,17世纪法因数学家笛卡儿把i 称为“虚数”,用i(R)a b a b +∈、表示复数,并在直角坐标系上建立了“复平面”.若复数z 满足方程2250z z ++=,则z =( ) A .12i -+ B .2i -- C .12i -± D .2i -±【答案】C 【解析】 【分析】设出复数z 的代数形式,再利用复数为0列出方程组求解作答. 【详解】设i(,R)z a b a b =+∈,因2250z z ++=,则2(i)2(i)50a b a b ++++=,即22(25)2(1)i 0a b a b a -++++=,而,R a b ∈,则222502(1)0a b a b a ⎧-++=⎨+=⎩,解得12a b =-⎧⎨=±⎩,所以12i z =-±. 故选:C 二、填空题11.(2022·上海闵行·二模)若i1im ++为纯虚数(i 为虚数单位),则实数m =___________;【答案】-1 【解析】 【分析】先利用复数的除法法则化简得到()()()()()i 1i 11i 1i 1i 2m m m +-++-=+-,根据i1im ++为纯虚数,得到方程,求出1m =-,检验后得到答案. 【详解】()()()()()i 1i 11i 1i 1i 2m m m +-++-=+-,因为i1im ++为纯虚数,所以10m +=,解得:1m =-,此时ii 1im +=+,符合要求, 故答案为:-112.(2022·天津·静海一中模拟预测)已知复数z 满足()1i 34i z +=-(其中i 为虚数单位),则||z =________ 【答案】522【解析】 【分析】根据复数的乘除运算法则,化简得z ,进而根据共轭复数得到z ,根据模长公式即可求解. 【详解】由()1i 34i z +=-得()()3-4i 1-i 34i 33i-4i 417i 1i 2222z ---====--+,所以17i 22z =-+,故221752||=222z ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭.故答案为:522 13.(2022·江苏·扬中市第二高级中学模拟预测)若i 为虚数单位,复数z 满足11i 2z ≤++≤,则1i z --的最大值为_______.【答案】32 【解析】 【分析】利用复数的几何意义知复数z 对应的点Z 到点(1,1)C --的距离d 满足12d ≤≤,1i z --表示复数z 对应的点Z 到点(1,1)P 的距离,数形结合可求得结果.【详解】复数z 满足112z i ≤++≤,即()11i 2z ≤---≤ 即复数z 对应的点Z 到点(1,1)C --的距离d 满足12d ≤≤ 设(1,1)P ,1i z --表示复数z 对应的点Z 到点(1,1)P 的距离数形结合可知1i z --的最大值22||||222232AP CP =+=++= ,故答案为:3214.(2022·浙江·三模)中国古代数学著作《九章算术》中记载了平方差公式,平方差公式是指两个数的和与这两个数差的积,等于这两个数的平方差.若复数53i,43i a b =+=+(i 为虚数单位),则22a b -=__________.【答案】96i +【解析】 【分析】先要平方差公式,再按照复数的四则运算规则计算即可. 【详解】()()()()2253i 43i 53i 43i 96i a b a b a b -=+-=++++--=+ ;故答案为:96i + .15.(2022·全国·模拟预测)请写出一个同时满足①2i 2z z -=-;②22z =的复数z ,z =______. 【答案】()1i ±+ 【解析】 【分析】设i R z a b a b =+∈,,,根据模长公式得出1a b ==±,进而得出z . 【详解】设i R z a b a b =+∈,,,由条件①()()222222a b a b +-=-+简可得a b =,故222221z a b a b =⇒+=⇒==±,()1i z =±+;故答案为:()1i ±+16.(2022·上海交大附中模拟预测)已知1z 、2C z ∈,且12i z =+,234z i =-(其中i 为虚数单位),则12z z -=____________. 【答案】15i -+##5i 1- 【解析】 【分析】利用复数的减法化简可得结果. 【详解】122i 34i 15i z z -=+-+=-+.故答案为:15i -+.。
高考数学专题《复数》习题含答案解析

专题10.2 复数1.(2020·全国高考真题(理))复数113i-的虚部是( )A .310-B .110-C .110D .310【答案】D 【解析】因为1131313(13)(13)1010i z i i i i +===+--+,所以复数113z i =-的虚部为310.故选:D.2.(2020·全国高考真题(文))(1–i )4=( )A .–4B .4C .–4i D .4i【答案】A 【解析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-.故选:A.3.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =( )A .1i --B .1i-+C .1i-D .1i+【答案】D 【分析】由题意利用复数的运算法则整理计算即可求得最终结果.【详解】由题意可得:()()()()2121211112i i z i i i i ++====+--+.故选:D.4.(2021·全国·高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i-C .62i+D .42i+【答案】C 【分析】练基础利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i+=-+--=+故选:C.5.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =( )A .312i--B .312i-+C .32i-+D .32i--【答案】B 【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解.【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅.故选:B.6.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( )A .12i -B .12i+C .1i+D .1i-【答案】C 【分析】设z a bi =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【详解】设z a bi =+,则z a bi =-,则()()234646z z z z a bi i ++-=+=+,所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1z i =+.故选:C.7.(2021·全国·高考真题(文))设i 43i z =+,则z =( )A .–34i -B .34i-+C .34i-D .34i+【答案】C 【分析】由题意结合复数的运算法则即可求得z 的值.【详解】由题意可得:()2434343341i i i i z i i i ++-====--.故选:C.8.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =( )A .1-B .1C .3-D .3【答案】C 【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值.【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-.故选:C.9.(2019·北京高考真题(文))已知复数z =2+i ,则( )ABC .3D .5【答案】D 【解析】∵ 故选D.10.(2019·全国高考真题(文))设,则=( )A.2B CD .1【答案】C 【解析】因为,所以,所以,故选C .1.(2010·山东高考真题(文))已知 ,,其中 为虚数单位,则=( )A .-1B .1C .2D .3【答案】B 【解析】z z ⋅=z 2i,z z (2i)(2i)5=+⋅=+-=3i12iz -=+z 312iz i -=+(3)(12)17(12)(12)55i i z i i i --==-+-z ==2a ib i i+=+,a b ∈R i +a b 练提升因为 ,,所以,则,故选B.2.(全国高考真题(理))复数的共轭复数是( )A .B .iC .D .【答案】A 【解析】,故其共轭复数为.所以选A.3.(2018·全国高考真题(理))设,则( )A .B .C .D【答案】C 【解析】,则,故选c.4.(2009·重庆高考真题(理))已知复数的实部为,虚部为2,则的共轭复数是( )A .B .C .D .【答案】B 【解析】由题意得:所以,共轭负数为2+i 故选B5.(2017·山东高考真题(理))已知,是虚数单位,若,,22222a i ai i ai b i i i+--==-=+-,a b ∈R 2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩+1a b =212ii+-i -35i-35i()()()()2i 12i 5i i12i 12i 5++==-+i -1i2i 1iz -=++||z =0121()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+i 2i i =-+=1z =z 1-5iz2i -2i+2i--2i-+R a ∈i z a =4z z ⋅=则( )A .1或B或C .D【答案】A 【解析】由得,所以,故选A.6.(2021·广东龙岗·高三期中)已知复数z 满足()2i 34i z +=+(其中i 为虚数单位),则复数z =( )A .2i -B .2i-+C .2i+D .2i--【答案】C 【分析】根据复数除法运算求出z ,即可得出答案.【详解】()2i 35z +=+= ,()()()52i 52i 2i 2i 2i z -∴===-++-,则2i z =+.故选:C.7.(2021·安徽·合肥一六八中学高一期中)欧拉公式i s co in s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】先由欧拉公式计算可得312e π=,然后根据复数的几何意义作出判断即可.【详解】根据题意i s co in s i xe x x +=,故i3is n 1cos 33i 2e πππ=+=,对应点12⎛ ⎝,在第一象限.故选:A .8.【多选题】(2021·全国·模拟预测)已知复数z =(i 为虚数单位),则下列说法正确的是()A .复数z 在复平面内对应的点坐标为()sin 3cos3,sin 3cos3+-a =1-,4z a z z =+⋅=234a +=1a =±B .z 的虚部为C .2z z ⋅=D .z ⋅为纯虚数【答案】CD 【分析】根据复数的概念、共轭复数的概念、复数的几何意义以及四则运算法则即可求解.【详解】复数3cos3i sin 3cos3z =++-.因为334ππ<<,所以sin 3cos3304π⎛⎫+=+< ⎪⎝⎭,sin 3cos30->,所以原式()()sin 3cos3i sin 3cos3=-++-,所以选项A 错误;复数z B错误;222z z ⋅=+=,所以选项C 正确;z ⋅=()i 1sin 61sin 62i⋅=++-=,所以选项D 正确.故选:CD.9.【多选题】(2021·河北武强中学高三月考)已知复数cos isin z θθ=+(其中i 为虚数单位),下列说法正确的是( )A .1z z ⋅=B .1z z+为实数C .若83πθ=,则复数z 在复平面上对应的点落在第一象限D .若(0,)θπ∈,复数z 是纯虚数,则2πθ=【答案】ABD 【分析】对选项A ,根据计算1z z ⋅=即可判断A 正确,对选项B ,根据12cos z zθ+=即可判断B 正确,对选项C ,根据88cosisin 33z ππ=+在复平面对应的点落在第二象限,即可判断C 错误,对选项D ,根据z 是纯虚数得到2πθ=即可判断D 正确.【详解】对选项A ,()()()2222cos isin cos isin cos isin cos sin 1z z θθθθθθθθ⋅=+-=-=+=,故A 正确.对选项B ,因为11cos isin cos isin z z θθθθ+=+++()()cos isin cos isin cos isin cos isin θθθθθθθθ-=+++-cos isin cos isin 2cos θθθθθ=++-=,所以1z z+为实数.故B 正确.对选项C ,因为83πθ=为第二象限角,所以8cos03π<,8sin 03π>,所以88cos isin 33z ππ=+在复平面对应的点落在第二象限.故C 错误.对选项D ,复数z 是纯虚数,则cos 0sin 0θθ=⎧⎨≠⎩,又因为(0,)θπ∈,所以2πθ=,故D 正确.故选:ABD10.(2021·福建·厦门一中模拟预测)在复平面内,复数(,)z a bi a b R =+∈对应向量OZ(O为坐标原点),设||OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则(cos sin )z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:1111(cos sin )z r i θθ=+,2222(cos sin )z r i θθ=+,则12121212[cos()sin()]z z rr i θθθθ=+++,由棣莫弗定理可以推导出复数乘方公式:[(cos sin )](cos sin )n n r i r n i n θθθθ+=+,已知4)z i =,则||z =______;若复数ω满足()*10n n ω-=∈N ,则称复数ω为n 次单位根,若复数ω是6次单位根,且ω∉R ,请写出一个满足条件的ω=______.【答案】16 ()22cossin 1,2,4,566k k i k ππ+= 【分析】2(cos sin )66i i ππ+=+,则4222(cos sin )33z i ππ=+,再由||||z z =求解,由题意知61ω=,设cos sin i ωθθ=+,即可取一个符合题意的θ,即可得解.【详解】解: 2(cos sin )66i i ππ=+,∴4422)2(cos sin )33z i i ππ==+,则4||||216z z ===.由题意知61ω=,设cos sin i ωθθ=+,则6cos 6sin 61i ωθθ=+=,所以sin 60cos 61θθ=⎧⎨=⎩,又ω∉R ,所以sin 0θ≠,故可取3πθ=,则cossin33i ππω=+故答案为:16,cossin33i ππω=+(答案不唯一).1.(2021·江苏·高考真题)若复数z 满足()1i 3i z +=-,则z 的虚部等于( )A .4B .2C .-2D .-4【答案】C 【分析】利用复数的运算性质,化简得出12z i =-.【详解】若复数z 满足()1i 3i z +=-,则()()()()3i 1i 3i 12i 1i 1i 1i z ---===-++-,所以z 的虚部等于2-.故选:C.2.(2021·全国·高考真题)复数2i13i--在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】利用复数的除法可化简2i13i--,从而可求对应的点的位置.【详解】()()2i 13i 2i 55i 1i13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭,该点在第一象限,故选:A.3.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |=( )A .0B .1C D .2练真题【答案】D 【解析】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.4.(2020·全国高考真题(文))若312i i z =++,则||=z ( )A .0B .1CD .2【答案】C 【解析】因为31+21+21z i i i i i =+=-=+,所以z ==故选:C .5.(2019·全国高考真题(理))设z =-3+2i ,则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】由得则对应点(-3,-2)位于第三象限.故选C .6.(2018·江苏高考真题)若复数满足,其中i 是虚数单位,则的实部为________.【答案】2【解析】因为,则,则的实部为.z 32,z i =-+32,z i =--32,z i =--z i 12i z ⋅=+z i 12i z ⋅=+12i2i iz +==-z 2。
高考数学复数典型例题附答案

1, 已知复数求k的值。
的值。
解:解:,∴由的表示形式得k=2 即所求k=2 点评:点评:(i) 对于两个复数、,只要它们不全是实数,就不能比较大小,因此,、能够比较大小,均为实数。
均为实数。
比较大小,更无正负之分,因此,(ii)虚数不能与0比较大小,更无正负之分,因此,对于任意复数z,且R;且R。
2, 若方程有实根,求实数m的值,并求出此实根。
的值,并求出此实根。
解:设为该方程的实根,将其代入方程得由两复数相等的定义得,消去m得,故得当时得,原方程的实根为;当时得,原方程的实根为。
点评:对于虚系数一元方程的实根问题,一般解题思路为:设出实根——代入方程——利用两复数相等的充要条件求解。
充要条件求解。
3, 已知复数z满足,且z的对应点在第二象限,求a的取值范围。
的取值范围。
解:设,。
由得①对应点在第二象限,故有对应点在第二象限,故有②又由①得③由③得,即,∴,∴④于是由②,④得 ,即于是由②,④得再注意到a<0,故得即所求a的取值范围为点评:为利用导出关于a的不等式,再次利用①式:由①式中两复数相等切入,导出关于与a的关系式:此为解决这一问题的关键。
此外,这里对于有选择的局部代入以及与的相互转化,都展示了解题的灵活与技巧,请同学们注意领悟,借鉴。
4, 求同时满足下列两个条件的所有复数:(1);的实部与虚部都是整数。
(2)z的实部与虚部都是整数。
,则解:设,则由题意,∴∴y=0或(Ⅰ)当y=0时,,,∴由 得①∴由注意到当x<0时,;当x>0时,,此时①式无解。
此时①式无解。
(Ⅱ)当时,由得∴又这里x,y均为整数均为整数∴x=1,或x=3,,∴或于是综合(Ⅰ)(Ⅱ)得所求复数z=1+3i,1-3i,3+i,3-i. 5, (1)关于x的方程在复数集中的一个根为-2i,求a+b的值。
的值。
(2)若一元二次方程有虚根,且,试判断a,b,c所成数列的特征。
特征。
解:解:(1)解法一:解法一:由于∴由解:由题意得1z的两个方程R∴=122ab2|=2∴4=4=1=41515i151zz z=02z,下同解法一这些都是解决复数问题的常用方法2的最小值|=11)i133=1时,上式取等号zz 2200220001452225x x x x x æö+++++ç÷èø455225+222z 224(4)4z a -+132(4)413a -+222AC ABz z w ()(03313333z z yi y x x - 33333x )33设直线上任意一点(),P x y 经过变换后得到的()3,3Q x y x y +-仍然在该直线上仍然在该直线上 ()()()33313x y k x y b k y k x b Þ-=++Þ-+=-+当0b ¹时,方程组()3113k k kì-+=ïíï-=î无解无解 当0b =时,()231333230313或k k k k k k-+-=Þ+-=Þ=-Þ存在这样的直线,其方程为333或y x y x ==-16, 判断下列命题是否正确 (1) (1)若若C z Î, , 则则02³z (2) (2)若若,,21C z z Î且021>-z z,则21z z > (3) (3)若若b a >,则i b i a +>+17, 满足条件512=++-z i z 的点的轨迹是(的点的轨迹是( ))A.A.椭圆椭圆椭圆B. B. B.直线直线直线C. C. C.线段线段线段D. D. D.圆圆 18,.211<<-+=w w 是实数,且是虚数,设z z z.的实部的取值范围的值及求z z 解析解析 是虚数z yix yi x z z +++=+=\1)(1w 可设 i yx y y y x x x y x yi x yix)()(222222+-+++=+-++=,0¹y 是实数,且w 1,0112222=+=+-\y x y x 即 ,1=\zx 2=w 此时22121<<-<<-x 得由w)1,21(,121-<<-\的实部的范围是即z x圆锥曲线圆锥曲线一、在椭圆中一般以选择题或填空题的形式考查考生对椭圆的两个定义、焦点坐标、准线方程等基础知识的掌握情况;以解答题的形式考查考生在求椭圆的方程、直线与椭圆的位置关系等涉及分析、探求的数学思想的掌握情况.数学思想的掌握情况.例1.从集合{1,2,3,,11,11}} 中任意取两个元素作为椭圆22221x y m n+=方程中的m 和n ,则能组成落在矩形区域(){},|||1111,,||9B x y x y =<<内的椭圆的个数是(内的椭圆的个数是( )A 、43B 43 B、、72C 72 C、、86D 、90解:解:根据题意,根据题意,m 是不大于10的正整数、n 是不大于8的正整数.的正整数.但是当但是当m n =时22221x y m n +=是圆而不是椭圆.先确定n ,n 有8种可能,对每一个确定的n ,m 有1019-=种可能.故满足条件的椭圆有8972´=个.本题答案选B .例2.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,则1234567PF P F P F P F P F P F P F ++++++=______________.. 解:如图,根据椭圆的对称性知,117111122PF P F PF PF a +=+=, 同理其余两对的和也是2a ,又41P F a =,∴1234567735PF P F P F P F P F P F P F a ++++++== 例3.如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(Ⅰ)求在0k =,01b <<的条件下,S 的最大值;的最大值;(Ⅱ)当2AB =,1S =时,求直线AB 的方程.的方程. 解:(Ⅰ)设A 1()x b ,,B 2()x b ,,由2214x b +=,解得21221xb =±-,,所以1212S b x x =- 2222111b b b b =-£+-= .当且仅当22b =时,S 取到最大值1. (Ⅱ)由2214y kx bx y =+ìïí+=ïî,得2221()2104k x kbx b +++-=,2241k b D =-+① 2121AB k x x =+- 2222411214k b k k -+=+=+.②.②AyxOB例3图设O 到AB 的距离为d ,则21Sd AB ==,又因为21b d k=+, 所以221b k =+,代入②式并整理,得42104k k -+=, 解得212k =,232b =,代入①式检验,0D >,故直线AB 的方程是的方程是 2622y x =+或2622y x =-或2622y x =-+,或2622y x =--.点评:本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.方法和综合解题能力.二、在双曲线中常以一道选择题或填空题的形式考查双曲线的两个定义、焦点坐标、准线方程以及渐近线方程等基础知识;解答题中往往综合性较强,在知识的交汇点出题,对双曲线的基础知识、解析几何的基本技能和基本方法进行考查.的基本技能和基本方法进行考查.例4.已知双曲线22221x y a b-=(0,0)a b >>的右焦点为F ,右准线与一条渐近线交于点A ,OAFD 的面积为22a (O 为原点),则两条渐近线的夹角为(,则两条渐近线的夹角为( )A .30º.30ºB .45º.45ºC .60º.60ºD .90º.90º解:解:D D .双曲线222221(0,0)(,0),x y a a b F c x abc-=>>=的焦点右准线方程,x ab y =渐近线,则),(2c ab c a A ,所以2212a c ab c S OAF =´´=D ,求得a b =,所以双曲线为等轴双曲线,则两条渐进线夹角为90°,故选D .点评:本题考查双曲线中焦距,本题考查双曲线中焦距,准线方程,准线方程,准线方程,渐近线方程,渐近线方程,渐近线方程,三角形面积,三角形面积,三角形面积,渐近线夹角等知识的综合运用.渐近线夹角等知识的综合运用.例5. P 是双曲线221916x y -=的右支上一点,M、N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为(的最大值为( ))A. 6B.7C.8D.9解:设双曲线的两个焦点分别是1(5,0)F -与2(5,0)F ,则这两点正好是两圆的圆心,当且仅当点P 与M 、1F 三点共线以及P 与N 、2F 三点共线时所求的值最大,此时三点共线时所求的值最大,此时12(2)(1)1019PM PN PF PF -=---=-=,故选B .例例6.已知双曲线222x y -=的左、的左、右焦点分别为右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.点.(Ⅰ)若动点M 满足1111F M F A F B FO=++(其中O 为坐标原点),求点M 的轨迹方程;的轨迹方程;(Ⅱ)在x 轴上是否存在定点C ,使CA ·CB为常数?若存在,求出点C 的坐标;若不存在,请说明理由.明理由.解:由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.(Ⅰ)设()M x y ,,则则1(2)F M x y =+ ,,111(2)F A x y =+,, 1221(2)(20)F B x y FO =+= ,,,,由1111F M F A F B FO =++得121226x x x y y y +=++ìí=+î,即12124x x x y y y +=-ìí+=î,,于是AB 的中点坐标为422x y -æöç÷èø,. 当AB 不与x 轴垂直时,121224822yy y yxx x x-==----,即1212()8y y y x x x -=--.又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=.当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程.,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=.(Ⅱ)假设在x 轴上存在定点(0)C m ,,使CA CB为常数.为常数.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-¹±. 代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是21212()()(2)(2)CA CB x m x m k x x =--+--22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++--222222(12)2442(12)11m k mm m m k k -+-=+=-++--.因为CA CB是与k 无关的常数,所以440m -=,即1m =,此时CA CB =1-. 当AB 与x 轴垂直时,点A B ,的坐标可分别设为(22),,(22)-,,此时(12)(12)1CA CB =-=-,,.故在x 轴上存在定点(10)C ,,使CA CB 为常数.为常数.三、抛物线是历年高考的重点,在高考中除了考查抛物线的定义、标准方程、几何性质外,还常常与函数问题、应用问题结合起来进行考查,难度往往是中等.函数问题、应用问题结合起来进行考查,难度往往是中等.例例7.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是(的纵坐标是( )A .1716 B .1516 C .78D .0 解:由题意抛物线为:y x 412=,则焦点为1(0,)16F ,准线为:116y =-;由抛物线上的点00(,)M x y 到焦点的距离与到准线的距离相等,推得:16150=y,即M 点的纵坐标为1516,故选B .例8.已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(0)l >.过A 、B 两点分别作抛物线的切线,设其交点为M.两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明FM AB为定值;为定值;(Ⅱ)设△ABM 的面积为S ,写出()S f l =的表达式,并求S 的最小值.的最小值.解:(Ⅰ)由已知条件,得(0,1)F ,0l >.设11(,)A x y ,22(,)B x y .由AF →=λFB →, 即得1122(,1)(,1)x y x y l --=-,îïíïì-x 1=λx 2 ①①1-y 1=λ(y 2-1) 1) ②② 将①式两边平方并把y 1=14x 12,y 2=14x 22代入得y 1=λ2y 2 ③③ 解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-=-44λy 2=-=-44,抛物线方程为y =14x 2,求导得y ′=12x .所以过抛物线上A 、B 两点的切线方程分别是两点的切线方程分别是y =12x 1(x (x--x 1)+y 1,y =12x 2(x (x--x 2)+y 2,即y =12x 1x -14x 12,y =12x 2x -14x 22. 解出两条切线的交点M 的坐标为的坐标为((x 1+x 22,x 1x 24)=(x 1+x 22,-,-1)1)1)..所以FM →·AB →=(x 1+x 22,-,-2)2)2)··(x 2-x 1,y 2-y 1)=12(x 22-x 12)-2(14x 22-14x 12)=0所以FM →·AB →为定值,其值为0.(Ⅱ)由(Ⅰ)知在△(Ⅱ)由(Ⅰ)知在△ABM ABM 中,中,FM FM FM⊥⊥AB AB,因而,因而S =12|AB||FM||AB||FM|..|FM||FM|==(x 1+x 22)2+(-2)2=14x 12+14x 22+12x 1x 2+4=y 1+y 2+12×(-4)4)++4=λ+1λ+2=λ+1λ.++λ+λ)=|AB||FM||AB||FM|=(λ+λ)λ+1λ≥2m ÷ø,m+=m +=2my -,2my -,211-+122y y +-24m - Oyx1 1- l FP B QMFO Axyyy P BOA 1d 2d2q解:(Ⅰ)在P AB △中,2AB =,即222121222cos2d d d d q =+-,2212124()4sin d d d d q =-+,即2121244sin 212d d d d q l -=-=-<(常数), 点P 的轨迹C 是以A B ,为焦点,实轴长221a l =-的双曲线.方程为:2211x y l l -=-.(Ⅱ)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即21115110112l l ll l -±-=Þ+-=Þ=-,因为01l <<,所以512l -=.②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x l l ì-=ï-íï=-î得:2222(1)2(1)(1)()k x k x k l l l l l éù--+---+=ëû,由题意知:2(1)0k l l éù--¹ëû,所以21222(1)(1)k x x k l l l --+=--,2122(1)()(1)k x x k l l l l --+=--.于是:22212122(1)(1)(1)k y y k x x k l l l =--=--. 因为0OM ON = ,且M N ,在双曲线右支上,所以在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x l l l l l l l l l l l l l l l -ì+=ì-ì=ï>-ïïï+-+>ÞÞÞ<<+--íííïïï>+->>îîï-î. 由①②知,51223l -£<.。
高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。
高考数学《复数》真题练习含答案

高考数学《复数》真题练习含答案一、选择题1.[2024·新课标Ⅰ卷]若z z -1=1+i ,则z =( ) A .-1-i B .-1+iC .1-iD .1+i答案:C解析:由z z -1 =1+i ,可得z -1+1z -1 =1+i ,即1+1z -1 =1+i ,所以1z -1=i ,所以z -1=1i=-i ,所以z =1-i ,故选C. 2.[2024·新课标Ⅱ卷]已知z =-1-i ,则|z |=( )A .0B .1C .2D .2答案:C解析:由z =-1-i ,得|z |=(-1)2+(-1)2 =2 .故选C.3.[2023·新课标Ⅱ卷]在复平面内,(1+3i)(3-i)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:因为(1+3i)(3-i)=3-i +9i -3i 2=6+8i ,所以该复数在复平面内对应的点为(6,8),位于第一象限,故选A.4.[2023·新课标Ⅰ卷]已知z =1-i 2+2i,则z -z - =( ) A .-i B .iC .0D .1答案:A解析:因为z =1-i 2+2i =(1-i )22(1+i )(1-i ) =-12 i ,所以z - =12 i ,所以z -z - =-12 i -12i =-i.故选A. 5.|2+i 2+2i 3|=( )A .1B .2C .5D .5答案:C解析:|2+i 2+2i 3|=|2-1-2i|=|1-2i|=5 .故选C.6.设z =2+i 1+i 2+i5 ,则z - =( ) A .1-2i B .1+2iC .2-iD .2+i答案:B解析:z =2+i 1+i 2+i 5 =2+i 1-1+i =-i ()2+i -i 2 =1-2i ,所以z - =1+2i.故选B.7.[2022·全国甲卷(理),1]若z =-1+3 i ,则z z z --1=( ) A .-1+3 i B .-1-3 iC .-13 +33 iD .-13 -33i 答案:C解析:因为z =-1+3 i ,所以z z z --1=-1+3i (-1+3i )(-1-3i )-1 =-1+3i 1+3-1 =-13 +33i.故选C. 8.[2023·全国甲卷(文)]5(1+i 3)(2+i )(2-i )=( ) A .-1 B .1C .1-iD .1+i答案:C解析:由题意知,5(1+i 3)(2+i )(2-i ) =5(1-i )22-i2 =5(1-i )5 =1-i ,故选C. 9.(多选)[2024·山东菏泽期中]已知复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位),下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .|z |=cos θC .z ·z - =1D .z +1z为实数 答案:CD解析:复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位), 复数z 在复平面上对应的点(cos θ,sin θ)不可能落在第二象限,所以A 不正确; |z |=cos 2θ+sin 2θ =1,所以B 不正确;z ·z - =(cos θ+isin θ)(cos θ-isin θ)=cos 2θ+sin 2θ=1,所以C 正确;z +1z =cos θ+isin θ+1cos θ+isin θ=cos θ+isin θ+cos θ-isin θ=2cos θ为实数,所以D 正确.二、填空题10.若a +b i i(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________. 答案:-7解析:a +b i i =i (a +b i )i 2 =b -a i ,(2-i)2=3-4i ,因为这两个复数互为共轭复数,所以b =3,a =-4,所以a -b =-4-3=-7.11.i 是虚数单位,复数6+7i 1+2i=________. 答案:4-i解析:6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=6-12i +7i +145 =20-5i 5=4-i. 12.设复数z 1,z 2 满足|z 1|=|z 2|=2,z 1+z 2=3 +i ,则|z 1-z 2|=________. 答案:23解析:设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则a 2+b 2=4,c 2+d 2=4,又z 1+z 2=(a +c )+(b +d )i =3 +i ,∴a +c =3 ,b +d =1,则(a +c )2+(b +d )2=a 2+c 2+b 2+d 2+2ac +2bd =4,∴8+2ac +2bd =4,即2ac +2bd =-4,∴|z 1-z 2|=(a -c )2+(b -d )2 =a 2+b 2+c 2+d 2-(2ac +2bd ) =8-(-4) =23 .[能力提升] 13.(多选)[2024·九省联考]已知复数z ,w 均不为0,则( )A .z 2=|z |2B .z z - =z 2|z |2C .z -w =z - -w -D .⎪⎪⎪⎪z w =||z ||w 答案:BCD解析:设z =a +b i(a ,b ∈R ),w =c +d i(c ,d ∈R );对A :z 2=(a +b i)2=a 2+2ab i -b 2=a 2-b 2+2ab i ,|z |2=(a 2+b 2 )2=a 2+b 2,故A 错误;对B: z z - =z 2z -·z ,又z - ·z =||z 2,即有z z - =z 2|z |2 ,故B 正确; 对C :z -w =a +b i -c -d i =a -c +(b -d )i ,则z -w =a -c -(b -d )i ,z - =a -b i ,w -=c -d i ,则z - -w - =a -b i -c +d i =a -c -(b -d )i ,即有z -w =z - -w - ,故C 正确; 对D :⎪⎪⎪⎪z w =⎪⎪⎪⎪⎪⎪a +b i c +d i =⎪⎪⎪⎪⎪⎪(a +b i )(c -d i )(c +d i )(c -d i ) =⎪⎪⎪⎪⎪⎪ac +bd -(ad -bc )i c 2+d 2 =(ac +bd c 2+d 2)2+(ad -bc c 2+d 2)2 =a 2c 2+2abcd +b 2d 2+a 2d 2-2abcd +b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2c 2+d 2 ,||z ||w =a 2+b 2c 2+d2 =a 2+b 2×c 2+d 2c 2+d 2 =(a 2+b 2)(c 2+d 2)c 2+d 2 =a 2c 2+b 2c 2+a 2d 2+b 2d 2c 2+d 2 ,故⎪⎪⎪⎪z w =||z ||w ,故D 正确.故选BCD. 14.[2022·全国乙卷(理),2]已知z =1-2i ,且z +a z +b =0,其中a ,b 为实数,则( )A .a =1,b =-2B .a =-1,b =2C .a =1,b =2D .a =-1,b =-2答案:A解析:由z =1-2i 可知z - =1+2i.由z +a z - +b =0,得1-2i +a (1+2i)+b =1+a +b+(2a -2)i =0.根据复数相等,得⎩⎪⎨⎪⎧1+a +b =0,2a -2=0, 解得⎩⎪⎨⎪⎧a =1,b =-2.故选A. 15.[2023·全国甲卷(理)]设a ∈R ,(a +i)(1-a i)=2,则a =( )A .-2B .-1C .1D .2答案:C解析:∵(a +i)(1-a i)=a +i -a 2i -a i 2=2a +(1-a 2)i =2,∴2a =2且1-a 2=0,解得a =1,故选C.16.已知z (1+i)=1+a i ,i 为虚数单位,若z 为纯虚数,则实数a =________. 答案:-1解析:方法一 因为z (1+i)=1+a i ,所以z =1+a i 1+i =(1+a i )(1-i )(1+i )(1-i )=(1+a )+(a -1)i 2,因为z 为纯虚数, 所以1+a 2 =0且a -12≠0,解得a =-1. 方法二 因为z 为纯虚数,所以可设z =b i(b ∈R ,且b ≠0),则z (1+i)=1+a i ,即b i(1+i)=1+a i ,所以-b +b i=1+a i ,所以⎩⎪⎨⎪⎧-b =1b =a ,解得a =b =-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考复数专题及答案 The pony was revised in January 2021复数专题及答案(一)1.【2015高考新课标2,理2】若a 为实数且(2)(2)4ai a i i +-=-,则a =( )A .1-B .0C .1D .2【答案】B【解析】由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B .【考点定位】复数的运算.【名师点睛】本题考查复数的运算,要利用复数相等列方程求解,属于基础题.2.【2015高考四川,理2】设i 是虚数单位,则复数32i i-( ) (A )-i (B )-3i (C )i. (D )3i【答案】C【解析】32222i i i i i i i i-=--=-+=,选C. 【考点定位】复数的基本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.3.【2015高考广东,理2】若复数()32z i i =- ( i 是虚数单位 ),则z =( )A .32i -B .32i +C .23i +D .23i -【答案】D .【解析】因为()3223z i i i =-=+,所以z =23i -,故选D .【考点定位】复数的基本运算,共轭复数的概念.【名师点睛】本题主要考查复数的乘法运算,共轭复数的概念和运算求解能力,属于容易题;复数的乘法运算应该是简单易解,但学生容易忘记和混淆共轭复数的概念,z a bi =+的共轭复数为z a bi =-.4.【2015高考新课标1,理1】设复数z 满足11z z +-=i ,则|z|=( )(A )1 (B (C (D )2【答案】A 【解析】由11z i z +=-得,11i z i -+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 【考点定位】本题主要考查复数的运算和复数的模等.【名师点睛】本题将方程思想与复数的运算和复数的模结合起来考查,试题设计思路新颖,本题解题思路为利用方程思想和复数的运算法则求出复数z ,再利用复数的模公式求出|z|,本题属于基础题,注意运算的准确性.5.【2015高考北京,理1】复数()i 2i -=( )A .12i +B .12i -C .12i -+D .12i --【答案】A考点定位:本题考查复数运算,运用复数的乘法运算方法进行计算,注意21i =-.【名师点睛】本题考查复数的乘法运算,本题属于基础题,数的概念的扩充部分主要知识点有:复数的概念、分类,复数的几何意义、复数的运算,特别是复数的乘法与除法运算,运算时注意21i =-,注意运算的准确性,近几年高考主要考查复数的乘法、除法,求复数的模、复数的虚部、复数在复平面内对应的点的位置等.6.【2015高考湖北,理1】 i 为虚数单位,607i 的共轭复数....为( ) A .i B .i - C .1 D .1-【答案】A【解析】i i i i -=⋅=⨯31514607,所以607i 的共轭复数....为i ,选A . 【考点定位】共轭复数.【名师点睛】复数中,i 是虚数单位,24142434111()n n n n i i i i i i i n +++=-==-=-=∈Z ;,,,7.【2015高考山东,理2】若复数z 满足1z i i=-,其中i 为虚数为单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+【答案】A 【解析】因为1z i i=-,所以,()11z i i i =-=+ ,所以,1z i =- 故选:A.【考点定位】复数的概念与运算.【名师点睛】本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解.本题属于基础题,注意运算的准确性.8.【2015高考安徽,理1】设i是虚数单位,则复数21ii-在复平面内所对应的点位于()(A)第一象限(B)第二象限(C)第三象限(D)第四象限【答案】B【解析】由题意22(1)2211(1)(1)2i i i iii i i+-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,故选B.【考点定位】1.复数的运算;2.复数的几何意义.【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,复数z a bi=+在复平面内一一对应的点为(,)Z a b.9.【2015高考重庆,理11】设复数a+bi(a,b∈R a+bi)(a-bi)=________.【答案】3【解析】由a bi +==223a b +=,所以22()()3a bi a bi a b +-=+=.【考点定位】复数的运算.【名师点晴】复数的考查核心是代数形式的四则运算,即使是概念的考查也需要相应的运算支持.本题首先根据复数模的定义得a bi +=,复数相乘可根据平方差公式求得()()a bi a bi +-22()a bi =-22a b =+,也可根据共轭复数的性质得()()a bi a bi +-22a b =+.10.【2015高考天津,理9】i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .【答案】2-【解析】()()()12212i a i a a i -+=++-是纯虚数,所以20a +=,即2a =-.【考点定位】复数相关概念与复数的运算.【名师点睛】本题主要考查复数相关概念与复数的运算.先进行复数的乘法运算,再利用纯虚数的概念可求结果,是容易题.11.【2015江苏高考,3】设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.【解析】22|||34|5||5||z i z z =+=⇒=⇒=【考点定位】复数的模【名师点晴】在处理复数相等的问题时,一般将问题中涉及的两个复数均化成一般形式,利用复数相等的充要条件“实部相等,虚部相等”进行求解.本题涉及复数的模,利用复数模的性质求解就比较简便:2211121222||||||||||||.||z z z z z z z z z z ==⋅=,, 12.【2015高考湖南,理1】已知()211i i z -=+(i 为虚数单位),则复数z =( )A.1i +B.1i -C.1i -+D.1i --【答案】D.【考点定位】复数的计算.【名师点睛】本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代数形式四则运算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数的乘法则是按多项式的乘法法则进行处理.13.【2015高考上海,理2】若复数z 满足31z z i +=+,其中i 为虚数单位,则z = .【答案】1142i + 【解析】设(,)z a bi a b R =+∈,则113()1412142a bi a bi i ab z i ++-=+⇒==⇒=+且 【考点定位】复数相等,共轭复数【名师点睛】研究复数问题一般将其设为(,)z a bi a b R =+∈形式,利用复数相等充要条件:实部与实部,虚部与虚部分别对应相等,将复数相等问题转化为实数问题:解对应方程组问题.复数问题实数化转化过程中,需明确概念,如(,)z a bi a b R =+∈的共轭复数为(,)z a bi a b R =-∈,复数加法为实部与实部,虚部与虚部分别对应相加.【2015高考上海,理15】设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】B【解析】若1z 、2z 皆是实数,则12z z -一定不是虚数,因此当12z z -是虚数时,则“1z 、2z 中至少有一个数是虚数”成立,即必要性成立;当1z 、2z 中至少有一个数是虚数,12z z -不一定是虚数,如12z z i ==,即充分性不成立,选B.【考点定位】复数概念,充要关系【名师点睛】形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.判断概念必须从其定义出发,不可想当然.复数专题及答案(二)一、选择题1.(2010·全国Ⅰ理)复数3+2i2-3i=( )A.i B.-i C.12-13i D.12+13i [答案] A[解析] 3+2i2-3i=(3+2i)(2+3i)(2-3i)(2+3i)=6+9i+4i-613=i.2.(2010·北京文)在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i[答案] C[解析] 由题意知A(6,5),B(-2,3),AB中点C(x,y),则x=6-22=2,y=5+32=4,∴点C对应的复数为2+4i,故选C.3.若复数(m2-3m-4)+(m2-5m-6)i表示的点在虚轴上,则实数m的值是( ) A.-1B.4C.-1和4D.-1和6[答案] C[解析] 由m2-3m-4=0得m=4或-1,故选C.[点评] 复数z=a+bi(a、b∈R)对应点在虚轴上和z为纯虚数应加以区别.虚轴上包括原点(参见教材104页的定义),切勿错误的以为虚轴不包括原点.4.(文)已知复数z=11+i,则z-·i在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限[答案] B[解析] z=1-i2,z-=12+i2,z-·i=-12+12i.实数-12,虚部12,对应点⎝⎛⎭⎪⎫-12,12在第二象限,故选B.(理)复数z在复平面上对应的点在单位圆上,则复数z2+1z( )A.是纯虚数B.是虚数但不是纯虚数C.是实数D.只能是零[答案] C[解析] 解法1:∵z的对应点P在单位圆上,∴可设P(cosθ,sinθ),∴z=cosθ+i sinθ.则z2+1z=cos2θ+i sin2θ+1cosθ+i sinθ=2cos2θ+2i sinθcosθcosθ+i sinθ=2cosθ为实数.解法2:设z=a+bi(a、b∈R),∵z的对应点在单位圆上,∴a2+b2=1,∴(a-bi)(a+bi)=a2+b2=1,∴z2+1z=z+1z=(a+bi)+(a-bi)=2a∈R.5.(2010·广州市)复数(3i-1)i的共轭复数....是( )A.-3+iB.-3-iC.3+iD.3-i[答案] A[解析] (3i-1)i=-3-i,其共轭复数为-3+i.6.(2010·湖南衡阳一中)已知x,y∈R,i是虚数单位,且(x-1)i-y=2+i,则(1+i)x-y的值为( )A.-4B.4C.-1D.1[答案] A[解析] 由(x-1)i-y=2+i得,x=2,y=-2,所以(1+i)x-y=(1+i)4=(2i)2=-4,故选A.7.(文)(2010·吉林市质检)复数z1=3+i,z2=1-i,则z=z1·z2在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限[答案] D[解析] ∵z=z1z2=(3+i)(1-i)=4-2i,∴选D.(理)现定义:e iθ=cosθ+isinθ,其中i是虚数单位,e为自然对数的底,θ∈R,且实数指数幂的运算性质对e iθ都适用,若a=C50cos5θ-C52cos3θsin2θ+C54cosθsin4θ,b=C51cos4θsinθ-C53cos2θsin3θ+C55sin5θ,那么复数a+b i等于( )A.cos5θ+isin5θB.cos5θ-isin5θC.sin5θ+icos5θD.sin5θ-icos5θ[解析] a +b i =C 50cos 5θ+iC 51cos 4θsin θ+i 2C 52cos 3θsin 2θ+i 3C 53cos 2θsin 3θ+i 4C 54cos θsin 4θ+i 5C 55sin 5θ=(cos θ+isin θ)5=(e i θ)5=e i (5θ)=cos5θ+isin5θ,选A.8.(文)(2010·安徽合肥市质检)已知复数a =3+2i ,b =4+xi (其中i 为虚数单位),若复数a b∈R ,则实数x 的值为( )A .-6B .6D .-83[答案] C[解析]a b =3+2i 4+xi =(3+2i )(4-xi )16+x 2=12+2x 16+x 2+⎝ ⎛⎭⎪⎫8-3x 16+x 2 i ∈R ,∴8-3x 16+x 2=0,∴x =83. (理)(2010·山东邹平一中月考)设z =1-i (i 是虚数单位),则z 2+2z=( )A .-1-iB .-1+iD.1+i [答案] C[解析] ∵z=1-i,∴z2=-2i,2z=21-i=1+i,∴z2+2z=1-i,选C.9.(2010·山东聊城市模拟)在复平面内,复数21-i对应的点到直线y=x+1的距离是( )C.2D.22[答案] A[解析] ∵21-i=2(1+i)(1-i)(1+i)=1+i对应点为(1,1),它到直线x-y+1=0距离d=12=22,故选A.10.(文)(2010·山东临沂质检)设复数z满足关系式z+|z-|=2+i,则z等于( )A .-34+i-i+iD .-34-i[答案] C[解析] 由z =2-|z -|+i 知z 的虚部为1,设z =a +i (a ∈R ),则由条件知a =2-a 2+1,∴a =34,故选C.(理)(2010·马鞍山市质检)若复数z =a +i1-2i(a ∈R ,i 是虚数单位)是纯虚数,则|a +2i |等于( )A .2B .22C .4D .8[答案] B[解析] z =a +i 1-2i =(a +i )(1+2i )5=a -25+2a +15i 是纯虚数,∴⎩⎪⎨⎪⎧a -25=02a +15≠0,∴a =2,∴|a +2i |=|2+2i |=2 2.二、填空题11.规定运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若⎪⎪⎪⎪⎪⎪ z i -i 2=1-2i ,设i 为虚数单位,则复数z =________.[答案] 1-i[解析] 由已知可得⎪⎪⎪⎪⎪⎪zi -i2=2z +i 2=2z -1=1-2i ,∴z =1-i . 12.(2010·南京市调研)若复数z 1=a -i ,z 2=1+i (i 为虚数单位),且z 1·z 2为纯虚数,则实数a 的值为________.[答案] -1[解析] 因为z 1·z 2=(a -i )(1+i )=a +1+(a -1)i 为纯虚数,所以a =-1.13.(文)若a 是复数z 1=1+i2-i 的实部,b 是复数z 2=(1-i )3的虚部,则ab 等于________.[答案] -2 5[解析] ∵z1=1+i2-i=(1+i)(2+i)(2-i)(2+i)=15+35i,∴a=1 5 .又z2=(1-i)3=1-3i+3i2-i3=-2-2i,∴b=-2.于是,ab=-2 5 .(理)如果复数2-bi1+2i(i是虚数单位)的实数与虚部互为相反数,那么实数b等于________.[答案] -2 3[解析] 2-bi1+2i=2-bi1+2i·1-2i1-2i=2-2b5-b+45i,由复数的实数与虚数互为相反数得,2-2b5=b+45,解得b=-2 3 .14.(文)若复数z=sinα-i(1-cosα)是纯虚数,则α=________. [答案] (2k+1)π(k∈Z)[解析] 依题意,⎩⎨⎧sin α=01-cos α≠0,即⎩⎨⎧α=k πα≠2k π,所以α=(2k +1)π(k ∈Z ).[点评] 新课标教材把《复数》这一章进行了精简,不再要求复数的三角形式以及复杂的几何形式和性质;对于复数的模的要求很低,了解概念就行.主要考查复数的代数形式以及复数的四则运算,这是我们复习的重点,不要超过范围.(理)(2010·上海大同中学模考)设i 为虚数单位,复数z =(12+5i )(cos θ+i sin θ),若z ∈R ,则tan θ的值为________.[答案] -512[解析] z =(12cos θ-5sin θ)+(12sin θ+5cos θ)i ∈R ,∴12sin θ+5cos θ=0,∴tan θ=-512. 三、解答题15.(2010·江苏通州市调研)已知复数z =a 2-7a +6a +1+(a 2-5a -6)i (a ∈R ).试求实数a 分别为什么值时,z 分别为:(1)实数;(2)虚数;(3)纯虚数.[解析] (1)当z 为实数时,⎩⎨⎧a 2-5a -6=0a +1≠0,∴a =6,∴当a =6时,z 为实数.(2)当z 为虚数时,⎩⎨⎧a 2-5a -6≠0a +1≠0,∴a ≠-1且a ≠6,故当a ∈R ,a ≠-1且a ≠6时,z 为虚数.(3)当z 为纯虚数时,⎩⎨⎧a 2-5a -6≠0a 2-7a +6=0a +1≠0∴a =1,故a =1时,z 为纯虚数.16.(2010·上海徐汇区模拟)求满足⎪⎪⎪⎪⎪⎪z +1z -1=1且z +2z ∈R 的复数z .[解析] 设z =a +bi (a 、b ∈R ),由⎪⎪⎪⎪⎪⎪z +1z -1=1|z +1|=|z -1|, 由|(a +1)+bi |=|(a -1)+bi |,∴(a +1)2+b 2=(a -1)2+b 2,得a =0,∴z =bi ,又由bi +2bi∈R 得,b -2b=0b =±2,∴z =±2i .。