核磁共振谱(NMR)v5
核磁共振氢谱(NMR)

代谢物变化分析
通过比较不同生理状态下的氢谱数据,可以分析代谢产物的变化,从而研究疾病 、营养状况等对生物体的影响。
药物代谢动力学研究
药物代谢过程研究
氢谱可以用于研究药物在体内的代谢过 程,了解药物在体内的转化和排泄机制 。
反应机理研究
总结词
核磁共振氢谱在反应机理研究中具有重要应用,通过监测反 应过程中谱峰的变化,可以揭示反应的中间产物和反应路径 。
详细描述
核磁共振氢谱可以实时监测反应过程中氢原子所处的化学环 境变化,从而揭示反应的中间产物和反应路径。通过分析谱 峰的变化,可以推断出反应过程中各组分的生成和消耗情况 ,有助于深入理解反应机理。
催化剂活性位点研究
总结词
核磁共振氢谱在催化剂活性位点研究中具有独特的应用价值,通过分析催化剂表面吸附物种的谱峰特 征,可以揭示催化剂的活性位点和反应机制。
详细描述
核磁共振氢谱可以用来研究催化剂表面吸附物种的结构和性质。通过分析谱峰的位置和裂分情况,可 以推断出吸附物种所处的化学环境和与催化剂表面的相互作用关系。这些信息有助于揭示催化剂的活 性位点和反应机制,对于优化催化剂性能和提高催化反应效率具有重要意义。
重要信息。
生物医学
用于研究生物大分子的 结构和功能,为疾病诊
断和治疗提供依据。
02
核磁共振氢谱的基本原理
原子核的自旋与磁矩
原子核自旋
原子核具有自旋角动量,使得原子核 具有一定的磁矩。
磁矩与磁场相互作用
能级跃迁
当外加射频场能量与能级分裂相匹配 时,原子核发生能级跃迁,释放出共 振信号。
原子核磁矩在外部磁场中受到洛伦兹 力,产生能级分裂。
核磁共振谱(NMR)v5

• 核磁共振:p294 质子吸收电磁辐射的能量,从低能级跃迁至高能级。 条件——辐射所提供的能量恰好等于质子两种取向的能量差,
高能态
1
H E=hν
磁场 低能态
1
H
核磁共振谱图的表示方法
吸 收 强 度 低场
信号
若固定Ho ,改变υ ,叫扫频 固定υ ,改变Ho ,叫扫场 现多用扫场方法得到谱图 高场
分子吸收光谱的分类
• 转动光谱:吸收电磁辐射引起的转动能级的变化产生的光谱。 • 振动光谱: 吸收电磁辐射引起振动能级的变化产生的光谱。----红外 光谱。 • 电子光谱: 分子吸收电磁辐射使电子(主要是外层价电子)激发到较高 的能级所产生的吸收光谱。---- 紫外光谱。 • 质子磁共振谱:分子吸收电磁辐射使氢原子核激发到较高的能级所产 生的吸收光谱。
Hc
Hb O C
Ha CH2
Ha Hb Hc
CH2 C CH3
a H H C H b H C H
单峰 6 + 1=7 重峰 1 + 1= 重峰
c H C O CH2CH3 H
Hb (3+1)×(2+1) = 12 重峰
(4) 峰面积与氢原子数目
峰面积 (peak area) 用积分曲线表示峰面积。积分曲线的高度 与峰面积成正比关系。 例:乙醇 CH3CH2OH 三 组质子的积分曲线高度比为 3:2:1 对二甲苯的甲 基与苯环质子的积分曲线高度比为 3:2
② Hb受到3个Ha 的自旋偶合影响,Hb 裂分为四重峰:
a H H C H
b H C O CH2CH3 H
H。
低场 高场
∴ 质子Hb的共振吸收在图谱中出现了4次。即:Hb在三个Ha的 影响下,其信号分裂为四重峰。
核磁共振谱

在使用氘代试剂时,由于氘代度不会是100%,在谱图中常会出现残 留质子的吸收。在13C NMR谱中也会出现相应的吸收峰。在配制样品溶液 时,除考虑溶解度以外,还要考虑可能的溶剂峰干扰。必要时可以更换 溶剂,以检查某些峰是否被溶剂峰掩盖。 表3-3列出常用溶剂产生的溶剂峰的化学位移和裂分情况。
12
13
在60MHz仪器上,某一基团相对于TMS在60Hz处共振,则 其化学位移表示为: δ 所表示的是该吸收峰距原点的距离。其单位是ppm(百 万分之一),是核磁共振波谱技术中使用的无量纲单位。
16
核磁共振波谱和常用术语表示为:
大多数有机化合物的1H NMR信号出现在TMS的左侧,规定为正值; 少数化合物的信号出现在TMS右侧的高场区,用负号表示。 选用四甲基硅烷TMS作化学位移参比物质的原因是它的12个质子受 到硅原子的强屏蔽作用,在高场区出现一个尖锐的强峰,它在大多数 有机溶剂中易溶,呈现化学惰性;沸点低(26.5℃)因而样品易回收。 在氢和碳谱中都设为δ TMS=0。
11
在NMR谱测定时,多使用氘代试剂。在使用不同的氘代试剂和观测 谱宽时,需设置不同的观测偏置(如表3-2所列)。以使所有吸收峰出现在 谱图合适的位置上,并避免谱带的折叠。所谓谱带折叠是指观测谱宽设 置不够时,超过高场区域的峰会折叠到低场区域或超过低场区域的峰会 折叠到高场区域,干扰谱图的解析。
表3-2不同氘代试剂和谱宽时的观测偏置(KHz)(90MHz仪器)
3.2 饱和和弛豫
3.2.1 饱和
式(3-2) 表明,处于低能态和高能态核 的数目与能级差和温度有关。一般Δ E很小,约为10-6kJ.mol-1, 在1.41特斯拉磁场中,在室温下每一百万个原子核中处于低 能态的核仅比高能态的核多约6个(在较高的H0和低温下,这个 差值会增大)。 当受到适当频率的射频场照射时,原子核吸收能量,由 +1/2态跃迁到-1/2态,使n+减少而n-增加。当n+=n-时,吸收和 辐射能量相等。就不再有净吸收,核磁共振信号消失,这个 体系就处于饱和状态。 处于高能态的核可以通过某些途径把其多余的能量传递 给周围介质而重新回到低能态,这个过程叫做弛豫。 弛豫主要有自旋-晶格弛豫和自旋-自旋弛豫两种机制。
核磁共振波谱(NMR)

1.1.2 磁性原子核在外加磁场中的行为特性
核的自旋取向、 核的自旋取向、自旋取向数与能级状态
β
α
外 场 无 磁
0 H 在 磁 中 外 场
自旋取向数=2I+1 自旋取向数
m=I, I-1, ……-I.
∆E=2µH0 µ
9
核在能级间的定向分布及核跃迁
0 H 在 磁 中 外 场
通常在热力学平衡条件下,自旋核在两个能级间的定向分 布数目遵从Boltzmann分配定律,即低能态核的数目比高 能态的数目稍多一些。
19
2.1化学位移 2.1化学位移
意义? 意义? • 相对差值 与外加磁场 强度 H0 无关。 相对差值δ与外加磁场 无关。 用一台60 仪器, 例:① 用一台 MHZ 的 NMR 仪器,测得某质子共振时所需 射频场的频率比 TMS(四甲基硅烷)的高 120HZ。 (四甲基硅烷) 。
② 用一台 100MHZ 的 NMR 仪器,进行上述同样测试 仪器,
27
3)化学位移的影响因素 (3)分子内(间)氢键 分子内(
a. 分子内氢键:不受溶剂影响;b. 分子间氢键:受溶剂影响(浓度,温度等) 分子内氢键:不受溶剂影响; 分子间氢键:受溶剂影响(浓度,温度等)
10.93 HO O
OH 12.40
O
OH 9.70
28
小结:影响化学位移大小的因素 小结:
30
谱学知识介绍
sp2杂化碳上的质子化学位移范围: 杂化碳上的质子化学位移范围: a. 烯 烃 结构类型 环外双键 环内双键 末端双键 开链双键 末端连烯 一般连烯 α,β-不饱和酮 化学位移范围 4.4~4.9 4.4~ 5.3~5.9 5.3~ 4.5~5.2 4.5~ 5.3~5.8 5.3~ 4.4 4.8 α-H 5.3~5.6 5.3~ 6.5~ β-H 6.5~7.0
【2024版】核磁共振波谱法(NMR)

核磁共振波谱的测定
样品:纯度高,固体样品和粘度大液体样品必须溶解。
溶剂:氘代试剂(CDCl3,C6D6,CD3OD,CD3COCD3, C5D5N)
标准:四甲基硅烷 (CH3)4Si ,缩写:TMS 优点:信号简单,且在高场,其他信号在低场, 值为正值;沸
点低(26.5oC),利于回收样品;易溶于有机溶剂;化学惰性 实验方法:内标法、外标法
❖氢核在外磁场中的2个自旋状态,用自旋磁量子数ms表示。
E
ms= -
1 2
零磁场
ΔE
ΔE
=γ
h 2π
B0
ms= +
1 2
B0
B
B为外磁场强度,核的磁旋比γ是物质的特征常数。
核的回旋和核磁共振
当一个原子核的核磁 矩处于磁场BO中, 由于核自身的旋转, 而外磁场又力求它取 向于磁场方向,在这 两种力的作用下,核 会在自旋的同时绕外 磁场的方向进行回旋, 这种运动称为 Larmor进动。
讨论:
(1)磁场固定时( B0一定),不同的核具有不同的共振频率, 共振频率取决于核本身,大的核,发生共振所需的照射频率也大; 反之,则小。
(2)同样的核(一定),外加磁场B0越大,共振频率越大。 (3)若共振频率一定, 越大, B0越小。
例:外磁场B0=4.69T(特斯拉,法定计量单位) 1H 和13C的共振 频率为
2. I=1 或 I>0的原子核: I=1 : 2H,14N, I=3/2: 11B,35Cl,79Br,81Br I=5/2: 17O,127I
这类原子核的核电荷分布可看作一个椭圆体,电荷分布 不均匀,共振吸收复杂,研究应用较少;
3. I=1/2的原子核:1H,13C,19F,31P
有机化合物波谱解析第三章 核磁共振(NMR)

• 目的要求 • 1. 掌握核的能级跃迁与电子屏蔽效应的关系以及
影响化学位移的主要因素,能根据化学位移值初步 推断氢或碳核的类型 • 2. 掌握磁不等同的氢或碳核、1H-NMR谱裂分情况、 偶合常数
• 3. 掌握低级偶合中相邻基团的结构特征,并能初 步识别高级偶合系统
• 4. 掌握常见13C-NMR谱的类型及其特征 • 5. 熟悉发生核磁共振的必要条件及其用于有机化
合物结构测定的基本原理
• 6. 了解脉冲傅立叶变换核磁共振测定方法的原理 • 7. 了解1H-NMR及13C-NMR的测定条件以及简化图谱
的方法,并能综合应用图谱提供的各种信息初步判 断化合物的正确结构
主要内容
• 1. 核磁共振原理 • 2. 核磁共振仪器 • 3. 氢核磁共振(1H-NMR) • 碳核磁共振(13C-NMR) •
然而,要给出尖锐的NMR峰,以提高分 辨率,需要驰豫时间长,互相矛盾,最佳 半衰期范围在0.1-1秒,相应的谱线宽度为 1cps。
4)核的进动与核的共振
质子在外加磁场作用下,产生怎样的动力方式呢? E=μHB0
ΔE0
E=-μHB0 HB00 陀螺在与重力作用方向吸偏差时,就产生摇头动力, 称为进动。核磁矩在静磁场环境中围绕B0以ω角频 率进动,称之为拉摩尔(Larmor)进动.
• BN = B0 - ·B0
• BN = B0·(1 - ) • 氢核外围电子云密度的大小,与其相邻
原子或原子团的亲电能力有关,与化学 键 子 高 ·B的 云 场0亦类密;小C型度H;有大3-共关,O,振。·氢吸B如0核收大CH外出,3-围现共Si电振在,子吸低氢云收场核密出。外度现围小在电,
B0
二、产生核磁共振的必要条件
第27讲——核磁共振谱(NMR)

1、什么叫磁性原子核?有什么特性?
原子核
2原有、子一外的者磁质 为场量 奇的数 数作和 时用原,?子即序为数 11H
163C
19 9
F
162C 186O
3磁、性什原么子叫核共—振—跃有迁自?旋现象,能产生自旋磁矩H′
2、自旋磁矩与外磁场 的关系?
以氢核为例: 自旋产生的自 旋磁矩H′有两 种取向——
O-H N-H
③3000~2700
-C-H(饱和) O=C-H
⑤1850~1550
C=O
>1700(孤立) <1700(共轭)
核 磁 共 振 谱 (NMR)
√ 一、基本原理 氢谱——1HNMR 碳谱——13CNMR
NMR——在外磁场H0中,磁性原子核吸收某一频率
的电磁波,而产生的共振跃迁信号。
非磁性
s s dt dq
单峰—s;双峰—d;三峰—t;四峰—q;多峰—m
练习2:指出下列图中各峰的归属 有四种氢,产生四组吸收峰。
CH3-CH2-CH2-OH
t mt s
吸电作用—电子云密度 降低,屏蔽效应减弱, 共振吸收移向低场。
TMS
7重峰
自旋裂分。
练O-习H1:中下的列H物,质因中迅质速子交在
如果相邻C上,有n个等价的 1换HN,M一R般中不呈发现生几偶重合峰。?
质子,则信号裂分为(n+1) 个峰。
如果相邻C上,分别有n1 、 n2个不等价质子,则信号裂 分为(n1+1) (n2+1)个峰。
CH3–CCl3 CH3–CH3 CH2Cl–CHCl2 CH3–CHBr2
② 频率、H0不同,位移值也不同。
选择(CH3)4Si(TMS)为标准,δ= 0
nmr名词解释

NMR 名词解释核磁共振 (NMR) 是一种广泛应用于化学、物理和生物学领域的分析技术,利用核磁共振现象来获取分子的结构信息。
本文将介绍 NMR 技术的基本原理和相关名词,帮助读者更好地理解该技术。
下面是本店铺为大家精心编写的3篇《NMR 名词解释》,供大家借鉴与参考,希望对大家有所帮助。
《NMR 名词解释》篇1核磁共振 (NMR) 是一种非破坏性分析技术,可用于确定分子的结构和化学成分。
NMR 技术基于核磁共振现象,即原子核在外磁场作用下自旋产生的能量差异。
这种能量差异可以通过探测器检测到,并用于生成分子的信号谱。
信号谱中的峰表示分子中不同类型的原子核,峰的位置和强度与原子核的数量和环境有关。
以下是一些与 NMR 技术相关的常见名词:1. 核磁共振现象 (NMR phenomenon):指原子核在外磁场作用下自旋产生的能量差异。
2. 磁共振成像 (MRI):利用核磁共振现象生成图像的技术,广泛应用于医学诊断和生物学研究。
3. 核磁共振谱 (NMR spectrum):表示分子中不同类型的原子核及其数量和环境的信号谱。
4. 化学位移 (chemical shift):指核磁共振谱中峰的位置,表示原子核在外磁场中的能量差异。
5. 耦合常数 (coupling constant):指核磁共振谱中峰的强度,表示原子核之间的相互作用。
6. 磁场强度 (magnetic field strength):指外加磁场的强度,单位为特斯拉 (T)。
7. 核磁共振仪 (NMR instrument):用于实施核磁共振实验的设备,通常包括磁体、射频发生器、探测器和计算机等。
NMR 技术是一种非常有用的分析技术,可用于研究分子的结构和动力学,具有很高的精度和灵敏度。
《NMR 名词解释》篇2NMR 是核磁共振 (Nuclear Magnetic Resonance) 的缩写,是一种用于研究原子核和分子的物理实验技术。
NMR 利用核磁共振现象,通过在外加磁场下观测样品吸收和发射射频辐射的方式,来获取样品中核自旋的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a H H C H
b H C O CH2CH3 H
H。
高场Βιβλιοθήκη 低场第一种自旋组合:在外加磁中场中2个Hb的自旋方向相同,且磁矩的取向与 外加磁场一致,增强了磁场强度,于是Ha在较低外加磁场中即可发生共振(能 级的跃迁)而出现吸收峰。 第二种组合:在外加磁中场中2个Hb的自旋方向相反,对Ha周围的磁场强度 没有影响,因此对 Hb吸收峰的位置也就没有影响。 第三种组合: 2个Hb的自旋方向相同,且磁矩的取向与外加磁场相反,削弱 了磁场的强度,因此Ha在较高的外加磁场才发生能级的跃迁。
② Hb受到3个Ha 的自旋偶合影响,Hb 裂分为四重峰:
a H H C H
b H C O CH2CH3 H
H。
低场 高场
∴ 质子Hb的共振吸收在图谱中出现了4次。即:Hb在三个Ha的 影响下,其信号分裂为四重峰。
自旋偶合 —— 分子中邻近碳上的H之间自旋的相互影响。
峰裂分的条件 • 在核磁共振中,自旋偶合通常只在两个相邻碳上的质子之间发生; 一般来说,相邻碳上的不同种的氢才可发生偶合。 • 相邻碳上的同种的氢不发生偶合。 • 相间碳上的氢(H-C-C-C-H)不易发生偶合。
有机化学四大谱:
红外光谱(IR)(Infrared Spectroscopy) 紫外光谱(UV)(Ultraviolet Spectroscopy ) 核磁共振谱(NMR) (Nuclear Magnetic Resonance Spectroscopy ) 4. 质谱(MS)(Mass Spectroscopy ) 1. 2. 3.
2. 核磁共振谱(NMR)
50年代初广泛使用的红外光谱, 红外光谱能给出所含的官能团, 而60年代发展起来的核磁共振谱却有助于指出是什么化合物。现成 为测定有机化合物结构的重要手段。
主要内容
(1) 核磁共振原理简介 (2) 屏蔽效应和化学位移 (3) 峰的裂分和自旋偶合 (4) 峰面积与氢原子数目
小结:谱图分析
复习:分子吸收光谱
吸收光谱的产生
•分子吸收电磁辐射,并获得能量。分子就由较低的能级E1跃迁到 较高的能级E2。 •分子对能量吸收的选择性 —— 吸收光子的能量必须与分子跃迁前 后的能级差恰好相等,否则不能被吸收,它们是量子化的。 ∆E = h γ = E2-E1
分子吸收光谱的分类
no shielded nuclei
感应磁场
质子
+
/ H
屏蔽区
shilded nuclei
低场
高场
H0
质子周围电子云密度↑ ,感应磁场↑ ,屏蔽效应↑在高场呈现共振信号 质子周围电子云密度↓ ,感应磁场↓ ,屏蔽效应↓在低场呈现共振信号
化学位移-----
有机分子中与不同基团相连的氢质子(H)周围电子云密度不一样,在外加 磁场中产生的抗磁的感应磁场大小不同,因此,发生共振所需的外加磁场 强度或射电频率也就不同,它们的共振信号就分别在谱的不同位置出现。 质子信号上的这种差异叫做化学位移。
例如:ClCH2CCl2CH3 (1,2,2-三氯丙烷)在图谱上就是两个吸收峰。
质子周围电 子云密度越 高,屏蔽作 用就越大, 该质子信号 就要在越高 的磁场下获 得。
低场
高场
化学位移值的定义
δ =
υ 样品
υ TMS
υ 仪器所用频率
106 ×
标准化合物 TMS的δ值为0。
化学位移值的大小用一个标准化合物为原点,测出峰与原点的距离,就 是该峰的化学位移,一般以(CH3)4Si(TMS)为标准化合物,以它的质子 峰为零点。
•为什么要这样定义δ值? • 不同频率的核磁共振仪上测得的化学位移δ值相同.
• δ值与屏蔽作用成反比,δ值越大表明H所受到屏蔽作用越小。吸收峰出现 在低场。
质子周围电子云密度↑ ,感应磁场↑ ,屏蔽效应↑在高场共振,δ值 质子周围电子云密度↓ ,感应磁场↓ ,屏蔽效应↓在低场共振,δ值
各种典型的质子化学位移
• 核磁共振:p294 质子吸收电磁辐射的能量,从低能级跃迁至高能级。 条件——辐射所提供的能量恰好等于质子两种取向的能量差,
高能态
1
H E=hν
磁场 低能态
1
H
核磁共振谱图的表示方法
吸 收 强 度 低场
信号
若固定Ho ,改变υ ,叫扫频 固定υ ,改变Ho ,叫扫场 现多用扫场方法得到谱图 高场
应用高分辨的现代核磁共振仪可知,乙醚的谱图的两个单峰(低分辨) 事实是分裂的四重峰和三重峰 ----- 峰的裂分现象。
峰的裂分现象---同一类质子的吸收峰呈现分裂峰的现象。
?
解释--- 峰的裂分
相邻两个碳上的质子之间自旋相互干扰而引起峰发生裂分,这种相互 干扰称为自旋偶合。 ① Ha受到2个Hb 的自旋偶合影响,Ha 裂分为三重峰: ∴ 质子 Ha的共振 吸收在图 谱中出现 了三次。
S
• 原子核自旋产生磁矩
核磁共振
• I>0的原子核在自旋中会产生磁场,把这样带有磁性的核放到外 磁场中,核自旋对外磁场可以有2I+1种取向.
•氢原子核的I=1/2, 因此只有两种取向: 与外磁场同向(低能态) 与外磁场反向(高能态)。
N
S H
外磁场不存在时 自旋磁矩的取向
外磁场存在时 自旋磁矩的取向
Hc
Hb O C
Ha CH2
Ha Hb Hc
CH2 C CH3
a H H C H b H C H
单峰 6 + 1=7 重峰 1 + 1= 重峰
c H C O CH2CH3 H
Hb (3+1)×(2+1) = 12 重峰
(4) 峰面积与氢原子数目
峰面积 (peak area) 用积分曲线表示峰面积。积分曲线的高度 与峰面积成正比关系。 例:乙醇 CH3CH2OH 三 组质子的积分曲线高度比为 3:2:1 对二甲苯的甲 基与苯环质子的积分曲线高度比为 3:2
Hb Ha H C H C H O R H Hb C H O Ha C H R
H a 与 H b可偶合裂分
a H Br C Br b H C Br Br
H a 与 H b不能偶合裂分
Ha 与 Hb 不能偶合
峰裂分的数目
• 一般说来,当质子相邻碳上有n个同类质子时,吸收峰裂分为n+1重峰。 • 不同类质子分裂成(n+1)(n’+1)个)。
r —旋磁比常数, r = 26753
但实际不是这样, 例如:ClCH2CCl2CH3 在图谱上就是两个吸收峰。
?
低场 高场
屏蔽效应
电子环流
感应磁场
质子
+
H/
屏蔽区
HO
在外加磁场的作用下 →→ 电子环流→→ 感应磁场 ,即对抗磁场 (方向与外 界磁场方向相反) →→ 实际质子所感受到的磁场强度减弱了→→ 质子受到屏
磁场强度(Ho )
• 目前核磁共振仪主要有两种操作方式:p294 固定外加磁场强度,改变射电频率对样品进行扫描(扫频) 固定射电频率,改变外加磁场强度对样品进行扫描(扫场), 一般的仪器是扫场。
(2) 屏蔽效应和化学位移
• 在一定外磁场中,对相同的核来说,其能级差是一定的,因此一个 有机分子中的全部氢质子在同一磁场强度下吸收应只有一个信号:
小结:谱图分析
NMR谱图可以给出有机分子中不同环境氢核的信息。根据谱 图中各峰的化学位移(δ值);峰的分裂情况和峰面积比来判定不 同种氢的个数,从而推导出分子的可能结构。
信号数目(峰数目)——知有多少种氢
化学位移值(峰的位置)——知与氢相连的基团 峰面积比(峰积分高度)——知各种氢数目 自旋分裂数目(峰形状)——知不同种氢彼此相邻的情况---碳架的 连接方式
• 在各种有机物分子中,与同一类基团相连的质子于核磁共振谱中, 在差不多相同的位置出现(即具有相同的化学位移δ值)。
• 已知化学位移δ值 →→ 质子的化学环境(即与质子相连的基团),对 于结构解析具有重要的意义。
(3) 峰的裂分和自旋偶合
CH3CH2OCH2CH3 低分辨的核磁共振仪
CH3CH2OCH2CH3 高分辨的核磁共振仪
蔽作用 • 质子所感受到的磁场强 度:
Hi=Ho- H感应
核所感受到的实际磁场(Hi )小于外磁场(H0 )
• 屏蔽效应 —— 质子周围的电子使质子实际感受到的有效磁场(Hi)要比实 际外加磁场强度(HO)小,即电子对外加磁场强度(HO) 有屏蔽作用。 电子环流 • 有机分子中与不同基团相连接的氢原子周围电子云 密度不一样,因此它们的共振信号出现在不同位置。
2-溴丙烷
二乙胺
核磁共振氢谱实例分析
C6H5CH2CH2OOCCH3 a b c d
a
d
c
b
• 实例分析
b a
b a e d c
a
c d
b
a b
c~e
p-ClC6H4COCH3
CH3CH2I
CH3CH2CH2NO2
CH3COOCH2CH3
C9H10O
H2 C O
CH3
2-溴丙烷
H质子种类:
a
信号数目与位置 ——H质子种类,不同的氢有不 同的吸收位置 信号裂分
——-
b
信号强度(峰积分高度) —— 知各种氢数目
(1) 核磁共振原理简介
原子核的自旋及其磁性
N
•原子核存在自旋运动,可用自旋量子数 I 表征。
•
NMR: I=1/2的核,如1H, 13C, 15N, 19F, 31P
δ:7.1 (多重峰,5H)
C6H5