山东省临沂市郯城县2018-2019年最新中考数学一模试卷(含答案)

合集下载

山东省临沂市郯城县2018年九年级一轮验收考试 数学试题(word版,含答案)

山东省临沂市郯城县2018年九年级一轮验收考试  数学试题(word版,含答案)

山东省临沂市2018年郯城县九年级一轮验收考试 数学试题第Ⅰ卷(选择题 共42分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后。

再选涂其它答案,不能答在试卷上。

3.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共14小题.每小题3分,共42分)在每小题所给的四个选项中,只有一项是符1. 2018(1)-的倒数是A. 1B. -1C. 2018D. -20182. 如图,直线m ∥n,△ABC 的顶点B,C 分别在直线n ,m 上,且∠ACB=90°,若∠1=40°,则∠2的度数为A. 130°B. 120°C. 110°D.100° 3. 下列计算正确的是A.236a a a ⋅= B. 235a a a +=2=D. 32321a a -=4. 由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是A. 3B. 4C. 5D. 6 5. 已知方程组321(1)3x y ax a y +=⎧⎨--=⎩的解x 和y 互为相反数,则a 的值为A. −1B. −2C. 1D. 2A.13B. 3C. 4D. 7. 有一根长40mm 的金属棒,欲将其截成x 根7mm 长的小段和y 根9mm 长的小段,剩余部分作废料处理,若使废料最少,则正整数x,y 应分别为A. x=1,y=3B. x=3,y=2C. x=4,y=1D. x=2,y=3 8. 下列命题是假命题的是()A. 对角线互相平分的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的平行四边形是矩形D. 对角线相等的菱形是正方形第 Ⅱ卷(非选择题 78分) 二、填空题(本题共5小题,每小题3分,共15分)15. 分解因式: 2224a ab b ++-= .16. 如图,等腰梯形ABCD 内接于半圆O ,且AB=1,BC=2,则OA=___.17. 使关于x 的分式方程121k x -=-的解为非负数,且使反比例函数3ky x-=图象过第一、三象限时满足条件的所有整数k 的和为 .18. 如果从0,-1,2,3四个数中任取一个数记作m ,又从0,1,-2三个数中任取的一个记作n ,那么点(,)P m n 恰在第四象限的概率为 .三、解答题(本大题共7个小题,共63分,解答应写出文字说明、证明过程或演算步骤) 20.(6分)化简:2222112.14421a a a a a a a +-⋅÷+-+++-.21.(6分)某班长统计了全班同学对数学这门课程的爱好情况, 按A. B. C. D 进行分类,并将自己的调查结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:“喜爱程度”条形统计图 “喜爱程度”扇形统计图 (说明:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢) (1)请把条形统计图补充完整;(2)扇形统计图中A 类所在的扇形的圆心角度数是___;(3)若全校学生共有3000人,请你用班长的调查结果估计“非常喜欢”和“比较喜欢”数学的人数全校共有多少人?22.(8分)如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是多少?23.(10分)如图,已知E是ABCD中BC边的中点,AC是对角线,连接AE并延长AE交DC 的延长线于点F,连接BF.(1)求证:四边形ABFC是平行四边形.(2)若∠AEC=2∠ABC,求证:四边形ABFC为矩形。

【名师推荐-新课标】2018年山东省临沂市中考数学第一次模拟试题及答案解析

【名师推荐-新课标】2018年山东省临沂市中考数学第一次模拟试题及答案解析

2018年山东省临沂市中考数学一模试卷一.选择题(每小题3分,共42分)1.﹣5的绝对值是()A.B. C.+5 D.﹣52.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为()A.0.5×1011千克B.50×109千克C.5×109千克D.5×1010千克3.下列计算正确的是()A.a+2a2=3a3B.(a3)2=a5C.a3•a2=a6 D.a6÷a2=a44.长方体的主视图、俯视图如图所示,则其左视图面积为()A.3 B.4 C.12 D.165.不等式组的所有整数和是()A.﹣1 B.0 C.1 D.26.如图,AB∥CD,∠A=48°,∠C=22°.则∠E等于()A.70°B.26°C.36°D.16°7.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤18.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°9.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为()A.B.C.D.10.计算1÷的结果是()A.﹣m2﹣2m﹣1 B.﹣m2+2m﹣1 C.m2﹣2m﹣1 D.m2﹣111.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是()A.(,1)B.(1,﹣)C.(2,﹣2)D.(2,﹣2)12.如图,E是▱ABCD的边AD的中点,CE与BA的延长线交于点F,若∠FCD=∠D,则下列结论不成立的是()A.AD=CF B.BF=CF C.AF=CD D.DE=EF13.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个 B.2个 C.3个 D.4个14.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x 之间的函数关系用图象表示大致是()A.B.C.D.二、填空题(本题共5小题,毎小题3分,共15分)15.分解因式:a3﹣10a2+25a= .16.某校四个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相等,那么这组数据的中位数是.17.如图,在塔AB前的平地上选择一点C,测出塔顶的仰角为30°,从C点向塔底B走100m到达D点,测出塔顶的仰角为45°,则塔AB的高为m.18.如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数y=(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.19.若x是不等于1的实数,我们把称为x“差倒数”,如2的差倒数是=﹣1,﹣1的差倒数为=.现已知x1=﹣,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2015的值为.三、解答题(本题共7小题,共63分)20.计算:(﹣)﹣2﹣(π﹣2016)0+sin45°+|1﹣|21.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:(1)九年(1)班有名学生;(2)补全直方图;(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;(4)求该年级每天阅读时间不少于1小时的学生有多少人?22.已知甲、乙两站的距离为828km,一列普通快车与一列直达快车都由甲站开往乙站,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车晚出发2h而先于普通快车4h到达乙站.分别求出两车的平均速度.23.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD 交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)24.甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了h;(2)求线段DE对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.25.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.26.已知,如图,在平面直角坐标系中,△ABC的边BC在x轴上,顶点A在y轴的正半轴上,OA=2,OB=1,OC=4.(1)求过A、B、C三点的抛物线的解析式;(2)设点G是对称轴上一点,求当△GAB周长最小时,点G的坐标;(3)若抛物线对称轴交x轴于点P,在平面直角坐标系中,是否存在点Q,使△PAQ是以PA为腰的等腰直角三角形?若存在,写出所有符合条件的点Q的坐标,并选择其中一个的加以说明;若不存在,说明理由.参考答案与试题解析一.选择题(每小题3分,共42分)1.﹣5的绝对值是()A.B. C.+5 D.﹣5【考点】绝对值.【分析】根据绝对值的意义直接判断即可.【解答】解:|﹣5|=5.故选C.2.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为()A.0.5×1011千克B.50×109千克C.5×109千克D.5×1010千克【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将50 000 000 000用科学记数法表示为5×1010.故选D.3.下列计算正确的是()A.a+2a2=3a3B.(a3)2=a5C.a3•a2=a6 D.a6÷a2=a4【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项系数相加字母及指数不变,幂的乘方底数不变指数相乘,同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、同底数幂的除法底数不变指数相减,故D正确;故选:D.4.长方体的主视图、俯视图如图所示,则其左视图面积为()A.3 B.4 C.12 D.16【考点】由三视图判断几何体.【分析】根据物体的主视图与俯视图可以得出,物体的长与高以及长与宽,进而得出左视图面积=宽×高.【解答】解:由主视图易得高为1,由俯视图易得宽为3.则左视图面积=1×3=3,故选:A.5.不等式组的所有整数和是()A.﹣1 B.0 C.1 D.2【考点】一元一次不等式组的整数解.【分析】求出不等式组的解集,即可确定出所有整数的和.【解答】解:不等式解得:﹣2<x≤1,整数解为﹣1,0,1,即整数解之和为﹣1+0+1=0,故选B.6.如图,AB∥CD,∠A=48°,∠C=22°.则∠E等于()A.70°B.26°C.36°D.16°【考点】平行线的性质;三角形内角和定理.【分析】由AB∥CD,根据两直线平行,内错角相等,即可求得∠1的度数,又由三角形外角的性质,即可求得∠E的度数.【解答】解:∵AB∥CD,∠A=48°,∴∠1=∠A=48°,∵∠C=22°,∴∠E=∠1﹣∠C=48°﹣22°=26°.故选B.7.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤1【考点】根的判别式.【分析】根据根的判别式,令△≥0,建立关于m的不等式,解答即可.【解答】解:∵方程x2﹣2x+m=0总有实数根,即4﹣4m≥0,∴﹣4m≥﹣4,∴m≤1.故选:D.8.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】根据圆周角定理以及推论和角平分线的定义可分别求出∠BAC和∠CAD的度数,进而求出∠BAD的度数.【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分线BD交⊙O于点D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故选:B.9.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为()A.B.C.D.【考点】几何概率;平行四边形的性质.【分析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【解答】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,∴针头扎在阴影区域内的概率为,10.计算1÷的结果是()A.﹣m2﹣2m﹣1 B.﹣m2+2m﹣1 C.m2﹣2m﹣1 D.m2﹣1【考点】分式的混合运算.【分析】首先将除法变为乘法运算,即乘以除数的倒数,然后利用乘法运算法则约分求解即可求得答案.【解答】解:1÷=1××(m+1)(m﹣1)=﹣(m﹣1)2=﹣m2+2m﹣1.故选B.11.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是()A.(,1)B.(1,﹣)C.(2,﹣2)D.(2,﹣2)【考点】坐标与图形变化-旋转.【分析】根据题意画出△AOB绕着O点顺时针旋转120°得到的△COD,连接OP,OQ,过Q作QM⊥y轴,由旋转的性质得到∠POQ=120°,根据AP=BP=OP=2,得到∠AOP 度数,进而求出∠MOQ度数为30°,在直角三角形OMQ中求出OM与MQ的长,即可确定出Q的坐标.【解答】解:根据题意画出△AOB绕着O点顺时针旋转120°得到的△COD,连接OP,OQ,过Q作QM⊥y轴,∴∠POQ=120°,∵AP=OP,∴∠BAO=∠POA=30°,∴∠MOQ=30°,在Rt△OMQ中,OQ=OP=2,∴MQ=1,OM=,则P的对应点Q的坐标为(1,﹣),故选B12.如图,E是▱ABCD的边AD的中点,CE与BA的延长线交于点F,若∠FCD=∠D,则下列结论不成立的是()A.AD=CF B.BF=CF C.AF=CD D.DE=EF【考点】平行四边形的性质.【分析】可证△AEF≌△DEC(AAS或ASA),由∠FCD=∠D得△DEC、△AEF都是等腰三角形.故易判断C、D都成立;∠B=∠D=∠F,则CF=BC=AD.没有条件证明BF=CF.【解答】解:∵ABCD是平行四边形,∴AD=BC,∠B=∠D,AB∥CD.∵BF∥CD,∴∠F=∠FCD,∠FAE=∠D.∵AE=ED,∴△AEF≌△DEC.∴AF=CD,EF=CE.∵∠FCD=∠D,∴CE=DE.∴DE=EF.故C、D都成立;∵∠B=∠D=∠F,则CF=BC=AD.故A成立.没有条件证明BF=CF.故选B.13.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个 B.2个 C.3个 D.4个【考点】二次函数图象与系数的关系.【分析】根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x >2时,y随x的增大而减小.【解答】解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.14.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x 之间的函数关系用图象表示大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】求出CE的长,然后分①点P在AD上时,利用三角形的面积公式列式得到y与x的函数关系;②点P在CD上时,根据S△APE=S梯形AECD﹣S△ADP﹣S△CEP列式整理得到y与x的关系式;③点P在CE上时,利用三角形的面积公式列式得到y与x的关系式,然后选择答案即可.【解答】解:∵在矩形ABCD中,AB=2,AD=3,∴CD=AB=2,BC=AD=3,∵点E是BC边上靠近点B的三等分点,∴CE=×3=2,①点P在AD上时,△APE的面积y=x•2=x(0≤x≤3),②点P在CD上时,S△APE=S梯形AECD﹣S△ADP﹣S△CEP,=(2+3)×2﹣×3×(x﹣3)﹣×2×(3+2﹣x),=5﹣x+﹣5+x,=﹣x+,∴y=﹣x+(3<x≤5),③点P在CE上时,S△APE=×(3+2+2﹣x)×2=﹣x+7,∴y=﹣x+7(5<x≤7),故选:A.二、填空题(本题共5小题,毎小题3分,共15分)15.分解因式:a3﹣10a2+25a= a(a﹣5)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再利用完全平方公式继续分解.【解答】解:a3﹣10a2+25a,=a(a2﹣10a+25),(提取公因式)=a(a﹣5)2.(完全平方公式)16.某校四个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相等,那么这组数据的中位数是10 .【考点】中位数;加权平均数;众数.【分析】根据题意先确定x的值,再根据定义求解.【解答】解:当x=8或12时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得=10,解得x=10,将这组数据从小到大的顺序排列8,10,10,10,12,处于中间位置的是10,所以这组数据的中位数是10.故答案为10.17.如图,在塔AB前的平地上选择一点C,测出塔顶的仰角为30°,从C点向塔底B走100m到达D点,测出塔顶的仰角为45°,则塔AB的高为50(+1)m.【考点】解直角三角形的应用-仰角俯角问题.【分析】首先根据题意分析图形;本题涉及到两个直角三角形,设AB=x(米),再利用CD=BC ﹣BD=100的关系,进而可解即可求出答案.【解答】解:在Rt△ABD中,∵∠ADB=45°,∴BD=AB.在Rt△ABC中,∵∠ACB=30°,=tan30°=,∴BC=AB.设AB=x(米),∵CD=100m,∴BC=x+100.∴x+100=x,∴x=50+50,故答案为:50(+1)18.如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数y=(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.【考点】反比例函数系数k的几何意义.【分析】由A、C的坐标分别是(4,0)和(0,2),得到P(2,1),求得k=2,得到反比例函数的解析式为:y=,求出D(4,),E(1,2)于是问题可解.【解答】解:∵四边形OABC是矩形,∴AB=OC,BC=OA,∵A、C的坐标分别是(4,0)和(0,2),∴OA=4,OC=2,∵P是矩形对角线的交点,∴P(2,1),∵反比例函数y=(x>0)的图象过对角线的交点P,∴k=2,∴反比例函数的解析式为:y=,∵D,E两点在反比例函数y=(x>0)的图象的图象上,∴D(4,),E(1,2)∴S阴影=S矩形﹣S△AOD﹣S△COF﹣S△BDE=4×2﹣×2﹣×2﹣××3=.故答案为:.19.若x是不等于1的实数,我们把称为x“差倒数”,如2的差倒数是=﹣1,﹣1的差倒数为=.现已知x1=﹣,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2015的值为.【考点】规律型:数字的变化类;倒数.【分析】根据差倒数的定义分别计算出x1=﹣,x2=;x3=4,x4=﹣,…得到从x1开始每3个值就循环,而2015÷3=671…2,即可得出答案.【解答】解:∵x1=﹣,∴x2==;x3==4;x4==﹣;…,∴三个数一个循环,∵2015÷3=671…2,∴x2015=x2=.故答案为:.三、解答题(本题共7小题,共63分)20.计算:(﹣)﹣2﹣(π﹣2016)0+sin45°+|1﹣|【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用零指数幂的性质以及负整数指数幂的性质和特殊角的三角函数值以及绝对值的性质分别化简求出答案.【解答】解:原式=4﹣1++﹣1=2+.21.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:(1)九年(1)班有50 名学生;(2)补全直方图;(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;(4)求该年级每天阅读时间不少于1小时的学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】(1)利用条形统计图与扇形统计图中0~0.5小时的人数以及所占比例进而得出该班的人数;(2)利用班级人数进而得出0.5~1小时的人数,进而得出答案;(3)利用九年级其他班级每天阅读时间在1~1.5小时的学生有165人,求出1~1.5小时在扇形统计图中所占比例,进而得出0.5~1小时在扇形统计图中所占比例;(4)利用扇形统计图得出该年级每天阅读时间不少于1小时的人数,进而得出答案.【解答】解:(1)由题意可得:4÷8%=50(人);故答案为:50;(2)由(1)得:0.5~1小时的为:50﹣4﹣18﹣8=20(人),如图所示:;(3)∵除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,∴1~1.5小时在扇形统计图中所占比例为:165÷×100%=30%,故0.5~1小时在扇形统计图中所占比例为:1﹣30%﹣10%﹣12%=48%,如图所示:;(4)该年级每天阅读时间不少于1小时的学生有:×(30%+10%)+18+8=246(人).22.已知甲、乙两站的距离为828km,一列普通快车与一列直达快车都由甲站开往乙站,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车晚出发2h而先于普通快车4h到达乙站.分别求出两车的平均速度.【考点】分式方程的应用.【分析】设普通快车的平均速度为xkm/h,直达快车的平均速度为1.5km/h,根据甲、乙两站的距离为828km,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车晚出发2h而先于普通快车4h到达乙站,列出方程求出x的值即可.【解答】解:设普通快车的平均速度为xkm/h,则直达快车的平均速度为1.5km/h,根据题意得:﹣6=,解得:x=46,经检验x=46是原方程的解,符合题意,则1.5x=46×1.5=69(km/h).答:普通快车的平均速度为46km/h,直达快车的平均速度为69km/h.23.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD 交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)【考点】切线的判定与性质;扇形面积的计算.【分析】(1)连接OD,由BC为圆O的切线,利用切线的性质得到∠ABC为直角,由CD=CB,利用等边对等角得到一对角相等,再由OB=OD,利用等边对等角得到一对角相等,进而得到∠ODC=∠ABC,确定出∠ODC为直角,即可得证;(2)根据图形,利用外角性质及等边对等角得到∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD⊥EC于点D,可得∠E+∠C=∠E+∠DOE=90°,等量代换即可得证;(3)作OF⊥DB于点F,利用垂径定理得到F为BD中点,连接AD,由EA=AO可得:AD是Rt△ODE斜边的中线,利用直角三角形斜边上的中线等于斜边的一半得到AD=AE=AO,即三角形AOD为等边三角形,确定出∠DAB=60°,即∠OBD=30°,在直角三角形BOF中,利用30°所对的直角边等于斜边的一半求出OF的长,利用勾股定理求出BFO的长,得到BD的长,得出∠DOB为120°,由扇形BDO面积减去三角形BOD面积求出阴影部分面积即可.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)证明:如图,∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD⊥EC于点D,∴∠E+∠C=∠E+∠DOE=90°,∴∠C=∠DOE=2∠DBE;(3)解:作OF⊥DB于点F,连接AD,由EA=AO可得:AD是Rt△ODE斜边的中线,∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°,又∵OB=AO=2,OF⊥BD,∴OF=1,BF=,∴BD=2BF=2,∠BOD=180°﹣∠DOA=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=﹣.24.甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了0.5 h;(2)求线段DE对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.【考点】一次函数的应用.【分析】(1)利用图象得出CD这段时间为2.5﹣2=0.5,得出答案即可;(2)利用D点坐标为:(2.5,80),E点坐标为:(4.5,300),求出函数解析式即可;(3)利用OA的解析式得出,当60x=110x﹣195时,即可求出轿车追上货车的时间.【解答】解:(1)利用图象可得:线段CD表示轿车在途中停留了:2.5﹣2=0.5小时;(2)根据D点坐标为:(2.5,80),E点坐标为:(4.5,300),代入y=kx+b,得:,解得:,故线段DE对应的函数解析式为:y=110x﹣195(2.5≤x≤4.5);(3)∵A点坐标为:(5,300),代入解析式y=ax得,300=5a,解得:a=60,故y=60x,当60x=110x﹣195,解得:x=3.9,故3.9﹣1=2.9(小时),答:轿车从甲地出发后经过2.9小时追上货车.25.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=ME,DM⊥ME .(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.【考点】四边形综合题;直角三角形斜边上的中线;正方形的性质.【分析】猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AE,AE和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,【解答】猜想:DM=ME证明:如图1,延长EM交AD于点H,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.(1)如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是正方形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.∵四边形ABCD和CEFG是正方形,∴AD=CD,CE=CF,∵△FME≌△AMH,∴EF=AH,∴DH=DE,∴△DEH是等腰直角三角形,又∵MH=ME,故答案为:DM=ME,DM⊥ME.(2)如图2,连接AE,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在Rt△ADF中,AM=MF,∴DM=AM=MF,∠MDA=∠MAD,∴∠DMF=2∠DAM.在Rt△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.∵∠MDA=∠MAD,∠MAE=∠MEA,∴∠DME=∠DMF+∠FME=∠MDA+∠MAD+∠MAE+∠MEA=2(∠DAM+∠MAE)=2∠DAC=2×45°=90°.∴DM⊥ME.26.已知,如图,在平面直角坐标系中,△ABC的边BC在x轴上,顶点A在y轴的正半轴上,OA=2,OB=1,OC=4.(1)求过A、B、C三点的抛物线的解析式;(2)设点G是对称轴上一点,求当△GAB周长最小时,点G的坐标;(3)若抛物线对称轴交x轴于点P,在平面直角坐标系中,是否存在点Q,使△PAQ是以PA为腰的等腰直角三角形?若存在,写出所有符合条件的点Q的坐标,并选择其中一个的加以说明;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)由线段长度求出三个点的坐标,再用待定系数法求解即可;(2)找到点B关于抛物线对称轴的对称点A,取AB与抛物线对称轴的交点即可;(3)分别过点P,A作AP的垂线,取点Q,根据等腰直角三角形构建全等三角形即可求解.【解答】解:(1)由题意可求,A(0,2),B(﹣1,0),点C的坐标为(4,0).设过A、B、C三点的抛物线的解析式为y=a(x﹣4)(x+1),把点A(0,2)代入,解得:a=﹣,所以抛物线的解析式为:y=﹣(x﹣4)(x+1)=﹣x2+x+2,(2)如图1,抛物线y=﹣x2+x+2的对称轴为:x=,由点C是点B关于直线:x=的对称点,所以直线AC和直线x=的交点即为△GAB周长最小时的点G,设直线AC的解析式为:y=mx+n,把A(0,2),点C(4,0)代入得:.,解得:,所以:y=﹣x+2,当x=时,y=,所以此时点G(,);(3)如图2,使△PAQ是以PA为腰的等腰直角三角形的所有符合条件的点Q的坐标:Q1(,),Q2(﹣,﹣),Q3(2,),Q4(﹣2,),证明:过点Q1作Q1M⊥x轴,垂足为M,由题意:∠APQ1=90°,AP=PQ1,∴∠APO+∠MPQ1=90°,∵∠APO+∠PAO=90°,∴∠PAO=∠MPQ1,在△AOP和△MPQ1中,,∴△AOP≌△MPQ1,∴PM=AO=2,Q1M=OP=,∴OM=,此时点Q的坐标为:(,).2016年6月23日。

山东省临沂市2019年中考数学模拟试题(含答案)

山东省临沂市2019年中考数学模拟试题(含答案)

山东省临沂市2019年中考数学模拟试题一、选择题(本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号涂在答题卡上.) 1.3-的倒数是 A .3B .3-C .13D .13-2.为积极转化奥运会、残奥会志愿者工作成果,完善和健全志愿者服务体系及长效机制,北京市将力争实现每年提供志愿服务时间11000万小时. 11000万小时用科学记数法表示为A .61011.0⨯万小时B .5101.1⨯万小时 C .4101.1⨯万小时 D .31011⨯万小时3. 下列运算正确的是A .42263·2x x x =B .13222-=-x xC .2223232x x x =÷ D . 422532x x x =+ 4. 某市2008年4月的一周中每天最低气温如下:13,11,7,12,13,13,12,则在这一周中,最低气温的众数和中位数分别是 A. 13和11 B. 12和13 C. 11和12 C. 13和12 5.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有 A .4个 B .5个 C .6个 D .7个6.不等式组240,321x x -<⎧⎨-<⎩的解集为A .1<xB .21><x x 或C .2>xD .21<<x7.估计40值A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间俯视图 主视图 (第5题)8.将点A (4,0)绕着原点O 顺时针方向旋转30°角到对应点B ,则点的B 坐标是 A .(32,2) B .(32,-2) C .(4,-2)D .(2,-32)9.如图,△ABE 和△ACD 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠BAC =150°,则∠θ的度数是 A .60° B .50° C .40°D .30°10.如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm ,如果一辆22型自行车的链条(没有安装前)共有50节链条组成,那么链条的总长度是( )A .75 cmB .85.8 cmC .85 cmD .84.2 cm11.将如图所示的圆心角为90的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是12.某火车站的显示屏,每隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏上正好显示火车班次信息的概率是A .16B.15 C.14D .13 13.如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向上取点C ,测得AC =a ,∠ACB =α,那么AB 等于A .αsin ⋅aB .cos a α⋅C .αtan ⋅aD .cot a α⋅11题图 A . B . C . D . 1节链条 2节链条 50节链条A BC a 第4题图(第13题)14.小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l 1、l 2,如图所示,他解的这个方程组是A .22112y x y x =-+⎧⎪⎨=-⎪⎩ B . 22y x y x =-+⎧⎨=-⎩C .38132y x y x =-⎧⎪⎨=-⎪⎩ D . 22112y x y x =-+⎧⎪⎨=--⎪⎩ 二、填空题(本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.) 15.分解因式:24(3)x --= .16.如果方程042=+-c x x 的—个根是32+.那么此方程的另一个根是 .17.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b)进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-1,3)放入其中,得到实数m ,再将实数对(m ,1)放入其中后,得到实数是 .18. 如图,直线a ∥b ,直线AC 分别交a 、b 于点B 、C ,直线AD 交a 于点D 。

2018-2019年山东临沂初三上年中数学试卷及解析解析.doc.doc

2018-2019年山东临沂初三上年中数学试卷及解析解析.doc.doc

2018-2019年山东临沂初三上年中数学试卷及解析解析【一】选择题:〔每题3分,此题总分值共36分,〕以下每题中有四个备选答案,其中只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下、1、一元二次方程x〔x﹣2〕=2﹣x的根是〔〕A、﹣1B、2C、1和2D、﹣1和22、以下图形中,中心对称图形有〔〕A、4个B、3个C、2个D、1个3、关于x的方程x2+2kx﹣1=0的根的情况描述正确的选项是〔〕A、k为任何实数,方程都没有实数根B、k为任何实数,方程都有两个不相等的实数根C、k为任何实数,方程都有两个相等的实数根D、k取值不同实数,方程实数根的情况有三种可能4、关于x的方程ax2﹣〔3a+1〕x+2〔a+1〕=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,那么a的值是〔〕A、1B、﹣1C、1或﹣1D、25、如图,将Rt△ABC〔其中∠B=30°,∠C=90°〕绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于〔〕A、115°B、120°C、125°D、145°6、2017年向阳村农民人均收入为7200元,到2018年增长至8712元、这两年中,该村农民人均收入平均每年的增长率为〔〕A、10%B、15%C、20%D、25%7、抛物线y=ax2+bx+c与x轴的两个交点为〔﹣1,0〕,〔3,0〕,其形状与抛物线y=﹣2x2相同,那么y=ax2+bx+c的函数关系式为〔〕A、y=﹣2x2﹣x+3B、y=﹣2x2+4x+5C、y=﹣2x2+4x+8D、y=﹣2x2+4x+68、如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,那么∠A OD等于〔〕A、160°B、150°C、140°D、120°9、如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B、∠A=30°,那么∠C的大小是〔〕A、30°B、45°C、60°D、40°10、对于二次函数y=〔x﹣1〕2+2的图象,以下说法正确的选项是〔〕A、开口向下B、对称轴是x=﹣1C、顶点坐标是〔1,2〕D、与x轴有两个交点11、二次函数y=ax2+bx+c〔a,b,c为常数,且a≠0〕中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3以下结论:〔1〕ac<0;〔2〕当x>1时,y的值随x值的增大而减小、〔3〕3是方程ax2+〔b﹣1〕x+c=0的一个根;〔4〕当﹣1<x<3时,ax2+〔b﹣1〕x+c>0、其中正确的个数为〔〕A、4个B、3个C、2个D、1个12、如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD、PC=PD=BC、以下结论:〔1〕PD与⊙O相切;〔2〕四边形PCBD是菱形;〔3〕PO=AB;〔4〕∠PDB=120°、其中正确的个数为〔〕A、4个B、3个C、2个D、1个【二】填空题:〔每题4分,共24分〕13、假设关于x的一元二次方程x2﹣2x﹣k=0没有实数根,那么k的取值范围是、14、一元二次方程x2﹣3x﹣3=0的两根为a与b,那么的值是、15、如图,点A、B、P在⊙O上,∠APB=50°,假设M是⊙O上的动点,那么等腰△ABM顶角的度数为、16、如下图,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,∠BDA=45°,那么∠BDE=、17、如下图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为〔﹣3,0〕,将⊙P沿x轴正方向平移,使⊙P与y轴相切,那么平移的距离为、18、二次函数y=ax2+bx+c〔a≠0〕的图象如下图,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0、其中结论正确的选项是、〔填正确结论的序号〕【三】解答以下各题〔共60分〕19、解方程〔1〕x2﹣2x﹣1=0、〔2〕〔x﹣1〕2+2x〔x﹣1〕=0、20、如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,假设AF=4、AB=7、〔1〕旋转中心为;旋转角度为;〔2〕求DE的长度;〔3〕指出BE与DF的关系如何?并说明理由、21、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF、〔1〕试判断△AEF的形状,并说明理由;〔2〕填空:△ABF可以由△ADE绕旋转中心点,按顺时针方向旋转度得到;〔3〕假设BC=8,那么四边形AECF的面积为、〔直接写结果〕22、如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD、〔1〕求证:BD=CD;〔2〕请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由、23、〔10分〕〔2018•新疆〕如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D、〔1〕求证:CD是⊙O的切线;〔2〕假设CD=2,求⊙O的半径、24、某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系、每盆植入3株时,平均单株盈利3元;以同样的栽培条件,假设每盆增加1株,平均单株盈利就减少0、5元、要使每盆的盈利达到10元,每盆应该植多少株?25、〔10分〕〔2018•牡丹江〕如图,抛物线y=x2+bx+c经过点〔1,﹣4〕和〔﹣2,5〕,请解答以下问题:〔1〕求抛物线的解析式;〔2〕假设与x轴的两个交点为A,B,与y轴交于点C、在该抛物线上是否存在点D,使得△ABC与△ABD全等?假设存在,求出D点的坐标;假设不存在,请说明理由注:抛物线y=ax2+bx+c的对称轴是x=﹣、2018-2016学年山东省临沂市九年级〔上〕期中数学试卷参考答案与试题解析【一】选择题:〔每题3分,此题总分值共36分,〕以下每题中有四个备选答案,其中只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下、1、一元二次方程x〔x﹣2〕=2﹣x的根是〔〕A、﹣1B、2C、1和2D、﹣1和2【考点】解一元二次方程-因式分解法、【专题】计算题、【分析】先移项得到x〔x﹣2〕+〔x﹣2〕=0,然后利用提公因式因式分解,最后转化为两个一元一次方程,解方程即可、【解答】解:x〔x﹣2〕+〔x﹣2〕=0,∴〔x﹣2〕〔x+1〕=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1、应选D、【点评】此题考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程、2、以下图形中,中心对称图形有〔〕A、4个B、3个C、2个D、1个【考点】中心对称图形、【分析】根据中心对称图形的定义和各图的特点即可求解、【解答】解:第四个图只是轴对称图形,第1、第2和第3个是中心对称图形、中心对称图形有3个、应选:B、【点评】此题考查中心对称图形的概念:绕对称中心旋转180度后所得的图形与原图形完全重合、3、关于x的方程x2+2kx﹣1=0的根的情况描述正确的选项是〔〕A、k为任何实数,方程都没有实数根B、k为任何实数,方程都有两个不相等的实数根C、k为任何实数,方程都有两个相等的实数根D、k取值不同实数,方程实数根的情况有三种可能【考点】根的判别式、【分析】先计算判别式的值得到△=4k2+4,根据非负数的性质得△>0,然后根据判别式的意义进行判断、【解答】解:△=4k2﹣4×〔﹣1〕=4k2+4,∵4k2≥0,∴4k2+4>0∴方程有两个不相等的实数根、应选B、【点评】此题考查了一元二次方程ax2+bx+c=0〔a≠0〕的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根、4、关于x的方程ax2﹣〔3a+1〕x+2〔a+1〕=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,那么a的值是〔〕A、1B、﹣1C、1或﹣1D、2【考点】根与系数的关系;根的判别式、【专题】计算题;压轴题、【分析】根据根与系数的关系得出x1+x2=﹣,x1x2=,整理原式即可得出关于a的方程求出即可、【解答】解:依题意△>0,即〔3a+1〕2﹣8a〔a+1〕>0,即a2﹣2a+1>0,〔a﹣1〕2>0,a≠1,∵关于x的方程ax2﹣〔3a+1〕x+2〔a+1〕=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,∴x1﹣x1x2+x2=1﹣a,∴x1+x2﹣x1x2=1﹣a,∴﹣=1﹣a,解得:a=±1,又a≠1,∴a=﹣1、应选:B、【点评】此题主要考查了根与系数的关系,由x1﹣x1x2+x2=1﹣a,得出x1+x2﹣x1x2=1﹣a是解决问题的关键、5、如图,将Rt△ABC〔其中∠B=30°,∠C=90°〕绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于〔〕A、115°B、120°C、125°D、145°【考点】旋转的性质、【专题】计算题、【分析】先利用互余计算出∠BAC=60°,再根据旋转的性质得到∠BAB′等于旋转角,然后利用邻补角计算∠BAB′的度数即可、【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=60°,∵Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,∴∠BAB′等于旋转角,且∠BAB′=180°﹣∠BAC=120°,∴旋转角等于120°、应选B、【点评】此题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等、6、2017年向阳村农民人均收入为7200元,到2018年增长至8712元、这两年中,该村农民人均收入平均每年的增长率为〔〕A、10%B、15%C、20%D、25%【考点】一元二次方程的应用、【专题】增长率问题、【分析】设该村人均收入的年平均增长率为x,2017年的人均收入×〔1+平均增长率〕2=2018年人均收入,把相关数值代入求得年平均增长率、【解答】解:设该村人均收入的年平均增长率为x,由题意得:7200〔1+x〕2=8712,解得:x1=﹣2、1〔不合题意舍去〕,x2=0、1=10%、答:该村人均收入的年平均增长率为10%、应选A、【点评】此题考查了一元二次方程的运用,应明确增长的基数,增长的次数,根据公式增长后的人均收入=增长前的人均收入×〔1+增长率〕、7、抛物线y=ax2+bx+c与x轴的两个交点为〔﹣1,0〕,〔3,0〕,其形状与抛物线y=﹣2x2相同,那么y=ax2+bx+c的函数关系式为〔〕A、y=﹣2x2﹣x+3B、y=﹣2x2+4x+5C、y=﹣2x2+4x+8D、y=﹣2x2+4x+6【考点】待定系数法求二次函数解析式、【专题】压轴题、【分析】抛物线y=ax2+bx+c的形状与抛物线y=﹣2x2相同,a=﹣2、y=ax2+bx+c与x轴的两个交点为〔﹣1,0〕,〔3,0〕,利用交点式求表达式即可、【解答】解:根据题意a=﹣2,所以设y=﹣2〔x﹣x1〕〔x﹣x2〕,求出解析式y=﹣2〔x+1〕〔x﹣3〕,即是y=﹣2x2+4x+6、应选D、【点评】此题考查了抛物线的形状系数的关系,此题用交点式比较容易解、8、如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,那么∠AOD等于〔〕A、160°B、150°C、140°D、120°【考点】圆周角定理;垂径定理、【专题】压轴题、【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案、【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°、应选:C、【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键、9、如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B、∠A=30°,那么∠C的大小是〔〕A、30°B、45°C、60°D、40°【考点】切线的性质、【专题】计算题、【分析】根据切线的性质由AB与⊙O相切得到OB⊥AB,那么∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=AOB=30°、【解答】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=AOB=30°、应选:A、【点评】此题考查了切线的性质:圆的切线垂直于经过切点的半径、10、对于二次函数y=〔x﹣1〕2+2的图象,以下说法正确的选项是〔〕A、开口向下B、对称轴是x=﹣1C、顶点坐标是〔1,2〕D、与x轴有两个交点【考点】二次函数的性质、【专题】常规题型、【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为〔1,2〕,对称轴为直线x=1,从而可判断抛物线与x轴没有公共点、【解答】解:二次函数y=〔x﹣1〕2+2的图象开口向上,顶点坐标为〔1,2〕,对称轴为直线x=1,抛物线与x轴没有公共点、应选:C、【点评】此题考查了二次函数的性质:二次函数y=ax2+bx+c〔a≠0〕的顶点式为y=a〔x﹣〕2+,的顶点坐标是〔﹣,〕,对称轴直线x=﹣b2a,当a>0时,抛物线y=ax2+bx+c〔a≠0〕的开口向上,当a<0时,抛物线y=ax2+bx+c〔a≠0〕的开口向下、11、二次函数y=ax2+bx+c〔a,b,c为常数,且a≠0〕中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3以下结论:〔1〕ac<0;〔2〕当x>1时,y的值随x值的增大而减小、〔3〕3是方程ax2+〔b﹣1〕x+c=0的一个根;〔4〕当﹣1<x<3时,ax2+〔b﹣1〕x+c>0、其中正确的个数为〔〕A、4个B、3个C、2个D、1个【考点】二次函数的性质;二次函数图象与系数的关系;抛物线与x轴的交点;二次函数与不等式〔组〕、【专题】压轴题;图表型、【分析】根据表格数据求出二次函数的对称轴为直线x=1、5,然后根据二次函数的性质对各小题分析判断即可得解、【解答】解:〔1〕由图表中数据可得出:x=1时,y=5,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故〔1〕正确;〔2〕∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1、5,∴当x≥1、5时,y的值随x值的增大而减小,故〔2〕错误;〔3〕∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+〔b ﹣1〕x+c=0的一个根,故〔3〕正确;〔4〕∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+〔b﹣1〕x+c=0,∵x=3时,ax2+〔b﹣1〕x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2+〔b﹣1〕x+c>0,故〔4〕正确、应选:B、【点评】此题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度、熟练掌握二次函数图象的性质是解题的关键、12、如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD、PC=PD=BC、以下结论:〔1〕PD与⊙O相切;〔2〕四边形PCBD是菱形;〔3〕PO=AB;〔4〕∠PDB=120°、其中正确的个数为〔〕A、4个B、3个C、2个D、1个【考点】切线的判定与性质;全等三角形的判定与性质;菱形的判定、【专题】几何综合题、【分析】〔1〕利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO〔SSS〕,即可得出∠PCO=∠PDO=90°,得出答案即可;〔2〕利用〔1〕所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB〔SAS〕,即可得出答案;〔3〕利用全等三角形的判定得出△PCO≌△BCA〔ASA〕,进而得出CO=PO=AB;〔4〕利用四边形PCBD是菱形,∠CPO=30°,那么DP=DB,那么∠DPB=∠DBP=30°,求出即可、【解答】解:〔1〕连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO〔SSS〕,∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故〔1〕正确;〔2〕由〔1〕得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB〔SAS〕,∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故〔2〕正确;〔3〕连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA〔ASA〕,∴AC=CO,∴A C=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,故〔3〕正确;〔4〕∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,那么∠DPB=∠DBP=30°,∴∠PDB=120°,故〔4〕正确;正确个数有4个,应选:A、【点评】此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键、【二】填空题:〔每题4分,共24分〕13、假设关于x的一元二次方程x2﹣2x﹣k=0没有实数根,那么k的取值范围是k<﹣1、【考点】根的判别式、【分析】根据关于x的一元二次方程x2﹣2x﹣k=0没有实数根,得出△=4+4k<0,再进行计算即可、【解答】解:∵一元二次方程x2﹣2x﹣k=0没有实数根,∴△=〔﹣2〕2﹣4×1×〔﹣k〕=4+4k<0,∴k的取值范围是k<﹣1;故答案为:k<﹣1、【点评】此题考查了一元二次方程ax2+bx+c=0〔a≠0〕的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根、14、一元二次方程x2﹣3x﹣3=0的两根为a与b,那么的值是﹣1、【考点】根与系数的关系、【专题】计算题、【分析】根据根与系数的关系得到a+b=3,ab=﹣3,再把原式变形得到,然后利用整体代入的方法进行计算、【解答】解:根据题意得a+b=3,ab=﹣3,所以原式===﹣1、故答案为﹣1、【点评】此题考查了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程的两根为x1,x2,那么x1+x2=﹣,x1•x2=、15、如图,点A、B、P在⊙O上,∠APB=50°,假设M是⊙O上的动点,那么等腰△ABM顶角的度数为50°或80°或130°、【考点】圆周角定理;等腰三角形的性质、【分析】首先连接AM,BM,分别从假设点M在优弧APB上与假设点M在劣弧AB上,根据圆周角定理与等腰三角形的性质,即可求得等腰△ABM顶角的度数、【解答】解:连接AM,BM,①假设点M在优弧APB上,∴∠M=∠APB=50°,假设AM=BM,那么等腰△ABM顶角的度数为50°;假设AM=AB或BM=AB,那么等腰△ABM顶角的度数为:180°﹣2∠M=80°;②假设点M在劣弧AB上,那么∠M=180°﹣∠APB=130°,此时∠M是顶角、∴等腰△ABM顶角的度数为:50°或80°或130°、故答案为:50°或80°或130°、【点评】此题考查了圆周角定理、等腰三角形的性质以及圆的内接四边形的性质、此题难度适中,注意掌握辅助线的作法,注意数形结合思想与分类讨论思想的应用、16、如下图,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,∠BDA=45°,那么∠BDE=85°、【考点】旋转的性质、【专题】计算题、【分析】根据旋转的性质得∠ADE=∠B=40°,然后计算∠BDA+∠ADE即可、【解答】解:∵△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,∴∠ADE=∠B=40°,∴∠BDE=∠BDA+∠ADE=45°+40°=85°、故答案为85°、【点评】此题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等、17、如下图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为〔﹣3,0〕,将⊙P沿x轴正方向平移,使⊙P与y轴相切,那么平移的距离为1或5、【考点】直线与圆的位置关系;坐标与图形性质;平移的性质、【分析】平移分在y轴的左侧和y轴的右侧两种情况写出答案即可、【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5、故答案为:1或5、【点评】此题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径、18、二次函数y=ax2+bx+c〔a≠0〕的图象如下图,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0、其中结论正确的选项是①②⑤、〔填正确结论的序号〕【考点】二次函数图象与系数的关系、【专题】压轴题、【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断、【解答】解:①由图知:抛物线与x轴有两个不同的交点,那么△=b2﹣4ac>0,∴b2>4ac,故①正确;②抛物线开口向上,得:a>0;抛物线的对称轴为x=﹣=1,b=﹣2a,故b<0;抛物线交y轴于负半轴,得:c<0;所以abc>0;故②正确;③∵抛物线的对称轴为x=﹣=1,b=﹣2a,∴2a+b=0,故2a﹣b=0错误;④根据②可将抛物线的解析式化为:y=ax2﹣2ax+c〔a≠0〕;由函数的图象知:当x=﹣2时,y>0;即4a﹣〔﹣4a〕+c=8a+c>0,故④错误;⑤根据抛物线的对称轴方程可知:〔﹣1,0〕关于对称轴的对称点是〔3,0〕;当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确;所以这结论正确的有①②⑤、故答案为:①②⑤、【点评】此题主要考查了图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用、【三】解答以下各题〔共60分〕19、解方程〔1〕x2﹣2x﹣1=0、〔2〕〔x﹣1〕2+2x〔x﹣1〕=0、【考点】解一元二次方程-因式分解法;解一元二次方程-配方法、【分析】〔1〕方程常数项移到右边,两边加上1变形后,开方即可求出解;〔2〕方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解、【解答】解:〔1〕方程移项得:x2﹣2x=1,配方得:x2﹣2x+1=2,即〔x﹣1〕2=2,开方得:x﹣1=±,那么x1=1+,x2=1﹣;〔2〕分解因式得:〔x﹣1〕[〔x﹣1〕+2x]=0,可得x﹣1=0或3x﹣1=0,解得:x1=1,x2=、【点评】此题考查了解一元二次方程﹣因式分解法,以及配方法,熟练掌握各种解法是解此题的关键、20、如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,假设AF=4、AB=7、〔1〕旋转中心为点A;旋转角度为90°;〔2〕求DE的长度;〔3〕指出BE与DF的关系如何?并说明理由、【考点】旋转的性质;正方形的性质、【分析】〔1〕根据旋转的性质,点A为旋转中心,对应边AB、AD的夹角为旋转角;〔2〕根据旋转的性质可得AE=AF,AD=AB,然后根据DE=AD﹣AE计算即可得解;〔3〕根据旋转可得△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF,全等三角形对应角相等可得∠ABE=∠ADF,然后求出∠ABE+∠F=90°,判断出BE⊥DF、【解答】解:〔1〕旋转中心为点A,旋转角为∠BAD=90°;〔2〕∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=4,AD=AB=7,∴DE=AD﹣AE=7﹣4=3;〔3〕BE、DF的关系为:BE=DF,BE⊥DF、理由如下:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴△ABE≌△ADF,∴BE=DF,∠ABE=∠ADF,∵∠ADF+∠F=180°﹣90°=90°,∴∠ABE+∠F=90°,∴BE⊥DF,∴BE、DF的关系为:BE=DF,BE⊥DF、【点评】此题考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键、21、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF、〔1〕试判断△AEF的形状,并说明理由;〔2〕填空:△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90度得到;〔3〕假设BC=8,那么四边形AECF的面积为64、〔直接写结果〕【考点】旋转的性质;全等三角形的判定与性质;正方形的性质、【分析】〔1〕根据正方形性质得出AB=AD,∠DAB=∠ABF=∠D=90°,证△ADE≌△ABF,推出AE=AF,∠DAE=∠FAB即可、〔2〕根据全等三角形性质和旋转的性质得出即可、〔3〕求出四边形AECF的面积等于正方形ABCD面积,求出正方形的面积即可、【解答】解:〔1〕△AEF是等腰直角三角形,理由是:∵四边形ABCD是正方形,F是BC延长线上一点,∴AB=AD,∠DAB=∠ABF=∠D=90°,在△ADE和△ABF中,,∴△ADE≌△ABF〔SAS〕∴AE=AF,∠DAE=∠FAB,∵∠DAB=∠DAE+∠BAE=90°,∴∠FAE=∠DAB=90°,即△AE F是等腰直角三角形、〔2〕△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到的,故答案为:A,90、〔3〕∵△ADE≌△ABF,∴S ADE=S△ABF,∴四边形AECF的面积S=S四边形ABCE+S△ABF=S四边形ABCE+S△ADE=S正方形ABCD=8×8=64,故答案为:64、【点评】此题考查了旋转性质,全等三角形的性质和判定,正方形性质的应用,主要考查学生的推理能力、22、如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD、〔1〕求证:BD=CD;〔2〕请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由、【考点】确定圆的条件;圆心角、弧、弦的关系、【专题】证明题;探究型、【分析】〔1〕利用等弧对等弦即可证明、〔2〕利用等弧所对的圆周角相等,∠BAD=∠CBD再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C三点在以D为圆心,以DB为半径的圆上、【解答】〔1〕证明:∵AD为直径,AD⊥BC,∴由垂径定理得:∴根据圆心角、弧、弦之间的关系得:BD=CD、〔2〕解:B,E,C三点在以D为圆心,以DB为半径的圆上、理由:由〔1〕知:,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,∵BE是∠ABC的平分线,∴∠4=∠5,∴∠DBE=∠DEB,∴DB=D E、由〔1〕知:BD=CD∴DB=DE=D C、∴B,E,C三点在以D为圆心,以DB为半径的圆上、〔7分〕【点评】此题主要考查等弧对等弦,及确定一个圆的条件、23、〔10分〕〔2018•新疆〕如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D、〔1〕求证:CD是⊙O的切线;〔2〕假设CD=2,求⊙O的半径、【考点】切线的判定;三角形三边关系;圆周角定理、【专题】几何图形问题、【分析】〔1〕连结OC,由=,根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,那么∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;〔2〕连结BC,由AB为直径得∠ACB=90°,由==得∠BOC=60°,那么∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三边的关系得AC=2CD=4,在Rt△ACB中,利用含30度的直角三角形三边的关系得BC=AC=4,AB=2BC=8,所以⊙O的半径为4、【解答】〔1〕证明:连结OC,如图,∵=,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;〔2〕解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,BC=AC=×4=4,∴AB=2BC=8,∴⊙O的半径为4、【点评】此题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线、也考查了圆周角定理和含30度的直角三角形三边的关系、24、某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系、每盆植入3株时,平均单株盈利3元;以同样的栽培条件,假设每盆增加1株,平均单株盈利就减少0、5元、要使每盆的盈利达到10元,每盆应该植多少株?【考点】一元二次方程的应用、【分析】根据假设每盆花苗增加x株,那么每盆花苗有〔x+3〕株,得出平均单株盈利为〔3﹣0、5x〕元,由题意得〔x+3〕〔3﹣0、5x〕=10求出即可、【解答】解:设每盆花苗增加x株,那么每盆花苗有〔x+3〕株,平均单株盈利为:〔3﹣0、5x〕元,由题意得:〔x+3〕〔3﹣0、5x〕=10、化简,整理,的x2﹣3x+2=0、解这个方程,得x1=1,x2=2,那么3+1=4,2+3=5,答:每盆应植4株或者5株、【点评】此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键、25、〔10分〕〔2018•牡丹江〕如图,抛物线y=x2+bx+c经过点〔1,﹣4〕和〔﹣2,5〕,请解答以下问题:〔1〕求抛物线的解析式;〔2〕假设与x轴的两个交点为A,B,与y轴交于点C、在该抛物线上是否存在点D,使得△ABC与△ABD全等?假设存在,求出D点的坐标;假设不存在,请说明理由注:抛物线y=ax2+bx+c的对称轴是x=﹣、【考点】二次函数综合题、【分析】〔1〕由抛物线y=x2+bx+c经过点〔1,﹣4〕和〔﹣2,5〕,利用待定系数法即可求得此抛物线的解析式;〔2〕首先由抛物线y=ax2+bx+c的对称轴是x=﹣,即可求得此抛物线的对称轴,根据轴对称的性质,点C关于x=1的对称点D即为所求,利用SSS即可判定△ABC≌△BAD,又由抛物线的与y轴交于点C,即可求得点C的坐标,由对称性可求得D点的坐标、【解答】解:〔1〕∵抛物线y=x2+bx+c经过点〔1,﹣4〕和〔﹣2,5〕,∴,解得:、故抛物线的解析式为:y=x2﹣2x﹣3、〔2〕存在、∵抛物线y=x2﹣2x﹣3的对称轴为:x=﹣=1,∴根据轴对称的性质,点C关于x=1的对称点D即为所求,此时,AC=BD,BC=AD,在△ABC和△BAD中,∵,∴△ABC≌△BAD〔SSS〕、在y=x2﹣2x﹣3中,令x=0,得y=﹣3,那么C〔0,﹣3〕,D〔2,﹣3〕、【点评】此题考查了待定系数法求二次函数的解析式、二次函数的性质、全等三角形的判定与二次函数的对称性、此题难度适中,注意掌握数形结合思想与方程思想的应用、。

【精选3份合集】山东省临沂市2019年中考一模数学试卷有答案含解析

【精选3份合集】山东省临沂市2019年中考一模数学试卷有答案含解析

中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,4解析:B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.2.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h解析:C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.3.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0解析:C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故选:C.4.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为().A.60 °B.75°C.85°D.90°解析:C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.考点: 旋转的性质.5.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )A.6 B.8C.10 D.12解析:D【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴AG DGGE CG==1,∴AG=GE∴AE=2AG=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.6.如图,矩形ABCD中,E为DC的中点,AD:AB=3:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②2BF=PB•EF;③PF•EF=22AD;④EF•EP=4AO•PO.其中正确的是()A.①②③B.①②④C.①③④D.③④解析:B【解析】【分析】由条件设3x,AB=2x,就可以表示出3,23x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设3x,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB3,CD=2x∵CP:BP=1:23,23∵E为DC的中点,∴CE=12CD=x,∴tan∠CEP=PCEC=3,tan∠EBC=ECBC=3∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴BE BP EF BF∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴2BF=PB·EF,故②正确∵∠F=30°,∴PF=2PB=43x,过点E作EG⊥AF于G,∴∠EGF=90°,3433x=8x2 2AD23)2=6x2,∴PF·EF≠2AD2,故③错误. 在Rt△ECP中,∵∠CEP=30°,。

2018-2019年中考数学一模考试试题含答案

2018-2019年中考数学一模考试试题含答案

中考数学一模考试一试题温馨提示: 1.请考生将各题答案均涂或写在答题卡上,答在试卷上无效.2.数学试卷共三道大题,总分120 分,考试时间120 分钟.一、填空题(每题3分,满分 30分)1.十九大报告中指出,过去五年,我国国内生产总值从54 万亿元增加到80 万亿元,对世界经济增长贡献率超过 30%,此中“ 80 万亿元”用科学记数法表示为元.2.函数yx中,自变量 x 的取值范围是.x 1 第 3题图3.如图,已知 AC=BD,要使△ ABC≌△ DCB,则只要增添一个适合的条件是. (填一个即可)4.在一个口袋中有 4 个完好同样的小球,把它们分别标号为1, 2, 3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是. B>a D5.若不等式组x 的解集为x >1,则 a 的取值范围是. F x < 12 4xPA CE 6.商场一件商品按标价的九折销售仍赢利20%,已知商品的标价为 28 元,则商品第7题图的进价是元.7.如图:在△ ABC和△ DCE是全等的三角形,∠ ACB= 90°, AC= 6, BC= 8,点 F 是 ED的中点,点P 是线段 AB上动点,则线段PF 最小时的长度.8.圆锥的底面半径为 1,它的侧面睁开图的圆心角为180°,则这个圆锥的侧面积为.9.矩形纸片 ABCD, AB=9, BC=6,在矩形边上有一点P,且 DP=3.将矩形纸片折叠,使点B与点 P重合,折痕所在直线交矩形两边于点E, F,则 EF 长为.10.如图,在平面直角坐标系中,边长为 1 的正方形OA1B1C的对角线 A1C 和 OB1交于点 M1;以 M1A1为对角线作第二个正方形 A2A1B2 M1,对角线 A1 M1和 A2B2交于点 M2;以M2A1为对角线作第三个正方形 A3A1B3 M2,对角线 A1 M2和 A3B3交于点 M3;,挨次类推,这样作的第n 个正方形对角线交点的坐标为 M n _______________.y CB 1M 1M 2B 2M 3B 3 OA 2 A 3 A 1 x第 13 题图第10题图二、选择题(每题 3 分,满分 30 分,请将各题答案均涂或写在答题卡上.)11. 以下计算中 , 正确的选项是( )A . 2a 23b 36a 524a 2C . a5 2a 7D . x21B . 2ax 212. 以下图形中既是轴对称图形又是中心对称图形的是( )ABC D13. 由一些大小同样的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是( ) A . 3B. 4C .5D . 614.一组数据 1,2, a 的均匀数为 2,另一组数据 -l , a ,1,2, b 的独一众数为 -l ,则数据 -1 , a ,b , 1, 2的中位数为( )A . -1B. 1C .2D . 315. 一水池有甲、乙、丙三个水管,此中甲、丙两管为进水管,乙管为出水管.单位时间内,甲管 水流量最大,丙管水流量最小.先开甲、乙两管,一段时间后,封闭乙管开丙管,又经过一段时间,封闭甲管开乙管.则能正确反应水池蓄水量 y( 立方米 ) 随时间 t( 小时 ) 变化的图象是( )16.己知对于 x 的分式方程a 2=1 的解是非正数,则 a 的取值范围是()x 1A.a≤- l B .a≤- 2 C.a≤1且a≠-2 D .a≤- 1 且 a≠- 217.如图, AC是⊙ O的切线,切点为C, BC是⊙ O的直径, AB交⊙ O于点 D,连结 OD,若∠A=50°,则∠ COD的度数为()A. 40° B . 50° C .60° D . 80°1 8.如图,已知直线 AC 与反比率函数图象交于点A,与x轴、y轴分别交于点 C、E, E 恰为线段AC的中点,S△EOC=1,则反比率函数的关系式为()4B . y 4. y2D2A.y Cx . yx x x 19.在国家倡议的“阳光体育”活动中,老师给小明30 元钱,让他买三样体育用品;大绳,小绳,毽子.此中大绳至多买两条,大绳每条10 元,小绳每条 3 元,毽子每个 1 元.在把钱都用尽的条件下,买法共有()A.6 种 B .7 种 C . 8 种 D .9 种20.如图,在矩形ABCD中, AD= 2 AB,∠BAD的均分线交B C于点 E,DH⊥AE 于点 H,连结 BH并延长交 CD于点F,连结 DE交 BF于点 O,以下结论:①∠ AED=∠CED;② OE=OD;③ BH=HF;④ BC﹣CF=2HE;⑤A B=HF,此中正确的有()A.2个B.3个C.4个D.5个yAEB O Cx第 17题图第18题图第20题图三、解答题(满分60 分)21. (此题满分 5 分)先化简,再求代数式a 1 a 2的值,此中 a 6 tan 60 a 2 a 1 a2 2a 122.(此题满分 6 分)每个小方格都是边长为 1 个单位长度的小正方形,△OAB在平面直角坐标系中的地点以下图.( 1)将△ OAB先向右平移5 个单位,再向上平移 3 个单位,得到△ O1A1B1,请画出△ O1A1B1并直接写出点B1的坐标;(2)将△ OAB绕原点 O顺时针旋转 90o,获得△ OA2B2,请画出△OA2B2,并求出点 A 旋转到 A2时线段 OA扫过的面积.2yBAOx23.(此题满分 6 分)如图:抛物线与x 轴交于 A(- 1, 0)、 B( 3, 0)两点,与y 轴交于点C,y OB=OC,连结 BC,抛物线的极点为D.连结 B、 D 两点.(1)求抛物线的分析式.(2)求∠ CBD的正弦值.24.(此题满分 7 分)某校为了认识本校九年级学生的视力状况(视力状况分为:不近视,轻度近视,中度近视,重度近视),随机对九年级的部分学生进行了抽样检查,将检查结果进行整理后,绘制了以下不完好的统计图,此中不近视与重度近视人数的和是中度近视人数的 2 倍.请你依据以上信息解答以下问题:(1)求本次检查的学生人数;(2)补全条形统计图,在扇形统计图中,“不近视”对应扇形的圆心角度数是度;(3)若该校九年级学生有 1050 人,请你预计该校九年级近视(包含轻度近视,中度近视,重度近视)的学生大概有多少人.A O B xCD25. (此题满分8 分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x (h ),两车之间的距离为 y ( km ),y ∕ km D(A)图中的折线表示 y 与 x 之间的函数关系,依据图像回答以下问题:( 1)请在图中的( )内填上正确的值,并写出两车的速度和.C( 2)求线段 BC 所表示的 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围.150B( 3)请直接写出两车之间的距离不超出15km 的时间范围.O10 412 x ∕ h326. (此题满分 8 分)已知四边形 ABCD 为正方形, E 是 BC 的中点,连结 AE ,过点 A 作∠ AFD ,使∠ AFD=2∠EAB , AF 交 CD于点 F ,如图①,易证:AF=CD+CF .( 1)如图②,当四边形 ABCD 为矩形时,其余条件不变,线段 AF ,CD ,CF 之间有如何的数目关系?请写出你的猜想,并赐予证明;( 2)如图③,当四边形 ABCD 为平行四边形时,其余条件不变,线段 AF ,CD ,CF 之间又有如何的数目关系?请直接写出你的猜想.CFDCFDECFDEEB A BABA图①图②图③27. (此题满分 10 分)某工厂计划生产 A 、 B 两种产品共 60 件,需购置甲、乙两种资料.生产一件A 产品需甲种资料 4 千克,乙种资料 1 千克;生产一件B 产品需甲、乙两各种资料各 3 千克.经测算,购置甲、乙两种材料各 1 千克共需资本60 元;购置甲种资料 2 千克和乙种资料 3 千克共需资本 155 元.( 1)甲、乙两种资料每千克分别是多少元?( 2)现工厂用于购置甲、乙两种资料的资本不超出9900 元,且生产 B 产品许多于 38 件,问符合生产条件的生产方案有哪几种?( 3)在( 2)的条件下,若生产一件 A 产品需加工费 40 元,若生产一件 B 产品需加工费50 元,应选择那种生产方案,使生产这60 件产品的成本最低?(成本=资料费 +加工费)28.(此题满分 10 分)如图,在平面直角坐标系中,已知矩形 AOBC的极点 C 的坐标是( 2, 4),动点 P 从点 A 出发,沿线段 AO 向终点 O运动,同时动点 Q从点 B 出发,沿线段 BC向终点 C运动.点 P、Q的运动速度均为 1 个单位,运动时间为 t 秒.过点 P 作 PE⊥AO交 AB于点 E.(1)求直线 AB 的分析式;(2)设△ PEQ的面积为 S,求 S 与 t 时间的函数关系,并指出自变量 t 的取值范围;(3)在动点 P、 Q运动的过程中,点 H 是矩形 AOBC内(包含边界)一点,且以B、 Q、E、 H 为极点的四边形是菱形,直接写出t 值和与其对应的点H的坐标.(答案写在此卷上无效!)数学参照答案一、填空题(每题 3 分,满分30 分)1、8× 1013; 2 、 x≥0 且 x≠ 1; 3 、AB=DC等(答案不独一); 4 、2;35、a≤ 1; 6 、21;7 、6.2 ;8 、 2π;9、6 2或2 10 ;(答对1个给2分,多答或含有错误答案不得分)10 、 2n n 1,1n2 2二、选择题(每题 3 分,满分30 分)11.D 12.B 13.B 14.B 15.D 16.D 17.D 18.B 19.D 20.B三、解答题(满分60 分)21.(本小题满分5 分)解:原式 = 1 , ------------------------------------------------------- (3 分)a 2∵ a 6 tan 60 2 =6 3 - 2 ------------------------------------------ (1分)∴原式 = 3. ------------------------------------------------------ (1 分)1822.(本小题满分 6 分)y解:( 1)以下图(2 分) A B---------------------------------B 的坐标为:( 9, 7)---------------------- (1 分)1( 2)以下图(1 分)O---------------------------------∵ AO= 12 32 10 , ------------------- (1 分)O A2 x 2∴ S = 90 10 5(1分)B2 360. ----------------223.(本小题满分 6 分)解:( 1)设 y= a(x+1)(x-3) 把 C(0 ,-3 )代入得 a=1------- (1 分)因此抛物线的分析式为: y=x2-2x-3-------------- ( 1 分)( 2)因此抛物线极点坐标为D( 1,- 4)过点 D 分别作x轴、y轴的垂线,垂足分别为E、 F.B(3 , 0) 、 C(0 , -3) 在 Rt △ BOC中, OB=3, OC=3,∴ BC2 18 .C(0,-3)、D(1,-4)在Rt△ CDF中,DF=1,CF=OF-OC=4-3=1,∴ CD2 2 .D( 1,- 4)、 E(1 ,0) 、 B(3 , 0) 在 Rt△ BDE中, DE=4, BE=OB-OE=3-1=2,∴ BD2 20 .∴ BC2 CD 2 BD 2,故△BCD为直角三角形. ------------------------ (3 分)因此 sin ∠ CBD= 10-------------------------------------------------- (1 分)1024.(本小题满分 7 分)解:(1)本次检查的学生数是: 14÷ 28%=50(人);-------------------------------- (2 分)( 2)补全条形图:不近视的人数20;重度近视人数 1 2;圆心角度数 144°; ------ (3 分)( 3)1050×14124=630(人).----------------------------------------- (1 分)50答:该校九年级近视的学生大概630 人.--------------------------------- (1 分)25.(本小题满分 8 分)解:(1)( 900);两车的速度和为225km∕h. ------------------------------------- (2 分)(2)900÷ 12=75km∕ h;225-75=150km ∕ h;900 ÷ 150=6h;225×( 6-4 ) =450km;∴ C(6,450)--------------------------------------------------------(2分)设 y BC=kx+b,由 B( 4, 0); C( 6, 450)得:y =225x-900 ( 4≤ x≤6)----------------------------------------------- (2 分)BC(3)59x 61 . -------------------------------------------------------- (2 分)151526.(本小题满分8 分)解:( 1)图②结论: AF=CD+CF.-------------------------------------------------G C F D(2分)证明:作DC, AE 的延伸线交于点G.∵四边形 ABCD是矩形, E∴∠ G=∠ EAB.∵∠ AFD=2∠EAB=2∠G=∠ FAG+∠ G,∴∠ G=∠ FAG.∴A F=FG=CF+CG.由 E 是 BC中点,可证△ CGE≌△ BAE,∴C G=AB=CD.∴AF=CF+CD.--------------------------------------------------- (4 分)( 2)图③结论: AF=CD+CF.------------------------------------------------ (2 分)27.(本小题满分10 分)解:( 1)设甲种资料每千克x 元,乙种资料每千克y 元,x+y=60 x=252x+3y=155 解得 y=35 --------------------------------------- (2 分)答:甲种资料每千克25 元,乙种资料每千克 35 元 ------------------------ (1 分)( 2)设生产 B 产品 m件,则生产 A 产品( 60-m)件,(25× 4+35× 1)(60-m) +( 35× 3+25× 3) m≤ 9900m≥ 38 ------------------------------------------------------------ (2 分)解得 38≤ m≤ 40------------------------------------------------------ (1 分)∵ m为整数,∴ m的值为 38、 39、 40 共三种方案。

山东省临沂市郯城县2018-2019学年度八年级(下)期中数学模拟试卷(一)(word版,含答案)

山东省临沂市郯城县2018-2019学年度八年级(下)期中模拟数学试卷(一)第Ⅰ卷(选择题 共36分) 2019.05注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后。

再选涂其它答案,不能答在试卷上。

一、选择题(本题共12小题.每小题3分,共36分)题号1 2 3 4 5 6 7 8 9 10 11 12答案1.下列计算正确的是A =B .=C .216=D 1= 2.下列四组线段中,可以构成直角三角形的是A .4,5,6B .5,12,13C .2,3,4D .1 33.把式子m 移到根号内,得A .BC .D . 4.关于ABCD 的叙述,正确的是A .若AB ⊥BC ,则ABCD 是菱形 B .若AC ⊥BD ,则ABCD 是正方形C .若AC=BD ,则ABCD 是矩形 D .若AB=AD ,则ABCD 是正方形 5.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC= 2∠CAD ,则∠BAE 的度数为A .20°B .22.5°C .27.5°D .30°6.如图,四边形ABCD 是菱形,对角线AC=8,DB=6,DH ⊥AB 于点H ,则DH 的长为第5题 第6题 第7题7.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是A .10尺B .11尺C .12尺D .13尺8.如图是用火柴棍摆成的边长分别是1,2,3根火柴棍时的正方形,当边长为10根火柴棍时,摆出的正方形所用的火柴棍的根数为A .100B .120C .200D .220 第9题9. 如上图,每个小正方形的边长为1,A ,B ,C 是小正方形的顶点,则∠ABC 的度数为A .90°B .60°C .45°D .30°10. 若△ABC 的三边,,a b c 满足()22220c b a b c -+--=,则△ABC 是 A .等腰三角形 B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形11. 若△ABC 的三边长,,a b c 满足222()()0a b a b c -+=-,则△ABC 是C .等腰直角三角形D .等腰三角形或直角三角形12. 如图,在菱形ABCD 中,点E 是BC 边的中点,动点M 在CD 边上运动,以EM 为折痕将△CEM 折叠得到△PEM ,联接PA ,若AB=4,∠BAD=60°,则PA 的最小值是A B .2 C .2 D .4第12题 第15题第Ⅱ卷(共84分)二、填空题(每题3分,共21分)13.如果代数式2x -有意义,那么字母x 的取值范围是 .14.已知2a =,2b =,求22a b +的值为 .15.如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件 (写一个即可),使四边形ABCD 是平行四边形.16.如图,在矩形ABCD 中,点E 、F 分别在边CD 、BC 上,且DC=3DE=6.将矩形沿直线EF 折叠,使点C 恰好落在AD 边上的点P 处,则FP= .17.如图,正方形ABCO 的顶点C 、A 分别在x 轴、y 轴上,BC 是菱形BDCE 的对角线,若 ∠D=60°,BC=2,则点D 的坐标是 .18.如图,要使宽为2米的矩形平板车ABCD 通过宽为能超过 米.第18题 第19题19.如图,正方形ABCD 中,E 在BC 上,BE=2,CE=1.点P 在BD 上,则PE 与PC 的和的最小值为 .三、解答题(共63分)20.计算(本题10分)(1)(2)21)(1--(1)化简求值:a b ==,求2233a b a b-+的值.(2)已知,,a b c 满足2(7.5)8.50a c --=.求以,,a b c 为边构成的三角形面积.22.计算(本题10分)如图,四边形ABCD 是平行四边形,点E 在BC 上,点F 在AD 上,BE=DF ,求证:AE=CF .在矩形ABCD中,点E,点F为对角线BD上两点,DE=EF=FB.(1)求证:四边形AFCE是平行四边形;(2)若AE⊥BD,AF=AB=4,求BF的长度.24.计算(本题10分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=12,DE=5,求△AEF的面积.ACB=90°,AC=BC为边在△ABC的外部作等边△BCD,且CD∥AB,连接AD.(1)求四边形ABDC的面积;(2)求AD的长.如图1,四边形ABCO为正方形.(1)若点A坐标为(0①求点B的坐标;②如图2,点D为y轴上一点,连接BD,若点A到BD的距离为l,求点C到BD的距离;(2)如图3,连接正方形ABCO的对角线AC,OB交于点Q,点F为线段BC上一点,以OF为直角边向上构造等腰Rt△EOF,∠EOF=90°,EF交AC于P.若PQ=1,求CF的长度.山东省临沂市郯城县2018-2019学年度八年级(下)期中模拟数学试卷(一)一、选择题BBCCB ADDCC DC二、填空题(13)x≥﹣1且x≠2 (14)10 (15)AD∥BC(答案不唯一)(16)(17)(2(18)4 (19三、20、(1)(2)4﹣2.21、(1)(2)1522.证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.23.(1)证明:连接AC,交BD于O,如图所示:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC,OB=OD,∵DE=FB,∴四边形AFCE是平行四边形;(2)解:∵DE=EF=BF,AE⊥BD,∴AD=AF=2,∴BD===2,∴BF=BD=.24.解:(1)∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是CB的延长线上的点,∴∠ABF=90°,在△ADE和△ABF中,∵,∴△ADE≌△ABF(SAS);(2)∵BC=12,∴AD=12,在Rt△ADE中,DE=5,AD=12,∴AE==13,∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90°得到,∴AE=AF,∠EAF=90°,∴△AEF的面积=AE2=×169=84.5.25.(1)(2)1126. 解:(1)①∵A (0,),∴OA=; 在正方形ABCD 中,BA=BC=OA=;∵BA ⊥y 轴,BC ⊥x 轴,∴B (,);②如图2,分别过点A ,点B 作AM ⊥BD ,CN ⊥BD ;∵∠1+∠2=90°,∠1+∠3=90°∴∠2=∠3;在△ABM 与△BNC 中,,∴△AMB ≌△BNC (ASA ),∴BM=CN .∵AB=,AM=1, ∴BM==3,∴CN=3,∴点C 到BD 的距离为3;(2)如图3,连接AE ,作FG ∥AB 交AC 于点G ;∵△EOF 为等腰直角三角形,∴OE=OF ,∠EOF=90°;而∠AOC=90°,12 ∴∠AOE=∠COF ;在△AOE 与△COF 中,,∴△AOE ≌△COF (SAS ),∴AE=CF ,∠EAO=∠FCO=90°, ∴AE ∥FG ,∵∠ACB=45°,∴GF=CF ;可得AE=GF ,在△AEP 和△FGP 中∴△AEP ≌△FGP (AAS ),∴EP=FP ,∴P 为EF 中点;连接AF ,取AF 的中点H ,连接PH ,QH , 则PH ∥AE ,PH=AE ;QH ∥CF ,QH=CF ;∵AE=CF ,AE ⊥CF ,∴△PQH 为等腰直角三角形; ∵PQ=1,∴QH=,∴CF=.。

2018年山东省临沂市郯城县中考数学模拟试卷(一)-普通用卷 (1)

2018年山东省临沂市郯城县中考数学模拟试卷(一)副标题一、选择题(本大题共14小题,共42.0分)1.下列各数:1.414,2,−13,0,其中是无理数的为()A. 1.414B. 2C. −13D. 02.下列运算正确的是()A. 6−3=3B. (−3)2=−3C. a⋅a2=a2D. (2a3)2=4a63.下列运算正确的是()A. a2⋅a3=a6B. (12)−1=−2 C. 16=±4 D. |−6|=64.16的算术平方根是()A. ±4B. 4C. ±2D. 25.太阳内部高温核聚变反应释放的辐射能功率为3.8×1023千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为()千瓦.(用科学记数法表示,保留2个有效数字)A. 1.9×1014B. 2.0×1014C. 7.6×1015D. 1.9×10156.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A. 0.8x−10=90B. 0.08x−10=90C. 90−0.8x=10D. x−0.8x−10=907.化简:(a+3a−4a−3)(1−1a−2)的结果等于()A. a−2B. a+2C. a−2a−3D. a−3a−28.关于x的方程(a−6)x2−8x+6=0有实数根,则整数a的最大值是()A. 6B. 7C. 8D. 99.甲、乙两盒中分别放入编号为1,2,3,4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大.A. 3B. 4C. 5D. 610.如图,小明要测量河内小岛B到河边公路l的距离,在A点测得∠BAD=30∘,在C点测得∠BCD=60∘,又测得AC=50米,则小岛B到公路l的距离为()米.A. 25B. 253C. 10033D. 25+25311.已知圆O的半径为R,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连接AC,若∠CAB=30∘,则BD的长为()A. 2RB. 3RC. RD. 32R12.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A. (12)6 B. (12)7 C. (22)6 D. (22)713.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度ℎ(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=92;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是()A. 1B. 2C. 3D. 414.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE−ED−DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A. AE=6cmB. sin∠EBC=45C. 当0<t≤10时,y=25t2D. 当t=12s时,△PBQ是等腰三角形二、填空题(本大题共5小题,共15.0分)15.分解因式:8a3−8a2+2a=______.16.方程32x =1x+3的解是x=______.17.若点M(k−1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k−1)x+k的图象不经过第______象限.18.如图,直线y=−34x+3与x轴、y轴分别交于点A、B;点Q是以C(0,−1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小值是______.19.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数共有______个.三、计算题(本大题共1小题,共6.0分)20.计算:|1−2|+(−12)−2−1cos45∘+−83−(23−4)0.四、解答题(本大题共6小题,共57.0分)21.为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.22. 湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a 万元,收购成本为b 万元,求a 和b 的值;(2)设这批淡水鱼放养t 天后的质量为m (kg ),销售单价为y 元/kg .根据以往经验可知:m 与t 的函数关系为m = 100t +15000(50<t ≤100)20000(0≤t≤50);y 与t 的函数关系如图所示.①分别求出当0≤t ≤50和50<t ≤100时,y 与t 的函数关系式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大?并求出最大值.(利润=销售总额−总成本)23. 如图,为了缓解交通拥堵,方便行人,在某街道计划修建一座横断面为梯形ABCD的过街天桥,若天桥斜坡AB 的坡角∠BAD 为35∘,斜坡CD 的坡度为i =1:1.2(垂直高度CE 与水平宽度DE 的比),上底BC =10m ,天桥高度CE =5m ,求天桥下底AD 的长度?(结果精确到0.1m ,参考数据:sin35∘≈0.57,cos35∘≈0.82,tan35∘≈0.70)24.如图,AB是圆⊙O的直径,BC是⊙O的切线,连结AC交⊙O于点D,E为AD上一点,连结AE、BE,BE交AC于点F,且AE2=EF⋅EB(1)求证:CB=CF.(2)若点E到弦AD的距离为1,cos∠C=2,求⊙O的半5径.25.已知四边形ABCD是菱形,AB=4,∠ABC=60∘,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60∘.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15∘时,求点F到BC的距离.x2+mx+n与x轴交于A、B26.如图,抛物线y=−12两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(−1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.答案和解析【答案】1. B2. D3. D4. D5. A6. A7. B8. C9. C10. B11. C12. A13. B14. D15. 2a(2a−1)216. −917. 一18. 231519. 420. 解:原式=2−1+4−2−2−1=0.21. 解:(1)根据题意得:15÷10%=150(名).本项调查中喜欢“跑步”的学生人数是;150−15−45−30=60(人),所占百分比是:60150×100%=40%,画图如下:(2)用A表示女生,B表示男生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是820=25.22. 解:(1)由题意,得:20a+b=30.810a+b=30.4,解得b=30a=0.04,答:a的值为0.04,b的值为30;(2)①当0≤t≤50时,设y与t的函数解析式为y=k1t+n1,将(0,15)、(50,25)代入,得:50k1+n1=25 n1=15,解得: k 1=15n 1=15,∴y 与t 的函数解析式为y =15t +15;当50<t ≤100时,设y 与t 的函数解析式为y =k 2t +n 2, 将点(50,25)、(100,20)代入,得: 100k 2+n 2=2050k 2+n 2=25,解得: k 2=−110n 2=30∴y 与t 的函数解析式为y =−110t +30;②由题意,当0≤t ≤50时,W =20000(15t +15)−(400t +300000)=3600t ,∵3600>0,∴当t =50时,W 最大值=180000(元);当50<t ≤100时,W =(100t +15000)(−110t +30)−(400t +300000)=−10t 2+1100t +150000=−10(t −55)2+180250, ∵−10<0,∴当t =55时,W 最大值=180250(元),综上所述,放养55天时,W 最大,最大值为180250元.23. 解:过B 作BF ⊥AD 于F ,则四边形BCEF 为矩形,则BF =CE =5m ,BC =EF =10m , 在Rt △ABF 中,BFAF =tan35∘, 则AF =50.7≈7.1m , 在Rt △CDE 中,∵CD 的坡度为i =1:1.2, ∴CEED =1:1.2,则ED =6m ,∴AD =AF +EF +ED =7.1+10+6=23.1(m ). 答:天桥下底AD 的长度约为23.1m .24. (1)证明:如图1, ∵AE 2=EF ⋅EB , ∴AEEB =EFAE .又∵∠AEF =∠AEB , ∴△AEF∽△BEA , ∴∠1=∠EAB .∵∠1=∠2,∠3=∠EAB ,∴∠2=∠3,∴CB=CF;(2)解:如图2,连接OE交AC于点G,设⊙O的半径是r.由(1)知,△AEF∽△BEA,则∠4=∠5.∴AE=ED.∴OE⊥AD,∴EG=1.∵cos∠C=25,且∠C+∠GAO=90∘,∴sin∠GAO=25,∴OGOA =25,即r−1r=25,解得,r=53,即⊙O的半径是53.25. (1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60∘,∴AB=BC=CD=AD,∠B=∠D=60∘,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60∘∵BE=EC,∴∠BAE=∠CAE=30∘,AE⊥BC,∵∠EAF=60∘,∴∠CAF=∠DAF=30∘,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:连接AC,如图2中,∵∠BAC=∠EAF=60∘,∴∠BAE=∠CAE,在△BAE和△CAF中,∠BAE=∠CAFBA=AC∠B=∠ACF,∴△BAE≌△CAF,∴BE=CF.(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15∘,∠ABC=60∘,∴∠AEB=45∘,在Rt△AGB中,∵∠ABC=60∘,AB=4,∴BG=12AB=2,AG=3BG=23,在Rt△AEG中,∵∠AEG=∠EAG=45∘,∴AG=GE=23,∴EB =EG −BG =2 3−2, ∵∠BAC =∠EAF =60∘, ∴∠BAE =∠CAF ,∵∠ABC =∠ACD =60∘,∴∠ABE =∠ACF =120∘ 在△AEB 和△AFC 中, ∠EAB =∠FACAB =AC ∠ABE =∠ACF =120∘∴△AEB≌△AFC ,∴AE =AF ,EB =CF =2 3−2,在Rt △CHF 中,∵∠HCF =180∘−∠BCD =60∘,CF =2 3−2, ∴FH =CF ⋅sin60∘=(2 3−2)⋅ 32=3− 3.∴点F 到BC 的距离为3− 3.26. 解:(1)把A (−1,0),C (0,2)代入y =−12x 2+mx +n 得 −12−m +n =0n =2,解得 m =32n =2, ∴抛物线解析式为y =−12x 2+32x +2; (2)存在.抛物线的对称轴为直线x =−322×(−12)=32,则D (32,0),∴CD = OD 2+OC 2= (32)2+22=52, 如图1,当CP =CD 时,则P 1(32,4);当DP =DC 时,则P 2(32,52),P 3(32,−52),综上所述,满足条件的P 点坐标为(32,4)或(32,52)或(32,−52); (3)当y =0时,=−12x 2+32x +2=0,解得x 1=−1,x 2=4,则B (4,0),设直线BC 的解析式为y =kx +b ,把B (4,0),C (0,2)代入得 b =24k +b =0,解得 k =−12b =2,∴直线BC 的解析式为y =−12x +2,设E (x ,−12x +2)(0≤x ≤4),则F (x ,−12x 2+32x +2), ∴FE =−12x 2+32x +2−(−12x +2)=−12x 2+2x ,∵S△BCF=S△BEF+S△CEF=12⋅4⋅EF=2(−12x2+2x)=−x2+4x,而S△BCD=12×2×(4−32)=52,∴S四边形CDBF=S△BCF+S△BCD=−x2+4x+52(0≤x≤4),=−(x−2)2+13 2当x=2时,S四边形CDBF有最大值,最大值为132,此时E点坐标为(2,1).【解析】1. 解:2是无理数.故选:B.根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,解答即可.本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2. 解:A、6−3无法计算,故此选项错误;B、(−3)2=3,故此选项错误;C、a⋅a2=a3,故此选项错误;D、(2a3)2=4a6,正确.故选:D.直接利用二次根式加减运算法则以及积的乘方运算法则和幂的乘方运算法则、同底数幂的乘法运算法则、二次根式的性质分别化简判断即可.此题主要考查了二次根式加减运算以及积的乘方运算和幂的乘方运算、同底数幂的乘法运算、二次根式的性质等知识,正确掌握相关运算法则是解题关键.3. 解:A、a2⋅a3=a5,故A错误;B、(12)−1=2,故B错误;C、16=4,故C错误;D、根据负数的绝对值等于它的相反数,故D正确.故选:D.幂运算的性质:①同底数的幂相乘,底数不变,指数相加;②一个数的负指数次幂等于这个数的正指数次幂的倒数,算术平方根的概念:一个正数的正的平方根叫它的算术平方根,0的算术平方根是0.绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.本题涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.4. 解:∵16=4,∴4的算术平方根是2,∴16的算术平方根是2;故选:D.首先根据算术平方根的定义求出16的值,然后再利用算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义,解题的关键先计算出16的值,再根据算术平方根的定义进行求解.5. 解:3.8×1023÷(2×109)=1.9×1014.故选:A.先将20亿用科学记数法表示,再进行计算.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.有效数字的计算方法是:从左边第一个不是0的开始,后面所有的数都是有效数字.任何一个数都可以用科学记数法表示成a×10n(1≤|a|<10,n是整数)的形式,表示时关键要正确确定a的值以及n的值.6. 解:设某种书包原价每个x元,可得:0.8x−10=90,故选:A.设某种书包原价每个x元,根据题意列出方程解答即可.本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.7. 解:a(a−3)+3a−4a−3⋅a−2−1a−2=(a+2)(a−2)a−3⋅a−3a−2=a+2.故选:B.原式括号中两项通分并利用同分母分式的加减法则计算,约分即可得到结果.此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8. 解:当a−6=0,即a=6时,方程是−8x+6=0,解得x=68=34;当a−6≠0,即a≠6时,△=(−8)2−4(a−6)×6=208−24a≥0,解上式,得a≤263≈8.6,取最大整数,即a=8.故选C.方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a−6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.通过△求出a的取值范围后,再取最大整数.∴一共有16种情况,P(3)=216=18;P(4)=316;P(5)=416=14;P(6)=316,∴将两球编号数相加得到一个数,则得到数5的概率最大.故选:C.列举出所有情况,看得到和为3,4,5,6的情况占总情况的多少,比较即可.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.10. 解:过点B作BE⊥AD于E.设BE=x.∵∠BCD=60∘,tan∠BCE=BECE,∴CE=3 x.在直角△ABE中,AE=,AC=50米,则3x−33x=50.解得x=253.即小岛B到公路l的距离为253米.故选:B.过点B作BE⊥AD于E,设BD=x,则可以表示出CE,AE的长,再根据已知列方程从而可求得BD的长.解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.11. 解:连接OC,BC,∵AB是圆O的直径,DC是圆O的切线,C是切点,∴∠ACB=∠OCD=90∘,∵∠CAB=30∘,∴∠COD=2∠A=60∘,CD=OC⋅tan∠COD=3R,由切割线定理得,CD2=BD⋅AD=BD(BD+AB),∴BD=R.故选:C.先利用“同弧所对的圆周角是圆心角的一半”得出∠COD=2∠A=60∘再解直角三角形可得CD长,最后用切割线定理可得BD长.本题利用了直径对的圆周角是直角,切线的性质,切割线定理求解.12. 解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=12S1=2,S3=12S2=1,S4=12S3=12,…,∴S n=(12)n−3.当n=9时,S9=(12)9−3=(12)6,故选:A.根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=(12)n−3”,依此规律即可得出结论.本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=(12)n−3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.13. 解:由题意,抛物线的解析式为ℎ=at (t −9),把(1,8)代入可得a =−1, ∴ℎ=−t 2+9t =−(t −4.5)2+20.25,∴足球距离地面的最大高度为20.25m ,故①错误,∴抛物线的对称轴t =4.5,故②正确,∵t =9时,ℎ=0,∴足球被踢出9s 时落地,故③正确,∵t =1.5时,ℎ=11.25,故④错误.∴正确的有②③,故选:B .由题意,抛物线经过(0,0),(9,0),所以可以假设抛物线的解析式为ℎ=at (t −9),把(1,8)代入可得a =−1,可得ℎ=−t 2+9t =−(t −4.5)2+20.25,由此即可一一判断. 本题考查二次函数的应用、求出抛物线的解析式是解题的关键,属于中考常考题型.14. 解:(1)结论A 正确.理由如下:分析函数图象可知,BC =10cm ,ED =4cm ,故AE =AD −ED =BC −ED =10−4=6cm ;(2)结论B 正确.理由如下:如答图1所示,连接EC ,过点E 作EF ⊥BC 于点F ,由函数图象可知,BC =BE =10cm ,S △BEC =40=12BC ⋅EF =12×10×EF ,∴EF =8,∴sin ∠EBC =EF BE =810=45;(3)结论C 正确.理由如下:如答图2所示,过点P 作PG ⊥BQ 于点G ,∵BQ =BP =t ,∴y =S △BPQ =12BQ ⋅PG =12BQ ⋅BP ⋅sin ∠EBC =12t ⋅t ⋅45=25t 2.(4)结论D 错误.理由如下:当t =12s 时,点Q 与点C 重合,点P 运动到ED 的中点,设为N ,如答图3所示,连接NB ,NC .此时AN =8,ND =2,由勾股定理求得:NB =8 2,NC =2 17,∵BC =10,∴△BCN 不是等腰三角形,即此时△PBQ 不是等腰三角形.由图2可知,在点(10,40)至点(14,40)区间,△BPQ 的面积不变,因此可推论BC =BE ,由此分析动点P 的运动过程如下:(1)在BE 段,BP =BQ ;持续时间10s ,则BE =BC =10;y 是t 的二次函数;(2)在ED 段,y =40是定值,持续时间4s ,则ED =4;(3)在DC 段,y 持续减小直至为0,y 是t 的一次函数.本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC =BE =10cm .15. 解:8a 3−8a 2+2a ,=2a (4a 2−4a +1),=2a (2a −1)2.故答案为:2a (2a −1)2.先提取公因式2a ,再根据完全平方公式进行二次分解.完全平方公式:a 2±2ab +b 2=(a±b)2.本题考查了提公因式法,公式法分解因式.注意提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.16. 解:方程两边都乘2x(x+3),得3×(x+3)=2x解得x=−9.检验;当x=−9时,2x(x+3)≠0.∴x=−9是原方程的解.本题的最简公分母是2x(x+3),方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.本题考查分式方程的求解:(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母把分式方程转化为整式方程求解.(2)解分式方程必须代入最简公分母验根.17. 解:∵点M(k−1,k+1)关于y轴的对称点在第四象限内,∴点M(k−1,k+1)位于第三象限,∴k−1<0且k+1<0,解得:k<−1,∴y=(k−1)x+k经过第二、三、四象限,不经过第一象限,故答案为:一.首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过二、三、四象限.18. 解:过点C作CP⊥直线AB于点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.当x=0时,y=3,∴点B的坐标为(0,3);当y=0时,x=4,∴点A的坐标为(4,0).∴OA=4,OB=3,∴AB= OA2+OB2=5,∴sin B=OAAB =45.∵C(0,−1),∴BC=3−(−1)=4,∴CP=BC⋅sin B=165.∵PQ为⊙C的切线,∴在Rt△CQP中,CQ=1,∠CQP=90∘,∴PQ= CP2−CQ2=2315.故答案为:2315.过点C作CP⊥直线AB与点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,利用角的正弦求出CP的值,再根据勾股定理即可求出PQ的长度.本题考查了切线的性质、三角函数以及勾股定理,解题的关键是确定P、Q点的位置.本题属于中档题,难度不大,解决该题型题目时,借助于切线的性质寻找到PQ取最小值时点P、Q的位置是关键.19. 解:“距离坐标”是(1,2)的点有(1,2),(−1,2),(−1,−2),(1,−2)共4个.故答案为:4.根据“距离坐标”分别写出各点即可得解.本题考查了点的坐标,是基础题,理解“距离坐标”的定义是解题的关键.20. 原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及立方根定义计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21. (1)用A的人数除以所占的百分比,即可求出调查的学生数;用抽查的总人数减去A、B、D的人数,求出喜欢“跑步”的学生人数,再除以被调查的学生数,求出所占的百分比,再画图即可;(2)用A表示女生,B表示男生,画出树形图,再根据概率公式进行计算即可.本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22. (1)由放养10天的总成本为30.4万元;放养20天的总成本为30.8万元可得答案;(2)①分0≤t≤50、50<t≤100两种情况,结合函数图象利用待定系数法求解可得;②就以上两种情况,根据“利润=销售总额−总成本”列出函数解析式,依据一次函数性质和二次函数性质求得最大值即可得.本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式,根据相等关系列出利润的函数解析式及二次函数的性质是解题的关键.23. 过B作BF⊥AD于F,可得四边形BCEF为矩形,BF=CE,在Rt△ABF和Rt△CDE 中,分别解直角三角形求出AF,ED的长度,继而可求得AD的长度.本题考查了解直角三角形的应用,解答本题的关键是根据坡度和坡角构造直角三角形,分别用解直角三角形的知识求出AF、ED的长度,难度一般.24. (1)如图1,通过相似三角形(△AEF∽△BEA)的对应角相等推知,∠1=∠EAB;又由弦切角定理、对顶角相等证得∠2=∠3;最后根据等角对等边证得结论;(2)如图2,连接OE交AC于点G,设⊙O的半径是r.根据(1)中的相似三角形的性质证得∠4=∠5,所以由圆周角定理以及“圆心角、弧、弦间的关系”推知点E是弧AD的中点,则OE⊥AD;然后通过解直角△ABC求得cos∠C=sin∠GAO=r−1r =25,则可求r的值.本题考查了相似三角形的判定与性质,切线的性质,解直角三角形等知识.解答(2)题的难点是推知点E是弧AD的中点.25. (1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF⋅cos30∘,因为CF=BE,只要求出BE即可解决问题.本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.26. (1)直接把A点和C点坐标代入y=−12x2+mx+n得m、n的方程组,然后解方程组求出m、n即可得到抛物线解析式;(2)先利用抛物线对称轴方程求出抛物线的对称轴为直线x=−32,则D(32,0),则利用勾股定理计算出CD=52,然后分类讨论:如图1,当CP=CD时,利用等腰三角形的性质易得P1(32,4);当DP=DC时,易得P2(32,52),P3(32,−52);(3)先根据抛物线与x轴的交点问题求出B(4,0),再利用待定系数法求出直线BC的解析式为y=−12x+2,利用一次函数图象上点的坐标特征和二次函数图象上点的坐标特征,设E(x,−12x+2)(0≤x≤4),则F(x,−12x2+32x+2),则FE=−12x2+2x,由于△BEF和△CEF共底边,高的和为4,则S△BCF=S△BEF+S△CEF=12⋅4⋅EF=−x2+4x,加上S△BCD=52,所以S四边形CDBF=S△BCF+S△BCD=−x2+4x+52(0≤x≤4),然后根据二次函数的性质求四边形CDBF的面积最大,并得到此时E点坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、一次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数的解析式;理解坐标与图形性质;灵活应用三角形的面积公式;学会运用分类讨论的思想解决数学问题.。

山东省临沂市郯城县2019年中考第一次模拟考试 数学试题(含答案)

山东省临沂市九年级中考第一次模拟考试试卷数学一、选择题)A. B. -3 C. 3 D.2.如图,用平行四边形纸条沿对边AB、CD上的点E、F所在的直线折成V字形图案,已知图中∠1=56∘,则∠2的度数为()A. 56°B. 66°C. 68°D. 112°3.下列计算正确的是()4. 将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()5.如图,点A(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x 轴上,点D在y轴上,则平行四边形ABCD的面积为()A. 1B. 3C. 6D. 126.如图,在矩形ABCD中,AB=5,BC=4,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则tan∠CBE=().7.如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A. 90°﹣αB. αC. 180°﹣αD. 2α8.某中学九年级二班的8名女同学在一次仰卧起坐测试中的成绩如下(单位:个),135138142144140 147145145;则这组数据的中位数、平均数分别是()A. 142,142B. 143,142C. 143,143D. 144,1439.3的取值范围是()B.10.A、B两点,当A、B两点关于原点)A. 0B. -3C. 3D. 411.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0);(2)顶点是(1,﹣2);(3)在x轴上截得的线段的长度是2;(4)c=3a;正确的个数()A. 4个B. 3个C. 2个D. 1个12.如图,D是等边△ABC边AB上的一点,且AD=1,BD=2,现将△ABC折叠,使点C与D重合,折痕EF,点E、F分别在AC和BC上,若BF=1.25,则CE=()13.尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A. B. (r C. (r D.14.已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC相交于D点,双曲线x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①菱形OABC的面积为80;②E点的坐标是(4,8);③双曲线的解析式为x>0);④sin∠其中正确的结论有()个.A. 1B. 2C. 3D. 4二、填空题15.16.如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.17.18.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x时,两车相遇;③当x两车相距60km;④图2中C点坐标为(3,180);⑤当x时,两车相距200km.其中正确的有_____(请写出所有正确判断的序号)19.如图,△ABD是边长为3的等边三角形,E,F分别是边AD,AB上的动点,若∠ADC=∠ABC=90°,则△CEF 周长的最小值为______.三、解答题21.为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第天,这一路口的行人交通违章次数是多少次?这天中,行人交通违章次的有多少天?(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?22.如图,一次函数A,B 两点,且与x 轴交于点C,点B 的坐标为(-1,-2).(1)(2)连接OA ,OB ,求△OAB 的面积; (3).23.如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC . (1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB=8,CE=2时,求AC 的长.24.下图是一个桌面会议话筒示意图,中间BC部分是一段可弯曲的软管,在弯曲时可形成一段圆弧,设圆弧所在圆的圆心为O,线段AB,CD均与圆弧相切,点B,C分别为切点,已知AB的长10cm,CD的长为25.2cm. CD水平时,距离桌面14cm.(1)求弧BC的长度;(2)当∠D=60∘时.求D点距桌面AM的高度(如图)25.己知:在菱形ABCD中,∠ABC=60°,对角线AC,BD相交于点O,点E是线段BD上一动点(不与点B,D重合),连接AE,以AE为边在AE的右侧作等边△AEF.(1)如图①,若点F落在线段BD上,线段AE、FD的数量关系是AE=FD;(2)如图②,若点F不在线段BD上,(1)中的结论是否成立?若成立,请证明:若不成立,请说明理由;(3)BE与BD满足BE= BD时,AE∥FD.26.如图,直线y=2x-4与x轴交于点A,与y轴交于点B,以x轴上点M为圆心,过A、B两点作⊙M与x 轴交于另一点C.(1)求⊙M的半径及圆心M的坐标;(2)①求经过A、B、C三点的抛物线的顶点D的坐标;②求证:DB是⊙M的切线;(3)若半径为1的⊙P与x轴和直线BD都相切,请直接写出点P的坐标.答案解析一、选择题)A. B. -3 C. 3 D.【答案】A【解析】【分析】.故选:A【点睛】考核知识点:绝对值,相反数,倒数.2.如图,用平行四边形纸条沿对边AB、CD上的点E、F所在的直线折成V字形图案,已知图中∠1=56∘,则∠2的度数为()A. 56°B. 66°C. 68°D. 112°【答案】C【解析】【分析】首先延长DF,由折叠的性质可得∠1=∠3,继而求得答案.【详解】如图,延长DF,根据题意得:∠1=∠3=56°,且∠3+∠EFD=180°,∴∠2=180°-∠1-∠3=68°.故选:C.【点睛】此题考查了平行四边形的性质以及折叠的性质.注意准确作出辅助线是解此题的关键.3.下列计算正确的是()A.B.D.【答案】D【解析】【分析】根据0指数幂,负指数幂即单项式除法进行分析即可.【详解】只有a不等于0才成立,故错误;,故错误;C .,故错误;. 故选:D 【点睛】考核知识点:0指数幂,负指数幂即单项式除法. 4. 将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()【答案】A 【解析】试题解析:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A.【此处有视频,请去附件查看】5.如图,点A(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x 轴上,点D在y轴上,则平行四边形ABCD的面积为()A. 1B. 3C. 6D. 12【答案】C【解析】如图,过点A作AE⊥x轴,垂足为点E,则□ABCD的面积=矩形ADOE的面积=AD×AE k=-6,根据k的几何意义可得AD×AE=|-6|=6,∴平行四边形ABCD的面积为6,故答案为C.6.如图,在矩形ABCD中,AB=5,BC=4,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则tan∠CBE=().A. B. D.【答案】A【解析】【分析】设BC的中点为O,连接AO,交BE于F.根据切线长定理得AB=AE,且∠BAF=∠EAF,得△ABF≌△AEF,在Rt△ABO中,BF⊥AO,则∠FBO=∠BAO,由tan∠BAO=tan∠CBE可得结论.【详解】设BC的中点为O,连接AO,交BE于F.由于AB、AE分别切⊙O于B、E,则AB=AE,且∠BAF=∠EAF.又∵AF=AF,∴△ABF≌△AEF.∴AO垂直平分BE.在Rt△ABO中,BF⊥AO,则∠FBO=∠BAO,易知BO=1,AB=3,∴tan∠BAO=tan∠故选:A【点睛】考核知识点:切线长性质定理,正切.添好辅助线构造直角三角形是关键.7.如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A. 90°﹣αB. αC. 180°﹣αD. 2α【解析】分析:根据旋转的性质和四边形的内角和是360°,可以求得∠CAD的度数,本题得以解决.详解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°−α,故选:C.点睛:本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.8.某中学九年级二班的8名女同学在一次仰卧起坐测试中的成绩如下(单位:个),135138142144140 147145145;则这组数据的中位数、平均数分别是()A. 142,142B. 143,142C. 143,143D. 144,143【答案】B【解析】【分析】把数据从小到大排序,第4,5个数的平均数是中位数;根据平均数的公式求值.故选:A【点睛】考核知识点:中位数,算术平均数.理解定义是关键.9.3)A. B. D.【答案】A【分析】先解不等式组得4<x≤2-a,由整数解是5,6,7,得7≤2-a<8,可求a的取值范围.4<x≤2-a,因为不等式组有3个整数解,所以整数解是5,6,7所以,7≤2-a<8故选:A【点睛】考核知识点:求不等式组的整数解.解不等式是关键.10.A、B两点,当A、B两点关于原点)A. 0B. -3C. 3D. 4【答案】C【解析】试题分析:设A(t,﹣),根据关于原点对称的点的坐标特征得B(﹣t,),然后把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加消去t得2a﹣6=0,再解关于a的一次方程即可.解:设A(t,﹣),∵A、B两点关于原点对称,∴B(﹣t,),把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加得2a﹣6=0,∴a=3.故选C.考点:反比例函数与一次函数交点问题;关于原点对称的点的坐标.11.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0);(2)顶点是(1,﹣2);(3)在x轴上截得的线段的长度是2;(4)c=3a;正确的个数()A. 4个B. 3个C. 2个D. 1个【答案】B【解析】(1)因为图象过点(1,0),且对称轴是直线x=2,由对称性可知图象还过点(3,0),正确;(2)由对称轴可知顶点的横坐标是2,而给的顶点的横坐标是1,故错误;(3)由抛物线与x轴两交点为(1,0),(3,0),可得在x轴上截得的线段长为2,正确;(4)由对称轴x=-=2,可得b=-4a,又图象过点(1,0),则有a-4c+c=0,所以c=3a,正确;故选B.点睛:本题主要考查了二次函数的性质,解答本题的关键是掌握二次函数图象的对称性.12.如图,D是等边△ABC边AB上的一点,且AD=1,BD=2,现将△ABC折叠,使点C与D重合,折痕EF,点E、F分别在AC和BC上,若BF=1.25,则CE=()A. B. D.【答案】A【解析】【分析】先求得AC=AB=3,由翻折的性质可知:EC=ED,然后证明△AED∽△BDF,利用相似三角形的性质可求得CE的长.【详解】∵△AB C为等边三角形,∴AC=AB=3,∠A=∠B=∠C=60°.由翻折的性质可知:∠EDF=60°.∴∠FDB+∠EDA=120°.∵∠EDA+∠AED=120°,∴∠AED=∠FDB.∴△AED∽△BDF.解得:AE=故选:A.【点睛】本题主要考查的是等边三角形的性质、翻折的性质、相似三角形的性质和判定,利用相似三角形的性质求得AE的长是解题的关键.13.尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A. B. (r C. (r D.【答案】D【解析】分析:如图连接CD,AC,DG,AG.在直角三角形即可解决问题;详解:如图连接CD,AC,DG,AG.∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴,故选:D.点睛:本题考查作图-复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.14.已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC相交于D点,双曲线x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①菱形OABC的面积为80;②E点的坐标是(4,8);③双曲线的解析式为x>0);④sin∠其中正确的结论有()个.A. 1B. 2C. 3D. 4【答案】C【解析】【分析】 作DH ⊥x 轴于H ,BG ⊥x 轴于G ,根据菱形的面积等于对角线乘积的一半得到菱形OABC 的面积=12OB•AC=12×160=80;则△ODA 的面积为20,根据三角形面积公式可计算出DA=4,再根据菱形的性质易得DH 为△OBG 的中位线,则BG=8,所以E 点的纵坐标为8;接着证明Rt △DOH ∽Rt △ADH ,得到DH2=OH•AH ,由于DH=4,AH=10-OH ,则OH (10-OH )=16,解得OH=8或OH=2(舍去),可确定D 点坐标为(8,4),利用待定系数法得到反比例函数解析式为y=32x ;同时可确定E 点坐标为(4,8);CM ⊥x 轴于M ,则CM=8,根据菱形性质得OC=OA=10,根据勾股定理可计算出OM=6,然后利用正弦的定义即可得到sin ∠COM=CMOC=45,于是有sin ∠COA=45.【详解】作DH ⊥x 轴于H ,BG ⊥x 轴于G ,如图,∵四边形OABC 为菱形,∴菱形OABC 的面积=,所以①正确; ∴DH•OA=菱形OABC80, 而A 点的坐标为(10,0),80, ∴DH=4,∵OB 与AC 互相垂直平分,∴∠ADO=90°,DH 为△OBG 的中位线,∴BG=2DH=8,∴E 点的纵坐标为8,∵∠DOH+∠ODH=∠ODH+∠ADH=90°,∴∠DOH=∠ADH ,∴Rt △DOH ∽Rt △ADH ,∴DH :AH=OH :DH ,即DH 2=OH•AH , ∵DH=4,AH=OA-OH=10-OH ,∴OH(10-OH)=16,解得OH=8或OH=2(舍去),∴D点坐标为(8,4),把D(8,4)代入得k=4×8=32,∴反比例函数解析式为把y=8,解得x=4,∴E点坐标为(4,8),所以②正确;CM⊥x轴于M,如图,∴CM=BG=8,∵四边形OABC为菱形,∴OC=OA=10,在Rt△OCM中,CM=8,OC=10,∴,∴sin∠即sin∠COA=,所以④正确.故选:C.【点睛】本题考查了反比例函数的综合题:反比例函数图象的点的坐标满足其函数解析式;熟练运用菱形的性质、相似三角形的相似比和勾股定理进行计算.二、填空题15.【解析】【分析】先提公因式x,再运用平方差公式.故答案为:【点睛】考核知识点:综合运用提公因式法和公式法因式分解.16.如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.【答案】.【解析】试题分析:阴影区域面积为总体面积的=,所以飞镖落在阴影区域的概率为.考点:求随机事件的概率.17.【解析】【分析】小括号内先通分,再根据分式除法法则进行计算.【详解】解:原式故答案为:【点睛】考核知识点:分式的加减乘除运算.掌握运算法则是关键.18.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x时,两车相遇;③当x两车相距60km;④图2中C点坐标为(3,180);⑤当x时,两车相距200km.其中正确的有_____(请写出所有正确判断的序号)【答案】①②④.【解析】【分析】根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,此时a=3,故①正确;根据相遇可知y1=y2,列方程求解可得x后两车相距60km,x是相遇前的时间,故③正确;先确定b的值,根据函数的图象可以得到C的点的坐标,故④正确;分两车相遇前和两车相遇后两种情况讨论,即可求得x的值,当时不合题意,故⑤不正确.【详解】解:∵由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=3,故①正确;设y1=kx+b,将(0,300)、(3,0)代入,∴y1=﹣100x+300,设y2=mx,将点(5,300)代入,得:5m=300,解得:m=60,∴慢车离乙地的距离y2解析式为:y2=60x;∴当y1=y2时,两车相遇,可得:﹣100x+300=60x,解得:x,故②正确;分两种情况考虑,相遇前两车相距60km,﹣100x+300﹣60x=60,解得,h,相遇后两车相距60km,60x﹣(﹣100x+300)=60,解得,h,∴当x时,两车相距60km,故③不正确;快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为300千米,∴b=300÷(100+60由函数的图象可以得到C的点的横坐标为3,即快车到达乙地,此时慢车所走的路程为3×60=180千米,∴C点坐标为(3,180),故④正确;分两种情况考虑,相遇前两车相距200km,﹣100x+300﹣60x=200,解得,h,相遇后两车相距60km,60x﹣(﹣100x+300)=200,解得,h,,∴当不合题意,舍去.∴当x=h时,两车相距200km,故⑤不正确.故答案为:①②④.【点睛】本题考查了一次函数的应用、二元一次方程组的解法、一次函数解析式的求法;主要根据待定系数法求一次函数解析式,根据图象准确获取信息是解题的关键,要注意要分情况讨论.19.如图,△ABD是边长为3的等边三角形,E,F分别是边AD,AB上的动点,若∠ADC=∠ABC=90°,则△CEF 周长的最小值为______.【解析】【分析】分别作点C关于AD、AB的对称点M、N,连接MN,MN与AD交于点E,与AB交于点F,连接CE、CF,则此时△CEF的周长最小.分别证△ADC≌△ABC,△ACD≌△MCP,得MP=AD=3,∠MPC=∠ADC=90°,MN=2MP=6.C关于AD、AB的对称点M、N,连接MN,MN 与AD交于点E,与AB交于点F,连接CE、CF,则此时△CEF的周长最小,连接AC,交MN于点P,由作图可知CE=ME、CF=FN,∴△CEF的周长:CE+CF+EF=MN,∵△ABD是等边三角形,∴AB=AD=3,∠DAB=∠ADB=∠ABD=60°,∵∠ADC=∠ABC=90°,∴∠CDB=∠CBD=30°,∴CD=CB,∵DM=CD,BN=CB,∴CM=2CD=2BC=CN,MN//BD,∴∠M=∠N=∠CDB=30°,又∵AC=AC,∴△ADC≌△ABC,∴CD=CB,∠DAC=∠DAB=30°,∴AC=2CD,∠M=∠DAC,∴AC=CM,又∵∠ACD=∠MCP,∴△ACD≌△MCP,∴MP=AD=3,∠MPC=∠ADC=90°,∴MN=2MP=6,即△CEF周长的最小值是6,故答案为:6.【点睛】本题考查了最短路径问题,涉及到等边三角形的性质,全等三角形的判定与性质,轴对称的性质等,正确根据轴对称的性质作出符合条件的图形是解题的关键.三、解答题【答案】2【解析】【分析】先求锐角三角函数值,绝对值,负指数幂,0指数幂,再算加减.【详解】解:原式【点睛】考核知识点:锐角三角函数值,绝对值,负指数幂,0指数幂.21.为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第天,这一路口的行人交通违章次数是多少次?这天中,行人交通违章次的有多少天?(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?【答案】(1)8,5(2)图像见解析(3)3次【解析】试题分析:(1)直接根据折线统计图可读出数据;(2)求出8次的天数,补全图形即可;(3)求出这20天的平均数,然后再算出交通违章次数即可.试题解析:(1)第7天,这一路口的行人交通违章次数是8次.这20天中,行人交通违章6次的有5天.(2)补全的频数直方图如图所示:(3)第一次调查,平均每天行人的交通违章次数为:=7(次)∵7-4=3(次)∴通过宣传教育后,这一路口平均每天还出现3次行人的交通违章. 考点:1、折线统计图,2、频数分布直方图22.如图,一次函数的A,B两点,且与x轴交于点C,点B的坐标为(-1,-2).(1)(2)连接OA,OB,求△OAB的面积;(3).【解析】【分析】(1)把B的坐标分别代入解析式,可求得结果;(2)通过解方程组求出交点坐标,再求面积;(3)根据函数图象比较函数值大小.【详解】(1)由题意可得:点B(-1,-2)在函数y=x+m的图象上,∴-1+m=-2即m=-1;∵B(-1,-2)在反比例函数,∴k=2;(2)∵一次函数y=x+m的图象与反比例函数A,B两点,解得,∴A(2,1),令y=x-1中y=0,得x=1,∴C(1,0)∴S△OAB=S△OAC+S△OCB,∴△OAB的面积=1.5;(3)由图象可知不等式组1<x≤2.【点睛】考核知识点:反比例函数与一次函数的综合.熟记函数的基本性质是关键.23.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.【答案】(1)证明见解析;(2)AC【解析】分析:(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.详解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC.∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD.∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,,∴CD=4.在Rt△BCD中,同理:△CFD∽△BCD,∴CF=,∴AC=2AF=点睛:此题主要考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.24.下图是一个桌面会议话筒示意图,中间BC部分是一段可弯曲的软管,在弯曲时可形成一段圆弧,设圆弧所在圆的圆心为O,线段AB,CD均与圆弧相切,点B,C分别为切点,已知AB的长10cm,CD的长为25.2cm. CD水平时,距离桌面14cm.(1)求弧BC的长度;(2)当∠D=60∘时.求D点距桌面AM的高度(如图)【答案】(1)2π;(2)27.8【解析】【分析】(1)先求得∠BOC=90°,圆弧的半径OC=4,根据弧长公式求得即可;(2)作CN⊥AM,则CN∥OB,进而求得∠NCD=30°,根据正弦函数求得DN,作CG⊥OB,根据正弦函数求得CG,从而求得话筒顶端D到桌面AM的距离.【详解】解:(1)如图1,∵线段AB,CD均与圆弧相切,∴OB⊥AB,OC⊥CD,∴CD∥OB∥AM,∴∠BOC=∠OCD=90°,∵CD距离桌面14cm,AB的长10cm,∴半径OC为4cm,(2)如图2,作CN⊥AM,则CN∥OB,∴∠OCN=60°,∵∠OCD=90°,∴∠NCD=30°,∴,作CG⊥OB,2π;∴∴OB=OC=6,∴∴DM=DN+CG+AB=12.6+5.2+10=27.8.【点睛】本题考查了解直角三角形的应用以及弧长的计算,主要是三角函数及运算,关键把实际问题转化为数学问题加以计算.25.己知:在菱形ABCD中,∠ABC=60°,对角线AC,BD相交于点O,点E是线段BD上一动点(不与点B,D重合),连接AE,以AE为边在AE的右侧作等边△AEF.(1)如图①,若点F落在线段BD上,线段AE、FD的数量关系是AE=FD;(2)如图②,若点F不在线段BD上,(1)中的结论是否成立?若成立,请证明:若不成立,请说明理由;(3)BE与BD满足BE= BD时,AE∥FD.【答案】(1)AE=FD;(2)成立;(3【解析】【分析】(1)先利用菱形的性质得出∠ABO=∠ADO=30°,AC⊥BD,即可求出∠FAD=30°即可得出结论;(2)先判断出△ACD是等边三角形,再用△AEF是等边三角形,进而得出∠CAE=∠DAF,即可判断出△ACE≌△ADF,即可得出结论;(3)先判断出四边形AEDF是菱形,进而求出∠EAD=30°,即可求出∠BAE=90°,即可得出BE=2DE,即可得出结论.【详解】解:(1)∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=1212∠ABC=30°,∠ADO=30°,∴∠OAD=60°,∵△AEF是等边三角形,边EF在BD上,∴AE=AF,∠OAE=∠OAF=30°,∴∠DAF=30°=∠ADO,∴AF=FD,∵AE=AF,∴AE=FD;故答案为AE=FD;(2)成立,如图1,连接CE,∵四边形ABCD是菱形,∴AD=CD,BD垂直平分AC,∠ABC=∠ADC=60°,∴∠ADC=60°,∴△ACD是等边三角形,∴AC=AD,∠CAD=60°,∵△AEF是等边三角形,∴AE=AF=EF,∠EAF=60°=∠CAD∴∠CAE=∠DAF,在△ACE和△ADF中,△ACE≌△ADF,∴EC=DF,∵BD垂直平分AC,∴EC=AE,∴DF=AE,(3)如图2,由(2)知,AE=FD,∵AE∥FD,∴四边形AEDF是平行四边形,∵△AEF是等边三角形,∴AE=AF,∴四边形AEDF是菱形,∴AE=ED,∴∠EAD=∠ADE=30°,∵∠BAD=180°-∠ABC=120°,∴∠BAE=∠BAD-∠EAD=90°,在Rt△ABE中,∠ABE=30°,∴BE=2AE,∴BE=2DE,∴BD=BE+DE=3DE,∴,【点睛】此题是四边形综合题,主要考查了菱形的性质,等边三角形的性质,等腰三角形的判定和性质,解(1)的关键是判断出AF=FD,解(2)的关键是判断出△ACE≌△ADF,解(3)的关键是判断出BE=2AE,是一道中等难度的中考常考题.26.如图,直线y=2x-4与x轴交于点A,与y轴交于点B,以x轴上点M为圆心,过A、B两点作⊙M与x 轴交于另一点C.(1)求⊙M的半径及圆心M的坐标;(2)①求经过A、B、C三点的抛物线的顶点D的坐标;②求证:DB是⊙M的切线;(3)若半径为1的⊙P与x轴和直线BD都相切,请直接写出点P的坐标.【答案】(1)(-3,0);(2)①(-3,;②详见解析;(3)P11)、P2-1)、P3-1)、P4(5,1)【解析】【分析】(1)根据题意,连接BC 可得AC 是⊙O 直径,进而可得OB 2=OA•OC ,进而可得圆心的坐标与半径的大小;(2)设出其解析式,并用三点式求抛物线解析可得答案;(3)根据题意,半径为1的⊙P 与x 轴相切,故P 的纵坐标的绝对值为1,即为±1,将其值代入抛物线解析式,即可得到其横坐标,综合可以写出P 的坐标.【详解】解:(1)y=2x-4与x 轴交于点A (2,0),与y 轴交于点B (0,-4).连接BC ,∵AC 是⊙O 直径,∴∠ABC=90°,OB ⊥AC .∴OB 2=OA•OC .即42=2OC .∴OC=8.∴直径AC=8+2=10.∴半径R=5,圆心M 坐标(-3,0).(2)①设过A (2,0),B (0,-4),C (-8,0)的解析式为y=a (x-2)(x+8),∴-4=a (0-2)(0+8).∴. ∴x-2)(x+8)2(x+3)2∴顶点D 的坐标为(-3,. ②连MD 、MB,∴MD 2=MB 2+BD 2 ∴∠MBD=90°.∴BD 是⊙M 的切线.(3)因为半径为1的⊙P 与x 轴相切,故P 的纵坐标的绝对值为1,即为±1,将其值代入抛物线解析式,即可得到其横坐标,即:当y=1时(x+3)2解得x=5; 当y=-1时(x+3)2解得或所以:P11)、P2-1)、P3-1)、P4(5,1)【点睛】本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.。

(完整版)2019年山东省临沂市中考数学试卷(后附答案)

2019年山东省临沂市中考数学试卷题号一二三四总分得分一、选择题(本大题共14小题,共42.0分)1.|-2019|=()A. 2019 B。

C. D.2.如图,a∥b,若∠1=100°,则∠2的度数是( )A. B. C。

D.3.不等式1-2x≥0的解集是( )A。

B。

C。

D.4.如图所示,正三棱柱的左视图()A。

B.C。

D。

5.将a3b-ab进行因式分解,正确的是()A. B. C. D。

6.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A。

B. 1 C. D。

2A. B。

C。

D。

8.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A. B. C. D。

9.计算-a-1的正确结果是()A。

B。

C. D。

10.小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:天数(天)1213最高气温(℃)22262829则这周最高气温的平均值是()A. B. C. D.11.如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A。

B。

C.D。

12.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A. 图象经过第一、二、四象限B。

y随x的增大而减小C. 图象与y轴交于点D. 当时,13.如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A。

B。

C。

D.14.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是( )A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省临沂市郯城县2019届中考数学一模试卷(解析版)一、选择题(本大题共14小题,每小题3分,共42分)1、实数﹣2015的绝对值是()A、2015B、﹣2015C、±2015D、【分析】计算绝对值要根据绝对值的定义求解、第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号、【解答】解:|﹣2015|=2015,故选:A、【点评】本题考查了绝对值,解决本题的关键是熟记一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0、2、移动互联网已经全面进入人们的日常生活、截至2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A、1.62×104B、1.62×106C、1.62×108D、0.162×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数、确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同、当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数、【解答】解:将1.62亿用科学记数法表示为1.62×108、故选C、【点评】此题考查科学记数法的表示方法、科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值、3、下列式子中正确的是()A、()﹣2=﹣9B、(﹣2)3=﹣6C、=﹣2D、(﹣3)0=1【分析】根据二次根式的性质与化简、有理数的乘方、零指数以及负整数指数幂逐一运算,判断即可、【解答】解:A、=9,故本项错误;B、(﹣2)3=﹣8,故本项错误;C、,故本项错误;D、(﹣3)0=1,故本项正确,故选:D、【点评】本题考查了二次根式的性质与化简、有理数的乘方、零指数以及负整数指数幂,熟练掌握运算法则是解题的关键、4、将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是()A、30°B、45°C、60°D、65°【分析】先根据两角互余的性质求出∠3的度数,再由平行线的性质即可得出结论、【解答】解:∵∠1+∠3=90°,∠1=30°,∴∠3=60°、∵直尺的两边互相平行,∴∠2=∠3=60°、故选C、【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等、5、已知x=,y=,则x2+xy+y2的值为()A、2B、4C、5D、7【分析】先把x、y的值代入原式,再根据二次根式的性质把原式进行化简即可、【解答】解:原式=(x+y)2﹣xy=(+)2﹣×=()2﹣=5﹣1=4、故选B、【点评】本题考查的是二次根式的化简求值,熟知二次根式混合运算的法则是解答此题的关键、6、不等式组的整数解的个数是()A、3B、5C、7D、无数个【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可、【解答】解:,解①得:x>﹣2,解②得:x≤3、则不等式组的解集是:﹣2<x≤3、则整数解是:﹣1,0,1,2,3共5个、故选B、【点评】本题考查不等式组的解法及整数解的确定、求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了、7、化简的结果是()A、x+1B、C、x﹣1D、【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果、【解答】解:原式=﹣===x+1、故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键、8、若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是()A、6cmB、9cmC、12cmD、18cm【分析】利用弧长公式可得圆锥的侧面展开图的弧长,除以2π即为圆锥的底面半径、【解答】解:圆锥的弧长为:=24π,∴圆锥的底面半径为24π÷2π=12,故选C、【点评】考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长;9、如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段、在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A、B、C、D、【分析】利用正六边形的性质以及勾股定理得出AE的长,进而利用概率公式求出即可、【解答】解:连接AF,EF,AE,过点F作FN⊥AE于点N,∵点A,B,C,D,E,F是边长为1的正六边形的顶点,∴AF=EF=1,∠AFE=120°,∴∠FAE=30°,∴AN=,∴AE=,同理可得:AC=,故从任意一点,连接两点所得的所有线段一共有15种,任取一条线段,取到长度为的线段有6种情况,则在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为:、故选:B、【点评】此题主要考查了正多边形和圆,正确利用正六边形的性质得出AE的长是解题关键、10、如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A、B、C、D、【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=,借助相似三角形的性质即可解决问题、【解答】解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC==,故选D、【点评】本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答、11、如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴、若双曲线y=与正方形ABCD有公共点,则k的取值范围为()A、1<k<9B、2≤k≤34C、1≤k≤16D、4≤k<16【分析】根据题意求出点A的坐标,根据正方形的性质求出点C的坐标,根据反比例函数图象上点的坐标特征解答即可、【解答】解:∵点A在直线y=x上,横坐标为1,∴点A的坐标为(1,1),∵正方形ABCD的边长为3,∴点C的坐标为(4,4),当双曲线y=经过点A时,k=1×1=1,当双曲线y=经过点C时,k=4×4=16,∴双曲线y=与正方形ABCD公共点,则k的取值范围是1≤k≤16,故选C、【点评】本题考查的是反比例函数与一次函数的交点问题以及正方形的性质,掌握反比例函数图象上点的坐标特征、以及正方形的性质是解题的关键、12、如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A 、80°B 、100°C 、110°D 、130°【分析】连接OC,然后根据等边对等角可得:∠OCB=∠OBC=40°,然后根据三角形内角和定理可得∠BOC=100°,然后根据周角的定义可求:∠1=260°,然后根据圆周角定理即可求出∠A 的度数、【解答】解:连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°,∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=∠1,∴∠A=130°、故选:D 、【点评】此题考查了圆周角定理、此题比较简单,注意掌握数形结合思想的应用,解题的关键是:熟记在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、13、如图,Rt △ABC 中,∠ACB=90°,AC=3,BC=4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B′处,两条折痕与斜边AB 分别交于点E 、F,则线段B′F 的长为( )A 、B 、C 、D 、【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF ,CE ⊥AB,然后求得△ECF 是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE ,从而求得B′D=1,DF=,在Rt △B′DF 中,由勾股定理即可求得B′F 的长、【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF ,CE ⊥AB,∴B ′D=4﹣3=1,∠DCE +∠B′CF=∠ACE +∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF 是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==、故选:B、【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的角是本题的关键、14、如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A、①②③B、①③④C、①③⑤D、②④⑤【分析】根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a<0,由对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,于是可对②进行判断;根据顶点坐标对③进行判断;根据抛物线的对称性对④进行判断;根据函数图象得当1<x<4时,一次函数图象在抛物线下方,则可对⑤进行判断、【解答】解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确、故选:C、【点评】本题考查了二次项系数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y 轴右、(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点、二、填空题(本大题共5小题,每小题3分,共15分)15、分解因式:5x3﹣10x2+5x=5x(x﹣1)2、【分析】先提取公因式5x,再根据完全平方公式进行二次分解、【解答】解:5x3﹣10x2+5x=5x(x2﹣2x+1)=5x(x﹣1)2、故答案为:5x(x﹣1)2、【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底、16、分式方程的解为x=4、【分析】原式变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解、【解答】解:去分母得:1﹣x=﹣1﹣2x+6,解得:x=4,经检验x=4是分式方程的解、【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解、解分式方程一定注意要验根、17、如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论::①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形、其中正确的结论是①②、(请写出正确结论的序号)、【分析】利用SAS得到△EBF与△DFC全等,利用全等三角形对应边相等得到EF=AC,再由△ADC为等边三角形得到三边相等,等量代换得到EF=AD,AE=DF,利用对边相等的四边形为平行四边形得到AEFD为平行四边形,若AB=AC,∠BAC=120°,只能得到AEFD为菱形,不能为正方形,即可得到正确的选项、【解答】解:∵△ABE、△BCF为等边三角形,∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,∴∠ABE﹣∠ABF=∠FBC﹣∠ABF,即∠CBA=∠FBE,在△ABC和△EBF中,,∴△ABC≌△EBF(SAS),∴EF=AC,又∵△ADC为等边三角形,∴CD=AD=AC,∴EF=AD=DC,同理可得△ABC≌△DFC,∴DF=AB=AE=DF,∴四边形AEFD是平行四边形,选项②正确;∴∠FEA=∠ADF,∴∠FEA+∠AEB=∠ADF+∠ADC,即∠FEB=∠CDF,在△FEB和△CDF中,、∴△FEB≌△CDF(SAS),选项①正确;若AB=AC,∠BAC=120°,则有AE=AD,∠EAD=120°,此时AEFD为菱形,选项③错误,故答案为:①②、【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,平行四边形的判定,以及正方形的判定,熟练掌握全等三角形的判定与性质是解本题的关键、18、如图,一只蚂蚁沿着棱长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为、【分析】将正方体展开,右边与后面的正方形与前面正方形放在一个面上,此时AB最短,根据三角形MCB与三角形ACN相似,由相似得比例得到MC=2NC,求出CN的长,利用勾股定理求出AC的长即可、【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,∵△BCM∽△ACN,∴=,即==2,即MC=2NC,∴CN=MN=,在Rt△ACN中,根据勾股定理得:AC==,故答案为:、【点评】此题考查了平面展开﹣最短路径问题,涉及的知识有:相似三角形的判定与性质,勾股定理,熟练求出CN 的长是解本题的关键、19、读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为,这里“∑”是求和符号,通过对以上材料的阅读,计算=、【分析】根据求和公式写出分数的和的形式,根据分数的性质计算即可、【解答】解:由题意得,=+++…+=1﹣+﹣+…+﹣=1﹣=,故答案为:、【点评】本题考查的是数字的变化类问题,根据题意写出分数的和的形式、并正确进行分解是解题的关键、三、解答题(本大题共7小题,共63分)20、(7分)计算:﹣32÷×+|﹣3|【分析】分别利用特殊角的三角函数值以及绝对值的性质化简求出即可、【解答】解:﹣32÷×+|﹣3|=﹣9××+3﹣=﹣、【点评】此题主要考查了二次根式的混合运算以及特殊角的三角函数值、绝对值的性质等知识,正确化简各数是解题关键、21、(7分)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天,根据调查结果得到如图所示的统计图表、(1)a=35;(2)补全条形统计图;(3)据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数、【分析】(1)用样本总数100减去A、B、D、E类的人数即可求出a的值;(2)由(1)中所求a的值得到C类别的人数,即可补全条形统计图;(3)用30万乘以样本中每天进行体育锻炼时间在1小时以上的人数所占的百分比即可、【解答】解:(1)a=100﹣5﹣20﹣30﹣10=35;(2)补全条形统计图如图所示:(3)30×=22.5(万人)、答:估计该市初中学生每天进行体育锻炼时间在1小时以上的人数是22.5万人、故答案为:(1)35、【点评】本题考查的是条形统计图和频数分布表的综合运用、读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键、条形统计图能清楚地表示出每个项目的数据、也考查了中位数的定义以及利用样本估计总体、22、(7分)如图,在▱ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:△ADE≌△CBF、(2)若∠DEB=90°,求证:四边形DEBF是矩形、【分析】(1)由在▱ABCD中,AE=CF,可利用SAS判定△ADE≌△CBF、(2)由在▱ABCD中,且AE=CF,利用一组对边平行且相等的四边形是平行四边形,可证得四边形DEBF是平行四边形,又由∠DEB=90°,可证得四边形DEBF是矩形、【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS)、(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴BE=DF,∴四边形DEBF是平行四边形,∵∠DEB=90°,∴四边形DEBF是矩形、【点评】此题考查了平行四边形的判定与性质、矩形的判定以及全等三角形的判定与性质、注意有一个角是直角的平行四边形是矩形,首先证得四边形ABCD是平行四边形是关键、23、(9分)如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D、以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D、(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°、①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积、(结果保留根号和π)【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)①根据含有30°角的直角三角形的性质得出OB=2OD=2r,AB=2AC=3r,从而求得半径r的值;②根据S阴影=S△BOD ﹣S扇形DOE求得即可、【解答】解:(1)直线BC与⊙O相切;连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC、又∵直线BC过半径OD的外端,∴直线BC与⊙O相切、(2)设OA=OD=r,在Rt△BDO中,∠B=30°,∴OB=2r,在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2、(3)在Rt△ACB中,∠B=30°,∴∠BOD=60°、∴、∵∠B=30°,OD⊥BC,∴OB=2OD,∴AB=3OD,∵AB=2AC=6,∴OD=2,BD=2S△BOD=×OD•BD=2,∴所求图形面积为、【点评】本题考查了切线的判定,含有30°角的直角三角形的性质,扇形的面积等知识点的应用,主要考查学生的推理能力、24、(9分)我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩、两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x人、如果甲、乙两团队分别购买门票,两团队门票款之和为W元、(1)求W关于x的函数关系式,并写出自变量x的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,甲乙两团队联合购票比分别购票最多节约3400元,求a的值、【分析】(1)根据甲团队人数为x人,乙团队人数不超过50人,得到x≥70,分两种情况:①当70≤x≤100时,W=70x+80(120﹣x)=﹣10x+9600,②当100<x<120时,W=60x+80(120﹣x)=﹣20x+9600,即可解答;(2)根据甲团队人数不超过100人,所以x≤100,由W=﹣10x+9600,根据70≤x≤100,利用一次函数的性质,当x=70时,W最大=8900(元),两团联合购票需120×60=7200(元),即可解答;(3)根据每张门票降价a元,可得W=(70﹣a)x+80(120﹣x)=﹣(a+10)x+9600,利用一次函数的性质,x=70时,W最大=﹣70a+8900(元),而两团联合购票需120(60﹣2a)=7200﹣240a(元),所以﹣70a+8900﹣(7200﹣240a)=3400,即可解答、【解答】解:(1)∵甲团队人数为x人,乙团队人数不超过50人,∴120﹣x≤50,∴x≥70,①当70≤x≤100时,W=70x+80(120﹣x)=﹣10x+9600,②当100<x<120时,W=60x+80(120﹣x)=﹣20x+9600,综上所述,W=(2)∵甲团队人数不超过100人,∴x≤100,∴W=﹣10x+9600,∵70≤x≤100,∴x=70时,W最大=8900(元),两团联合购票需120×60=7200(元),∴最多可节约8900﹣7200=1700(元)、(3)∵x≤100,∴W=(70﹣a)x+80(120﹣x)=﹣(a+10)x+9600,∴x=70时,W最大=﹣70a+8900(元),两团联合购票需120(60﹣2a)=7200﹣240a(元),∵﹣70a+8900﹣(7200﹣240a)=3400,解得:a=10、【点评】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数解析式,利用一次函数的性质求得最大值、注意确定x的取值范围、25、(11分)在△ABC中,AB=AC=5,cos∠ABC=,将△ABC绕点C顺时针旋转,得到△A1B1C、(1)如图①,当点B1在线段BA延长线上时、①求证:BB1∥CA1;②求△AB1C的面积;(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差、【分析】(1)①根据旋转的性质和平行线的性质证明;②过A作AF⊥BC于F,过C作CE⊥AB于E,根据三角函数和三角形的面积公式解答;(2)过C作CF⊥AB于F,以C为圆心CF为半径画圆交BC于F1,和以C为圆心BC为半径画圆交BC的延长线于F1,得出最大和最小值解答即可、【解答】解:(1)①证明:∵AB=AC,B1C=BC,∴∠AB1C=∠B,∠B=∠ACB,∵∠AB1C=∠ACB(旋转角相等),∴∠B1CA1=∠AB1C,∴BB1∥CA1;②过A作AF⊥BC于F,过C作CE⊥AB于E,如图①:∵AB=AC,AF⊥BC,∴BF=CF,∵cos∠ABC=,AB=5,∴BF=3,∴BC=6,∴B1C=BC=6,∵CE⊥AB,∴BE=B1E=,∴BB1=,CE=,∴AB1=,∴△AB1C的面积为:;(2)如图2,过C作CF⊥AB于F,以C为圆心CF为半径画圆交BC于F1,EF1有最小值,此时在Rt△BFC中,CF=,∴CF1=,∴EF1的最小值为;如图,以C为圆心BC为半径画圆交BC的延长线于F1,EF1有最大值;此时EF1=EC+CF1=3+6=9,∴线段EF1的最大值与最小值的差为、【点评】此题考查几何变换问题,关键是根据旋转的性质和三角形的面积公式进行解答、26、(13分)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c (a≠0)经过点D、(1)如图1,若该抛物线经过原点O,且a=﹣、①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余、若符合条件的Q点的个数是4个,请直接写出a的取值范围、【分析】(1)①过点D作DF⊥x轴于点F,先通过三角形全等求得D的坐标,把D的坐标和a=﹣,c=0代入y=ax2+bx+c即可求得抛物线的解析式;②先证得CD∥x轴,进而求得要使得∠POB与∠BCD互余,则必须∠POB=∠BAO,设P的坐标为(x,﹣x2+x),分两种情况讨论即可求得;(2)若符合条件的Q点的个数是4个,则当a<0时,抛物线交于y轴的负半轴,当a>0时,最小值得<﹣1,解不等式即可求得、【解答】解:(1)①过点D作DF⊥x轴于点F,如图1,∵∠DBF+∠ABO=90°,∠BAO+∠ABO=90°,∴∠DBF=∠BAO,又∵∠AOB=∠BFD=90°,AB=BD,在△AOB和△BFD中,,∴△AOB≌△BFD(AAS)∴DF=BO=1,BF=AO=2,∴D的坐标是(3,1),根据题意,得a=﹣,c=0,且a×32+b×3+c=1,∴b=,∴该抛物线的解析式为y=﹣x2+x;②∵点A(0,2),B(1,0),点C为线段AB的中点,∴C(,1),∵C、D两点的纵坐标都为1,∴CD∥x轴,∴∠BCD=∠ABO,∴∠BAO与∠BCD互余,要使得∠POB 与∠BCD 互余,则必须∠POB=∠BAO,设P 的坐标为(x,﹣ x 2+x ),(Ⅰ)当P 在x 轴的上方时,过P 作PG ⊥x 轴于点G,如图2,则tan ∠POB=tan ∠BAO,即=,∴=,解得x 1=0(舍去),x 2=,∴﹣x 2+x=,∴P 点的坐标为(,);(Ⅱ)当P 在x 轴的下方时,过P 作PG ⊥x 轴于点G,如图3则tan ∠POB=tan ∠BAO,即=,∴=,解得x 1=0(舍去),x 2=,∴﹣x 2+x=﹣,∴P 点的坐标为(,﹣);综上,在抛物线上是否存在点P (,)或(,﹣),使得∠POB 与∠BCD 互余、(2)如图3,∵D (3,1),E (1,1),抛物线y=ax 2+bx +c 过点E 、D,代入可得,解得,所以y=ax 2﹣4ax +3a +1、分两种情况:①当抛物线y=ax 2+bx +c 开口向下时,若满足∠QOB 与∠BCD 互余且符合条件的Q 点的个数是4个,则点Q 在x 轴的上、下方各有两个、(i )当点Q 在x 轴的下方时,直线OQ 与抛物线有两个交点,满足条件的Q 有2个;(ii )当点Q 在x 轴的上方时,要使直线OQ 与抛物线y=ax 2+bx +c 有两个交点,抛物线y=ax 2+bx +c 与x 轴的交点必须在x 轴的正半轴上,与y 轴的交点在y 轴的负半轴,所以3a +1<0,解得a <﹣;②当抛物线y=ax 2+bx +c 开口向上时,点Q 在x 轴的上、下方各有两个,(i )当点Q 在x 轴的上方时,直线OQ 与抛物线y=ax 2+bx +c 有两个交点,符合条件的点Q 有两个;(ii )当点Q 在x 轴的下方时,要使直线OQ 与抛物线y=ax 2+bx +c 有两个交点,符合条件的点Q 才两个、根据(2)可知,要使得∠QOB 与∠BCD 互余,则必须∠QOB=∠BAO,∴tan ∠QOB=tan ∠BAO==,此时直线OQ 的斜率为﹣,则直线OQ 的解析式为y=﹣x,要使直线OQ 与抛物线y=ax 2+bx +c 有两个交点,所以方程ax 2﹣4ax +3a +1=﹣x 有两个不相等的实数根,所以△=(﹣4a +)2﹣4a (3a +1)>0,即4a 2﹣8a +>0,解得a >(a <舍去)综上所示,a的取值范围为a<﹣或a>、【点评】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,正切函数,最小值等,分类讨论的思想是本题的关键、。

相关文档
最新文档