眼图

合集下载

眼图的产生原理

眼图的产生原理

眼图的产生原理
眼图是一种用来分析数字通信系统性能的重要工具,它能够直观地展示信号的
时域波形和眼图图案,从而帮助工程师快速诊断和解决通信系统中的问题。

眼图的产生原理涉及到信号采样、时钟抖动、噪声干扰等多个方面,下面我们将逐一介绍。

首先,眼图的产生与信号采样密切相关。

在数字通信系统中,接收端需要对传
输信号进行采样以恢复原始数据。

采样过程中,如果采样时钟的频率与信号的符号速率不匹配,就会导致眼图打开不完整,甚至出现重叠。

因此,信号采样不当是导致眼图失真的重要原因之一。

其次,时钟抖动也是影响眼图质量的重要因素。

时钟抖动是指时钟信号的相位
或频率发生波动,导致采样时刻不准确。

时钟抖动会导致眼图的打开度不足,使得接收端难以正确识别数据。

因此,减小时钟抖动对于保证眼图质量至关重要。

此外,噪声干扰也会对眼图产生影响。

在数字通信系统中,噪声是无法避免的,它会使眼图的边缘变得模糊,降低系统的抗干扰能力。

因此,降低噪声对眼图的影响,提高系统的信噪比是改善眼图质量的重要途径。

除了上述因素外,信号失真、传输介质的频率响应不均匀、时钟漂移等因素也
会对眼图产生影响。

因此,在设计和优化数字通信系统时,需要综合考虑这些因素,以保证系统能够产生清晰、稳定的眼图。

总结一下,眼图的产生原理涉及到信号采样、时钟抖动、噪声干扰等多个方面。

只有在这些因素得到有效控制和优化的情况下,才能够获得清晰、稳定的眼图,从而保证数字通信系统的正常运行。

希望本文对大家对眼图的产生原理有所了解,谢谢阅读!。

通信原理中眼图的应用

通信原理中眼图的应用

通信原理中眼图的应用什么是眼图眼图是通信原理中用于评估和分析数字信号质量的重要工具。

它通过对数字信号的采样和显示,以一种直观的方式展示信号的稳定性和失真情况。

眼图通常用于分析和判断数字通信系统的性能,并对其中的问题进行诊断和调试。

眼图的生成过程1.信号采样:在生成眼图之前,需要对数字信号进行采样。

采样过程中,根据信号的时钟信号来确定采样时机,通常使用快速采样仪来进行高速、精确的采样。

2.信号显示:采样后的信号会通过一个显示设备进行展示。

在传统的眼图中,信号通常会被划分为许多由采样点组成的窗口,然后通过展示这些窗口来形成眼图。

现代的眼图仪器一般都具备高分辨率的显示屏,可以直接以高质量的图像形式呈现眼图。

3.眼图优化:在生成眼图之后,可能需要对眼图进行一定的优化。

例如,可以通过调整采样时机、增加采样点数等方式来改善眼图的质量。

这样可以更清晰地观察到眼图中的细节,有助于对信号质量进行更准确的评估。

眼图的应用眼图作为一种直观的信号展示方式,在通信原理中具有广泛的应用,以下列举了一些常见的应用场景:1. 信号质量评估眼图可以直观地显示信号的稳定性和失真情况。

通过对眼图的观察可以判断信号是否存在幅度失真、时钟抖动、时序偏移等问题,评估信号的质量是否符合预期要求。

这对于设计和优化数字通信系统至关重要。

2. 噪声分析眼图可以帮助分析信号受到的噪声干扰情况。

通过观察眼图的展开,可以判断信号在传输过程中受到的各种噪声的影响程度,进而进行噪声的分析和统计。

这对于优化传输链路、提高传输性能非常有帮助。

3. 时钟同步评估眼图中的时钟信号是通过采样时机生成的,所以眼图展示的时钟信息非常直观和准确。

通过眼图可以观察时钟信号的稳定性和抖动情况,进而评估时钟同步的精度和可靠性。

对于需要精确时序的通信系统,这是一个非常有用的工具。

4. 相位偏差分析眼图中的时钟信息还可以用于分析信号的相位偏移情况。

通过观察眼图中的相位偏移,可以评估信号传输中的相位稳定性和补偿需求。

眼图

眼图

在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,信号通过信道后,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间干扰的。

在码间干扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。

为了便于实际评价系统的性能,常用所谓“眼图”。

眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。

所谓“眼图”,就是由解调后经过低通滤波器输出的基带信号,以码元定时作为同步信号在示波器屏幕上显示的波形。

干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很象一只人的眼睛。

在图1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。

图1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。

眼图中央的垂直线表示取样时刻。

当波形没有失真时,眼图是一只“完全张开”的眼睛。

在取样时刻,所有可能的取样值仅有两个:+1或-1。

当波形有失真时,在取样时刻信号取值分布在小于+1或大于-1附近,“眼睛”部分闭合。

这样,保证正确判决所容许的噪声电平就减小了。

换言之,在随机噪声的功率给定时,将使误码率增加。

“眼睛”张开的大小就指明失真的严重程度。

为便于说明眼图和系统性能的关系,我们将它简化成图2的形状。

由此图可以看出:(1)最佳取样时刻应选择在眼睛张开最大的时刻;(2)眼睛闭合的速率,即眼图斜边的斜率,表示系统对定时误差灵敏的程度,斜边愈陡,对定位误差愈敏感;(3)在取样时刻上,阴影区的垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区的间隔垂直距离之半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5)阴影区与横轴相交的区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息的解调器有重要影响。

衡量眼图质量的几个重要参数有:1.眼图开启度(U-2ΔU)/U指在最佳抽样点处眼图幅度“张开”的程度。

无畸变眼图的开启度应为100%。

眼图的定义、原理及模型

眼图的定义、原理及模型

图1 无失真及有失真时的波形及眼图
图1中可以看出,眼图是由虚线分段的接收码元 波形叠加组成的。眼图中央的垂直线表示取样时 刻。当波形没有失真时,眼图是一只“完全张开” 的眼睛。在取样时刻,所有可能的取样值仅有两 个:+1或-1。当波形有失真时,在取样时刻信号 取值分布在小于+1或大于-1附近,“眼睛”部分 闭合。这样,保证正确判决所容许的噪声电平就 减小了。换言之,在随机噪声的功率给定时,将 使误码率增加。“眼睛”张开的大小就指明失真 的严重程度。
眼图的定义、原理及模型
在实际的通信系统中,数字信号经过非理 想的传输系统必定要产生畸变,信号通过 信道后,也会引入噪声和干扰,也就是说, 总是在不同程度上存在码间干扰的。在码 间干扰和噪声同时存在情况下,系统性能 很难进行定量的分析,常常甚至得不到近 似结果。为了便于实际评价系统的性能, 常用所谓“眼图”。眼图可以直观地估价 系统的码间干扰和噪声的影响,是一种常 用的测试手段。
END
衡量眼图质量的几个重要参数有: 1.眼图开启度(U-2∆U)/U 指在最佳抽样点处眼图幅度“张开”的程度。无畸变眼图 的开启度应为100%。 其中U=U+ + U2.“眼皮”厚度2∆U/U 指在最佳抽样点处眼图幅度的闭合部分与最大幅度之比, 无畸变眼图的“眼皮”厚度应等于0。 3.交叉点发散度∆T/T 指眼图过零点交叉线的发散程度,无畸变眼图的交叉点发 散度应为0。 4.正负极性不对称度 指在最佳抽样点处眼图正、负幅度的不对称程度。无畸变 眼图的极性不对称度应为0。
眼图定义
所谓“眼图”,就是由解调后经过低通滤 波器输出的基带信号,以码元定时作为同 步信号在示波器屏幕上显示的波形。干扰 和失真所产生的传输畸变,可以在眼图上 清楚地显示出来。因为对于二进制信号波 形,它很象一只人的眼睛。

眼图实验报告

眼图实验报告

眼图实验报告眼图实验报告引言:眼图是一种常用的电信测量工具,用于分析数字信号的质量和稳定性。

通过观察信号在示波器屏幕上的显示,我们可以获得信号的波形、噪声和时钟抖动等信息。

本实验旨在通过眼图分析方法,对数字信号进行测量和评估。

一、实验目的本实验的主要目的是通过眼图实验,了解数字信号的质量和稳定性,并掌握使用眼图进行信号分析的方法。

二、实验原理眼图是一种通过示波器观察信号波形的方法。

在示波器屏幕上,我们可以看到一系列的“眼睛”,每个“眼睛”代表了一个数据位。

通过观察这些“眼睛”的开闭程度和位置,我们可以判断信号的质量和稳定性。

在眼图中,水平轴代表时间,垂直轴代表信号的电压。

每个“眼睛”由上下两条边界线和中间的开放区域组成。

边界线的位置和开放区域的大小反映了信号的噪声和时钟抖动情况。

边界线越平整,开放区域越大,表示信号质量越好;反之,表示信号质量较差。

三、实验步骤1. 连接示波器和信号源:将信号源的输出与示波器的输入相连。

2. 设置示波器参数:根据实际情况,设置示波器的触发模式、时间基准和垂直尺度等参数。

3. 调整示波器触发:通过调整示波器的触发模式和触发电平,使信号能够稳定地显示在示波器屏幕上。

4. 观察眼图:调整示波器的水平和垂直尺度,观察眼图的显示情况。

注意观察边界线的平整程度和开放区域的大小。

5. 分析眼图:根据眼图的显示结果,分析信号的质量和稳定性。

可以通过观察边界线的位置和开放区域的大小,判断信号是否存在噪声和时钟抖动。

6. 记录实验数据:将实验中观察到的眼图结果记录下来,以备后续分析和比较。

四、实验结果与分析通过眼图实验,我们观察到了不同信号的眼图,并进行了分析。

在实验中,我们发现开放区域较大、边界线平整的眼图代表了较好的信号质量和稳定性,而开放区域较小、边界线波动较大的眼图则表示信号质量较差。

实验中,我们还观察到了一些常见的眼图特征。

例如,当信号存在噪声时,眼图的开放区域会变小,边界线会变得不规则;当信号存在时钟抖动时,眼图的边界线会出现波动。

眼图测量的概念

眼图测量的概念

眼图测量的概念眼图测量是一种用于分析和评估数字通信系统的技术。

在数字通信中,信息以数字信号的形式传输,而数字信号由一系列离散的样本组成。

眼图测量通过显示和分析这些样本的时域波形,从而提供关于系统性能的重要信息。

在眼图中,每个数字信号样本被绘制为一个脉冲,这些脉冲被垂直堆叠在一起形成一个图像,类似于一个开放的眼睛。

每个脉冲代表着一个时刻的信号状态,而整个眼图则显示了多个时刻的信号状态的叠加。

通过观察眼图的形状、宽度和高度等特征,可以获得关于系统的多种信息。

眼图主要提供以下几个方面的信息:1. 时基抖动:眼图的开口宽度可以反映系统的时基抖动性能。

时基抖动是由于时钟不准确或传输路径中的噪声引起的,它会导致样本位置的不确定性。

如果眼图的开口很窄,意味着系统中存在较大的时基抖动,这可能会导致信号误码率的增加。

2. 眼图的对称性:眼图的对称性可以反映系统的码间干扰情况。

如果眼图两边的形状不对称,即开口宽度不一致,可能表明系统中存在码间干扰或码间失配。

码间干扰会导致信号间的互相干扰,增加误码率。

3. 眼图的噪声水平:眼图的噪声水平可以反映系统的噪声性能。

噪声会导致信号波形的不规则性和抖动,从而影响系统的可靠性和性能。

通过观察眼图的噪声水平,可以评估系统的抗噪声性能。

4. 采样时刻偏移:眼图可以显示信号采样时刻的偏移情况。

采样时刻偏移会导致信号样本的错位,从而影响信号的恢复和解调。

通过观察眼图的采样时刻偏移情况,可以判断系统是否存在采样时刻同步问题。

除了以上几个方面的信息,眼图还可以用于估计信号的传输带宽、检测系统中的串扰和非线性等问题。

通过对眼图的仔细分析,可以发现可能存在的问题,并采取相应的调整和优化措施,以提高系统的性能和稳定性。

眼图测量可以使用专用的示波器、时钟回路、采样仪等设备进行。

这些设备可以通过触发和同步功能来捕获和显示眼图。

通过调整样本时钟、增加采样速率、降低噪声等措施,可以改善眼图的质量和可读性,并获得更准确的眼图测量结果。

眼图的概念

眼图的概念

眼图的概念眼图是指在频谱分析中常出现的一种信号特征,通常用来表示信号的带宽与中心频率。

它是通过对信号进行傅里叶变换后,在频域中观察信号的频谱特征得到的。

眼图主要用于对数字通信系统中的时域信号进行分析和评估,以了解信道传输性能和判断系统的可靠性。

眼图的原理是基于信号的采样和重构过程。

当信号经过采样和重新构造后,得到的信号会受到噪声和其他干扰的影响,因此在信号的波形上会出现一定的失真和扭曲。

而眼图可以通过观察信号的波形特征来判断信号的质量和误码率等性能指标。

眼图的基本形状是一串类似于“眼睛”的波形,其中包含了信号的多个周期。

在眼图中,通常可以观察到信号的上下垂直边界和左右水平边界,它们分别代表了信号的幅度和时间轴。

而眼图中的开口宽度和深度则代表了信号的峰-峰值(也即电平差)和噪声信号。

眼图的开口宽度反映了信号的峰-峰值。

如果开口很窄,代表峰-峰值很小,即信号的幅度很小。

而如果开口很宽,代表峰-峰值较大,即信号的幅度较大。

通过对眼图开口宽度的观察,可以判断信号的灵敏度和抗干扰能力。

眼图的深度则反映了信号中的噪声。

如果眼图深度很浅,代表噪声信号很小,即信号的质量很好。

而如果眼图深度很深,代表噪声信号很大,即信号的质量较差。

通过对眼图深度的观察,可以判断信号的信噪比和误码率。

眼图的另一个重要特征是眼图的跳动,即眼图上各个周期的变化。

这种跳动反应了信号在传输过程中的时钟偏移和抖动等问题。

通过对眼图跳动的观察,可以判断信号的时钟同步性和时钟失真程度。

眼图的分析主要通过眼图的偏移、闭合度和对称性等指标进行。

眼图的偏移表示了信号的直流偏移情况,可以判断信号的偏置和直流分量。

眼图的闭合度表示了信号的完整性,可以判断信号的时钟同步性和时延扩大情况。

而眼图的对称性表示了信号的对称性,可以判断信号的相位和频率稳定性。

在实际应用中,眼图常用于数字通信系统的调试和优化。

通过对眼图进行分析,可以发现系统中的时钟同步问题、噪声干扰问题和时域失真问题等,并采取相应的措施进行改进和优化。

眼图分析

眼图分析

光眼图分析(1)
激光器驱动曲线
光眼图分析(2)
现象:过冲明显,0线重 原因:偏流过低,0电平位于域值以下
光眼图分析(3)
现象:有overshoቤተ መጻሕፍቲ ባይዱt 原因:上升沿过快
光眼图分析(4)
现象:有undershoot 原因:下降沿过缓,负载电容过大
光眼图分析(5)
现象:ringing 原因:阻抗不连续,引起振铃
光眼图分析(9)
现象:全部双线 原因:可能是功率控制不稳定的原因
1 0 T
光眼图分析(10)
现象:左右双线(多线) 原因:可能是时钟问题
1 0 T
光眼图分析(11)
现象:消光比过大或过低 原因:调制电流和偏置电流的控制问题
光眼图分析(12)
现象:占空比 原因:未位于激光器特性曲线的线性区, 或激光器线性不好
光眼图分析(6)
现象:反射reflections 原因:阻抗不连续, 引起振铃
光眼图分析(7)
现象:双线 原因:PDJ(patter dependent jitter)引起 高低频响应不同
光眼图分析(8)
现象:不对称 原因:常发现在直调激光器上,对eml激 光器很少见。可能由于上升下降时间不等, 也可能是占空比问题
交流
眼图(eyediagram)
2006.7.27
目录
眼图的形成 眼图的参数 光眼图分析
眼图形成
1 0 T Trigger
眼图参数和术语
Amplitude(Pk-Pk,Mean,overshoot…) Time(Risetime, falltime,duty,Period…) Comm(Ext ratio,Q factor, Jitter(Pk-Pk), Jitter(RMS),Noise ratio…) Mask(margin,filter,hits…)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

眼图
在实际系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,在示波器上显示的图形很象人的眼睛,因此被称为眼图。

二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”,当传输N元码时,会显示两N-1只“眼睛”。

眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。

在无码间串扰和噪声的理想情况下,在无码间串扰在无码间串扰和噪声的理想情况下,波形无失真,“眼”开启得最大。

图1 眼图的一般描述
在无码间串扰和噪声的理想情况下,波形无失真,“眼”开启得最大。

当有码间串扰时,波形失真,引起“眼”部分闭合。

若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度。

由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。

另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

通常眼图可以用图1所示的图形来描述。

由图1可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。

显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜边越陡,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。

(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(6)横轴对应判决门限电平。

为了研究噪声和信道带宽引起的信号失真与眼图关系,我们可以用如图2所示的SystemView仿真电路来观察。

图2 用于观察眼图的基带传输系统仿真电路图
其中,①信号源(图符0)采用幅度为1V、速率为100H、电平数为2的伪随机序列,②信道用一个50Hz的低通滤波器(图符5)来模拟,并在信道中加入了③噪声(图符3),在接收器图符前加入了一个④抽样器图符,用来调整输出采样率以配合SystemView接收计算器的时间切片绘图功能来观察眼图。

⑤时间切片功能可以把接收计算器在多个时间段内记录到的数据重叠起来显示。

时间段的起始位置和长度都可由计算器窗口设置。

为满足时间切片周期和码元同步并且能完整地观察到一个眼图的要求,一般将时间切片的长度设置为信号周期的整数倍(该数越大,观测到的“眼睛”数越多,一般取采样周期的2倍时长)。

例如,采样频率为100Hz,即采样周期为10ms,则时间切片应设为20ms。

时间切片长度的设置如图3所示,在接收计算器窗口下选菜单中的“Style”项,再输入“Time Slice”的参数,按“OK”按钮后确定退出后即可看到生成的眼图,如图4(将噪声源从系统中断开)和图5所示。

改变噪声幅度,重新运行系统,可观察到眼图的“眼睛”张开的幅度变小。

同样,改变信道的带宽,也可观察到眼图的变化。

图3 在接收计算器中设置时间切片参数以观察眼图
图4 信道无噪声时观察到的眼图
图5 信道信噪比为10dB时观察到的眼图。

相关文档
最新文档