八年级数学-平行四边形的性质、判定

合集下载

数学 八下 平行四边形的性质和判定

数学 八下 平行四边形的性质和判定

3.如图,在三角形ABC中,BD平分角ABC,DE平行于BC 交AB于点E,EF平行于AC于点F。试说明BE和CF的数量 关系,并说明理由。
4. 如图,在平行四边形ABCD中,∠DAB=60°,点E,F分别在 CD,AB的延长线上,且AE=AD,CF=CB . (1)求证:四边形AFCE是平行四边: (2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗? 若成立,请写出证明,若不成立,请说明理由。
初中数学八年级下册
平行四边形的性质和判定
习课
一、平行四边形知识结构及要点小结 平行四边形定义:有两组对边分别平行的四边形是平行四边 形。 性质:
1.平行四边形的两组对边分别平行。(定义) 2.平行四边形的两组对边分别相等。 3.平行四边形的两组对角分别相等。 4.平行四边形的两条对角线互相平分。
5.把两个全等的不等边三角形拼成平行四边形,可拼成的不同的
平行四边形的个数是
个。
6.平面上有不在同一直线上的三个点A、B、C,以这三个点为
顶点的平行四边形有
个。
7.如图,AD是△ABC的中线,求证:AB+AC>2AD
A
B
C
D
8.如图,在等腰△ABC中,AB=AC,点D是BC上一点,DE∥AC交AB于 点E,DF∥AB交AC于点F,解答下列问题: ①如图1,当点D在BC上时,有DE+DF=AB,请你说明理由。 ②如图2,当点D在BC的延长线上时,请你参考图1画出正确的图形, 写出DE,DF,AB之间的关系,并写出证明过程。
二、习题讲解
1.如图,四边形ABCD是平行四边形过点A的直线分别交 CD,CB的延长线于E,F点,且∠EAD=∠BAF. (1)判断△CEF的形状,并说明理由; (2)△CEF的哪两条边之和恰好等于平行四边形ABCD的周 长?为什么?

初二数学平行四边形7大常见题型+知识点+误区

初二数学平行四边形7大常见题型+知识点+误区

初二数学平行四边形7大常见题型+知识点+误区平行四边形是初二数学必考内容,甚至于中考卷里也时常出现它的身影,而且所占分值还不少。

为此,特意给大家整理了初二数学下册必考之【平行四边形】,7大常见题型+知识点+误区!平行四边形定义:有两组对边分别平行的四边形是平行四边形。

表示:平行四边形用符号“□”来表示。

平行四边形性质:平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分平行四边形的面积等于底和高的积,即S□ABCD=ah,其中a可以是平行四边形的任何一边,h必须是a边到其对边的距离,即对应的高。

平行四边形的判定:两组对边分别平行的四边形是平行四边形两组对角分别相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形从对角线看:对角钱互相平分的四边形是平行四边形从角看:两组对角分别相等的四边形是平行四边形。

若一条直线过平行四边形对角线的交点,则直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积。

7大常见题型分析(1)利用平行四边形的性质,求角度、线段长、周长等例题1:如图,E、F在ABCD的对角线AC上,AE=EF=CD,∠ADF=90°,∠BCD=54°,求∠ADE的度数分析:直角三角形斜边上的中线等于斜边的一半,由此可以得到DE=AE=EF=CD,多条线段相等,可设最小的角为x,即设∠EAD=∠ADE=x,根据外角等于不相邻的内角和,得到∠DEC=∠DCE=2x,由平行四边形的性质得出∠DCE=∠BCD-∠BCA=54°-x,得出方程,解方程即可。

例题2:如图,已知四边形ABCD和四边形ADEF均为平行四边形,点B,C,F,E在同一直线上,AF交CD于O,若BC=10,AO=FO,求CE的长。

分析:根据平行四边形的性质得出AD=BC=EF,AD∥BE,从而得到∠DAO=∠CFO,再加上对顶角相等,可以得到△AOD≌△FOC,根据全等三角形的性质得到AD=CF,即AD=BC=EF=CF,从而得到线段CE的长度。

2020--2021学年人教版八年级数学下册第18章:平行四边形的性质与判定 (1)

2020--2021学年人教版八年级数学下册第18章:平行四边形的性质与判定 (1)

平行四边形(第一讲:性质与判定)[知识点梳理与例题讲解]一、平行四边形定义1、平行四边形:两组对边分别平行的四边形叫做平行四边形(如图),记作“□ABCD ”。

2、平行四边形的表示:一般按一定的方向依次 表示各顶点,如上图的平行四边形不能表示成□ACBD ,也不能表示成□ADBC 。

二、平行四边形的性质1、平行四边形的对边平行且相等;2、平行四边形相邻的角互补,对角相等;3、平行四边形的对角线互相平分;4、平行四边形是中心对称图形,对称中心是对角线的交点;5、四个相等,四组全等:DOA DOC BOC AOB S S S S ∆∆∆∆===COD AOB ∆≅∆;COB AOD ∆≅∆;CDA ABC ∆≅∆;DAB BCD ∆≅∆. 常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线 的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

[例1]如图,在□ABCD 中,已知AD =8cm ,AB =6cm ,DE 平分∠ADC 交BC 边于点E ,则BE 等于_________cm 。

[例2]如图,□ABCD 中,AC ,BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为________.[例3](1)已知□ABCD 的周长为60cm,对角线AC、BD 相交于O 点,△AOB 的周长比△BOC 的周长多8cm,则AB 的长度为_________cm。

⑵已知△ABC,若存在点D 使得以A、B、C、D 为顶点的四边形是平行四边形,这样的点D 有______个。

⑶接上题,若已知△ABC 的周长为3,则以所有D 点围成的多边形周长为________。

[例4]如图,在□ABCD 中,E、F 是对角线BD 上的两个点且DF=BE,试猜想AE 与CF 有何数量关系及位置关系并加以证明。

[例5]如图,当点 E、F 分别在线段BD、DB 的延长线上时,仍有DF=BE,此时AE 与CF 的数量关系及位置关系有变化吗?[例6](1)如图,□ABCD 中,平行于边的两条线段EF,GH 把□ABCD 分成四部分,分别记这四部分的面积为S1、S2、S3 和S4,这下列等式一定成立的是( )A.S1=S3 B.S1+S3=S2+S4C.S3-S1=S2-S4 D.S1×S3=S2×S4(2)如图,□ABCD 中,P 是中间任意一点,△ABP,△BCP,△CDP,△ADP的面积分别为S1、S2、S3、S4,则一定成立的是( )A.S1+S2>S3+S4 B.S1+S2=S3+S4C.S1+S2<S3+S4 D.S1+S3=S2+S4三、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形;(2)定理1:两组对角分别相等的四边形是平行四边形;(3)定理2:两组对边分别相等的四边形是平行四边形;(4)定理3:对角线互相平分的四边形是平行四边形;(5)定理4:一组对边平行且相等的四边形是平行四边形。

初二数学下册:平行四边形知识点

初二数学下册:平行四边形知识点

初二数学下册:平行四边形知识点1、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”;要点诠释:平行四边形基本元素:边、角、对角线相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条。

2、平行四边形的性质边的性质:平行四边形两组对边平行且相等;角的性质:平行四边形邻角互补,对角相等;对角线性质:平行四边形的对角线互相平分;平行四边形是中心对称图形,对角线的交点为对称中心。

要点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系。

(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择。

(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决。

3、平行四边形的判定两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法;(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据。

4、三角形的中位线连接三角形两边中点的线段叫做三角形的中位线;定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系;(2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的;(3)三角形的中位线不同于三角形的中线。

初中数学《平行四边形的的性质和判定》单元教学设计以及思维导图

初中数学《平行四边形的的性质和判定》单元教学设计以及思维导图

平行四边形的的性质和判定适用年八年级级所需时六课时间主题单元学习概述《初中数学八年级下》第五章平行四边形是人们日常生活和生产实践中应用广泛的一种图形,本单元是在学生已经学习了三角形相关知识、平行四边形的定义的基础上进行学习的,在教学内容中起着承上启下的作用,“承上”:定理的证明是三角形全等知识、平行线知识的再应用;“启下”:平行四边形的性质和判定定理以及探究的模式为进一步学习特殊四边形奠定了基础。

本单元包括两个专题:专题一:平行四边形的性质;专题二:平行四边形的判定。

平行四边形的性质定理和判定定理是两个互逆的定理,定理的证明方法都用到了三角形全等的知识。

通过合作探究,测量、计算、对折剪开、旋转、平移、推理等探索定理证明的不同思路和方法,运用定理解决较简单的问题;归纳、总结解决四边形问题的常用数学方法;进行适当的比较和讨论,渗透化归思想和数学建模思想,从而形成知识体系。

主题单元规划思维导图主题单元学习目标知识与技能:知识与技能:1.通过合作探究,认识平行四边形的性质定理和判定定理。

2.理解平行四边形的性质定理和判定定理,并学会简单运用。

过程与方法:过程与方法:1.通过类比、观察、实验、猜想、验证、推理、交流等学习活动,进一步增强动手能力、合情推理能力。

2.在运用平行四边形的性质和判定方法解决问题的过程中,培养和发展逻辑思维能力和推理论证的表达能力。

情感态度与价值观:情感态度与价值观:通过对平行四边形性质和判定方法的探究和运用,感受数学思考过程中的合理性、数学证明的严谨性,认识事物的相互联系、相互转化,学会用辨证的观点分析事物。

对应课标《初中数学新课程标准》1.有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。

2. 教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

平行四边形判定的数学公式

平行四边形判定的数学公式

平行四边形判定的数学公式一、平行四边形的性质:1.对角线互相平分:平行四边形的对角线互相平分。

2.对边等长:平行四边形的对边长度相等。

3.各个角度对应相等:平行四边形的对应角相等。

下面我们将介绍一些判定平行四边形的数学公式。

二、判定平行四边形的数学公式:1.利用坐标判定:设平行四边形的四个顶点分别为A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)。

首先判断对边AB是否平行,可以通过计算斜率来判断:如果两条线段AB和CD的斜率相等,则它们是平行的。

斜率的计算公式为:斜率k=(y2-y1)/(x2-x1)计算斜率k1=(y2-y1)/(x2-x1)计算斜率k2=(y4-y3)/(x4-x3)如果k1=k2,则对边AB和CD平行。

同理,可以判断对边BC和AD是否平行,以及对边AC和BD是否平行。

如果对边AB、BC、CD、DA都平行,则四边形ABCD为平行四边形。

2.利用向量判定:设平行四边形的四个顶点分别为A,B,C,D。

定义向量AB、BC、CD、DA,分别为:AB=(x2-x1,y2-y1)BC=(x3-x2,y3-y2)CD=(x4-x3,y4-y3)DA=(x1-x4,y1-y4)如果向量AB与CD平行且向量BC与DA平行,则四边形ABCD为平行四边形。

向量平行的判断公式为:向量a与向量b平行,当且仅当两个向量的比例相等,即:a/b=k(k为常数)对于向量AB与CD,如果(x2-x1)/(x4-x3)=(y2-y1)/(y4-y3),则向量AB与CD平行。

对于向量BC与DA,如果(x3-x2)/(x1-x4)=(y3-y2)/(y1-y4),则向量BC与DA平行。

如果AB与CD平行且BC与DA平行,则四边形ABCD为平行四边形。

3.利用斜率判定:设平行四边形的四个顶点分别为A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)。

先计算斜率k1=(y2-y1)/(x2-x1)再计算斜率k2=(y3-y2)/(x3-x2)再计算斜率k3=(y4-y3)/(x4-x3)再计算斜率k4=(y1-y4)/(x1-x4)如果k1=k3且k2=k4,则四边形ABCD为平行四边形。

人教版数学八年级下册平行四边形的个判定定理课件

人教版数学八年级下册平行四边形的个判定定理课件

OB=OD
A
求证:四边形ABCD是平行四边形
证明:在△AOD和△COB中
OA=OC(已知) ∠AOD=∠COB (对顶角相等) B
1
O
2
D C
OD=OB (已知) ∴△AOD≌△COB(SAS)
∴ AD=CB(全等三角形的对应边相等)
同理可得: AB=CD
∴四边形ABCD是平行四边形
平行四边形的判定定理3:
同理可证AB∥CD
∴四边形ABCD是平行四边形。
平行四边形的判定定理2:
两组对角分别相等的四边形是平行四边形
符号语言:
A
D
B
C
∵∠A=∠C,∠B=∠D
∴四边形ABCD是平行四边形
(两组对角分别相等的四边形是平行四边形)
D
A
O
B
C
对角线互相平分的四边形是平行四边形?
已知:四边形ABCD, 对角线AC、BD相交于点O,且OA=OC,
∴△ABC≌△CDA(SSS)
∴∠1=∠2,∠3=∠4(全等三角形的对应角相等)
∴ AB∥CD,AD∥BC (内错角相等,两直线平行) ∴四边形ABCD是平行四边形.
平行四边形的判定定理1:
ห้องสมุดไป่ตู้
两组对边分别相等的四边形是平行四边形。
符号语言:
A
D
∵AB=CD,AD=BC B
C
∴四边形ABCD是平行四边形
∴△AOD≌△COB(SAS)

理 形是平行四边形。
0
C ∵OA=OC,OB=OD ∴…是平行四边形
3


A
D
(A)AB∥CD,AD∥BC
(两组对边分别平行)

八年级数学上册知识点归纳:平行四边形的性质

八年级数学上册知识点归纳:平行四边形的性质

八年级数学上册知识点归纳:平行四边形的性质八年级数学上册知识点归纳:平行四边形的性质知识点总结1.定义:两组对边分别平行的四边形叫平行四边形2.平行四边形的性质(1)平行四边形的对边平行且相等;(2)平行四边形的邻角互补,对角相等;(3)平行四边形的对角线互相平分;3.平行四边形的判定平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:第一类:与四边形的对边有关(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;第二类:与四边形的对角有关(4)两组对角分别相等的四边形是平行四边形;第三类:与四边形的对角线有关(5)对角线互相平分的四边形是平行四边形常见考法(1)利用平行四边形的性质,求角度、线段长、周长;(2)求平行四边形某边的取值范围;(3)考查一些综合计算问题;(4)利用平行四边形性质证明角相等、线段相等和直线平行;(5)利用判定定理证明四边形是平行四边形。

误区提醒(1)平行四边形的性质较多,易把对角线互相平分,错记成对角线相等;(2)“一组对边平行且相等的四边形是平行四边形”错记成“一组对边平行,一组对边相等的四边形是平行四边形”后者不是平行四边形的判定定理,它只是个等腰梯形。

知识点总结一、特殊的平行四边形1.矩形:(1)定义:有一个角是直角的平行四边形。

(2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。

(3)判定定理:①有一个角是直角的平行四边形叫做矩形。

②对角线相等的平行四边形是矩形。

③有三个角是直角的四边形是矩形。

直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。

2.菱形:(1)定义:邻边相等的平行四边形。

(2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

(3)判定定理:①一组邻边相等的平行四边形是菱形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 四边形性质探索 第一节 平行四边形的性质温故而知新温故1.两直线平行,同位角相等,内错角相等,同旁内角互 补.2.能够完全重合的两个三角形叫做全等三角形;全等三角形的对应边相等,对应角相等.知新1.定义:如图4.1-1所示,两组对边分别平行的四边形叫做 ,记作:“ ”,AC 和BD 是ABCD 的两条 . 2.性质1:平行四边形的对边 3.性质2:平行四边形的对角 . 4.性质3:平行四边形的对角线互相 .图4.1-15.一条直线上的任一点到另一条直线的垂线段的长度叫做两条平行线之间的距离. (会运用)乐学好思1 如图4.1-1所示,平行四边形可以表示成一下几种形式? "ABC ”,”ACBD ”,”BCDA ” 思路分析: 应该用四个顶点的大写字母表示,并且要按照顺序依次书写,可顺时针方向表示,也可逆时针方向表示.答案:"ABC ”,”ACBD ” 是错误的,”BCDA ”是正确的.乐学好思2 如图4.1-1所示,平行四边形的两条对角线分成的所有三角形中,有多少对全等的三角形?课堂研习•一点即通◎知识全突破●知识点1 探索平行四边形的性质,并且会运用 导航指数 方法一.情景设置 1、做一做(让学生实际动手操作)用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180度,你能平移该纸片,使它与你画的平行四边形ABCD 重合吗?(教师用几何画板平台展示整个旋转变化过程) 2、讨论:(小组交流)(1)通过以上活动,你能得到哪些结论?(2)平行四边形ABCD 对边、对角分别有什么关系?能用别的方法验证你的结论吗? 温馨提示:答案:通过旋转三角形得到结论:平行四边形的对边相等;平行四边形的对角相等方法二.问题导入 图下图4.1-2是两组对边分别平行的四边形: 图4.1-2 即:AB ∥CD ,A D∥B C,那么(1)各对边之间有什么样的数量关系?为什么? (2)各对角之间有什么样的数量关系?为什么?OD C BADCBA O(3)如果连结A C、BD ,交点为O ,如图4.1-3,那么A C、BD 之间又有什么关系?图4.1-3温馨提示:答案: 解:(1)两组对边分别相等.理由如下:如图4.1-4,连结B D,∵AB∥C D,AD ∥BC ∴∠1=∠2,∠3=∠4又∵BD =DB , ∴△ABD ≌△CD B, ∴A D=B C,AB =CD (2)两组对角分别相等由(1)△A BD ≌△CDB ,∴∠A =∠C ∵AB ∥BC ,∴∠A +∠ABC =180°, ∠C +∠CD A=180° ∴∠AB C=∠CDA (3)对角线互相平分由(1)AB =CD,∠3=∠4,∠AOB =∠C OD ∴△A OB ≌△COD ,∴A O=OC ,OB =OD由此得到,平行四边形的对边相等;平行四边形的对 角相等;平行四边形的对角线互相平分.例题1 如图4.1-5,平行四边形AB CD 中, E、 F 是分别是AB 、CD 上的点,且AE=CF ,试说明DE=BF ,并写出推理过程.。

●解题规律: 在平行四边形中,证明线段相等是很常见的一类问题,通常结合三角形全等和平行四边形的性质来说明推理.◎知识巧归纳:.:⎧⎪⎪⎨⎪⎧⎪⇒⎨⎪⎩⎪⎩定义两组对边分别是四边形叫做平行四边形对边且平行四边形性质平行四边形对角平行平行相等相等对角线互相平分 ◎随堂小挑战分析:引导学生进行思考:1)AD=BC 吗? 2)∠A=∠C 吗? 3)△ADE ≌△CBF 吗?1.如右图4.1-6,在□ABC D中, A C 与BD 交于O 点,则下列结论中不一定成立的是( )A 、AB=CDB 、AO=COC 、AC =BD D 、BO=D O 2.已知: □A BC D中,4,7,AB cm BC cm ==则它的周长为 ( )图4.1-6A 、11cmB 、22cmC 、28cm D、44cm3. A BCD 中,如果∠B=100°,那么∠A 、∠D 的值分别是( ) A.∠A=80°,∠D=100° B.∠A=100°,∠D=80° C .∠B=80°,∠D=80° D.∠A=100°,∠D=100°4. A BC D中,若∠A ∶∠B =1∶3,那么∠A =________,∠B =________,∠C =________,∠D=________.5.如图4.1-8, D,E,F 分别在△ABC 的三边BC,AC ,AB 上,且DE ∥A B, DF ∥AC, EF ∥BC ,则图中共有______个平行四边形,分别是_________________________________.图4.1-86.在平行四边形ABCD 中(如图4.1-9),已知两条邻边的长度分别为30cm,25cm;求其他两条边的长度,以及它的周长.图4.1-9课后温习•各显神通 ◎牛刀初小试(时间:20分钟 满分:100分)班级:_______ 姓名:________ 得分:______ 一、选择题(每小题 3 分,共 24 分)1.关于平行四边形的性质,下面说法中不正确的为 ( )A 、 两个邻角互补 B、两个邻角的平分线互相垂直C、一组对角的两条角平分线平行或重合。

D 、任何一个外角大于与它不相邻的任何内角。

2.在平行四边形AB CD 中,∠B-∠A=20°,则∠D 的度数是 ( )A. 80°B. 90°C. 100°D. 110°3.在□ABCD 中,∠A ∶∠B ∶∠C∶∠D 的值可以是( )A.1∶2∶3∶4 B.1∶2∶2∶1 C.1∶1∶2∶2 D.2∶1∶2∶14.如图4.1-11,M 是平行四边形AB CD的一边AD 上的任意一点,若△CMB的面积为S ,△CDM 的面积为S 1,△ABM 的面积为S 2,则下列大小关系正确的为( ) A 、S>S 1+S 2B 、S<S 1+S 2 图4.1-11C、S=S 1+S 2 D 、无法确定5.如图4.1-12,点E是□ABCD 的边BC 上一点,DE=AD,AE 、DC 延长线交于F,∠ADE=40︒,∠BEF 等于( ) ﻩ ﻩﻩﻩ图4.1-12A 、70︒ B 、60︒ C 、40︒ D 、35︒6、如图4.1-13,在平行四边形ABCD 中,AE ⊥BC 于点E,AF ⊥CD 于点F ,若AE=4,AF=6,平行四边形ABC D的周长为40,则平行四边形AB CD 的面积为( ) A 、24 B 、36C、40 D 、48 图4.1-137.如图4.1-14,四边形ABCD 是平行四边形,∠D =120°,∠C AD=32°.则∠ABC 、∠CAB 的度数分别为( )A.28°,120°B.120°,28°C.32°,120°ﻩ D.120°,32°图4.1-14 8.平行四边形的两邻边分别为3、4,那么其对角线必( )A.大于1ﻩﻩﻩB.小于7 C.大于1且小于7 D .小于7或大于1 二、填空题(每小题 3 分,共 18 分)9.(广西钦州市2010年中考题)如图4.1-15,□AB CD 的对角线AC 、BD 相交于点O,点E 是CD 的中点,若AD =4c m,则OE 的长为cm.ﻩ图4.1-1510. 用20米长的一铁丝围成一个平行四边形,使长边与短边的比为3:2,则它的边长为________短边长为__________.11.在平行四边形ABCD 中,∠A : ∠B=3:2,则∠C=_________ 度,∠D=_____________度.12.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______________.13.在□ABCD 中,∠A=2∠B,则∠A=____________度。

14.从平行四边形的一个锐角顶点作它的两条高,如果这两条高的夹角为135o,则这个平行四边形相邻两个内角的度数分别为 和 。

图4.1-16三、解答题(15-18每小题 11 分,19小题14分,共 58分)15.平行四边形的周长为36 cm,一组邻边之差为4 cm,求平行四边形各边的长.16.如图4.1-17,在□ABCD 中,E、F 分别是BC 、A D上的点,且AE ∥CF ,AE 与CF 相等吗?说明理由.图4.1-1717.如图4.1-18,在□ABCD 中,O 是对角线AC 、BD 的交点,BE ⊥AC ,DF ⊥AC ,垂足分别为E 、F.那么O E与O F是否相等?为什么?DECBAOFE DCB A图4.1-1818.如图4.1-19,平行四边形ABCD 的两条对角线AC,BD 相交于O. 若平行四边形A BC D的周长是20c m,△AOD 的周长比△ABO 的周长大6c m.求A B,AD 的长.图4.1-1919、如图4.1-20,已知ΔABC 中,AB=AC =5,D 是BC上一点,作DE∥AC 交AB 于E,作DF∥AC 交AC 于点F,求四边形DE AF 的周长。

(8分)20、如图4.1-21,平行四边形ABC D中,BE 平分 ABC ,若AB=6 c m,B C=10c m,试求:(1)平行四边形ABCD 的周长. (2)DE 的长.(6分)图4.1-2121、如图4.1-22,四边形A BCD 是平行四边形,BD ⊥AD ,求B C,CD 及O B的长.图4.1-224.2平行四边形的判别(1)教学目标:⒈认知目标: ⑴平行四边形的判别方法1。

⑵平行四边形的判别方法2。

二、教学重点、难点:重点: 平行四边形的判别条件。

难点: 平行四边形的判别条件的应用。

三、教学过程设计: ⒈【情境】: ⑴上节课我们探讨了平行四边形的定义和性质,现在来复习一下。

⑵结合学生回答,课件显示平行四边形的性质。

2.【动手操作】:⑴现在拿出一长一短的两根小木棒,来拼一个平行四边形。

⑵用量角器等工具检测所拼四边形是否是平行四边形。

图F E DCB A OD⑶提问:若这两根小木棒不作为对角线,能确定平行四边形吗?若不行,能拼出一个特殊的四边形吗?那怎样改变一个条件,就能确定平行四边形?(4)用两根一样长的小木棒,来拼一个平行四边形。

通过观察图形,得出:两条对角线互相平分的四边形是平行四边形。

一组对边平行且相等的四边形是平行四边一组对边平行且相等的四边形是平行四边形。

(两组对边分别相等的四边形是平行四边形。

相关文档
最新文档