2020年天津市中考数学试卷
2020年天津市中考数学试卷(解析版)

2020年~2021年最新天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.cos60°的值等于()A.B.1 C.D.3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.计算的结果为()A.1 B.a C.a+1 D.8.方程组的解是()A.B.C.D.9.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.计算x7÷x4的结果等于.14.计算的结果等于.15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上. (1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。
2020年天津市中考数学试卷(含解析)

2020年天津市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(本大题共12小题,每小题3分,共36分)1.计算30+(﹣20)的结果等于()A.10 B.﹣10 C.50 D.﹣502.2sin45°的值等于()A.1 B.C.D.23.据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()A.0.586×108B.5.86×107C.58.6×106D.586×1054.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7.方程组的解是()A.B.C.D.8.如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C的坐标是()A.(6,3)B.(3,6)C.(0,6)D.(6,6)9.计算+的结果是()A.B.C.1 D.x+110.若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x211.如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DE B.BC=EF C.∠AEF=∠D D.AB⊥DF12.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a<﹣.其中,正确结论的个数是()A.0 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)13.计算x+7x﹣5x的结果等于.14.计算(+1)(﹣1)的结果等于.15.不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.将直线y=﹣2x向上平移1个单位长度,平移后直线的解析式为.17.如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上,且AB=.(Ⅰ)线段AC的长等于.(Ⅱ)以BC为直径的半圆与边AC相交于点D,若P,Q分别为边AC,BC上的动点,当BP+PQ取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P,Q,并简要说明点P,Q的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.(8分)农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm)进行了测量.根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为,图①中m的值为;(Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.21.(10分)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.22.(10分)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.23.(10分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm 与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:2 5 20 23 30离开宿舍的时间/min0.2 0.7离宿舍的距离/km(Ⅱ)填空:①食堂到图书馆的距离为km;②小亮从食堂到图书馆的速度为km/min;③小亮从图书馆返回宿舍的速度为km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.24.(10分)将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0,0),点A(2,0),点B在第一象限,∠OAB=90°,∠B=30°,点P在边OB上(点P不与点O,B重合).(Ⅰ)如图①,当OP=1时,求点P的坐标;(Ⅱ)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且OQ=OP,点O的对应点为O',设OP=t.①如图②,若折叠后△O'PQ与△OAB重叠部分为四边形,O'P,O'Q分别与边AB相交于点C,D,试用含有t 的式子表示O'D的长,并直接写出t的取值范围;②若折叠后△O'PQ与△OAB重叠部分的面积为S,当1≤1≤3时,求S的取值范围(直接写出结果即可).25.(10分)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线1平行于x轴,E是直线1上的动点,F是y轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是?参考答案与试题解析一、选择题1.【解答】解:30+(﹣20)=+(30﹣20)=10.故选:A.2.【解答】解:2sin45°=2×=.故选:B.3.【解答】解:58600000=5.86×107,故选:B.4.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.5.【解答】解:从正面看有两列,左列底层一个小正方形,右列三个小正方形.故选:D.6.【解答】解:∵<<,∴4<<5,故选:B.7.【解答】解:,①+②得:3x=3,解得:x=1,把x=1代入①得:y=2,则方程组的解为.故选:A.8.【解答】解:∵四边形OBCD是正方形,∴OB=BC=CD=OD,∠CDO=∠CBO=90°,∵O,D两点的坐标分别是(0,0),(0,6),∴OD=6,∴OB=BC=CD=6,∴C(6,6).故选:D.9.【解答】解:原式==.故选:A.10.【解答】解:∵点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,∴﹣5=,即x1=﹣2,2=,即x2=5;5=,即x3=2,∵﹣2<2<5,∴x1<x3<x2;故选:C.11.【解答】解:由旋转可得,△ABC≌△DEC,∴AC=DC,故A选项错误,BC=EC,故B选项错误,∠AEF=∠DEC=∠B,故C选项错误,∠A=∠D,又∵∠ACB=90°,∴∠A+∠B=90°,∴∠D+∠B=90°,∴∠BFD=90°,即DF⊥AB,故D选项正确,故选:D.12.【解答】解:∵抛物线的对称轴为直线x=,而点(2,0)关于直线x=的对称点的坐标为(﹣1,0),∵c>1,∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=,∴﹣=,∴b=﹣a>0,∴abc<0,故①错误;∵抛物线开口向下,与x轴有两个交点,∴顶点在x轴的上方,∵a<0,∴抛物线与直线y=a有两个交点,∴关于x的方程ax2+bx+c=a有两个不等的实数根;故②正确;∵抛物线y=ax2+bx+c经过点(2,0),∴4a+2b+c=0,∵b=﹣a,∴4a﹣2a+c=0,即2a+c=0,∴﹣2a=c,∵c>1,∴﹣2a>1,∴a<﹣,故③正确,故选:C.二、填空题13.【解答】解:x+7x﹣5x=(1+7﹣5)x=3x.故答案为:3x.14.【解答】解:原式=()2﹣12=7﹣1=6.故答案是:6.15.【解答】解:∵袋子中装有8个小球,其中红球有3个,∴从袋子中随机取出1个球,则它是红球的概率是.故答案为:.16.【解答】解:将直线y=﹣2x向上平移1个单位,得到的直线的解析式为y=﹣2x+1.故答案为y=﹣2x+1.17.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,CD=AB,DC∥AB,∵AD=3,AB=CF=2,∴CD=2,BC=3,∴BF=BC+CF=5,∵△BEF是等边三角形,G为DE的中点,∴BF=BE=5,DG=EG,延长CG交BE于点H,∵DC∥AB,∴∠CDG=∠HEG,在△DCG和△EHG中,,∴△DCG≌△EHG(ASA),∴DC=EH,CG=HG,∵CD=2,BE=5,∴HE=2,BH=3,∵∠CBH=60°,BC=BH=3,∴△CBH是等边三角形,∴CH=BC=3,∴CG=CH=,故答案为:.18.【解答】解:(Ⅰ)线段AC的长等于=;(Ⅱ)如图,取格点M,N,连接MN,连接BD并延长,与MN相交于点B′,连接B′C,与半圆相交于点E,连接BE,与AC相交于点P,连接B′P并延长,与BC相交于点Q,则点P,Q即为所求.三、解答题19.【解答】解:(Ⅰ)解不等式①,得x≤1;(Ⅱ)解不等式②,得x≥﹣3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣3≤x≤1.故答案为:x≤1,x≥﹣3,﹣3≤x≤1.20.【解答】解:(Ⅰ)本次抽取的麦苗有:2÷8%=25(株),m%=1﹣8%﹣12%﹣16%﹣40%=24%,故答案为:25,24;(Ⅱ)平均数是:==15.6,众数是16,中位数是16.21.【解答】解:(1)∵∠APC是△PBC的一个外角,∴∠C=∠APC﹣∠ABC=100°﹣63°=37°,由圆周角定理得:∠BAD=∠C=37°,∠ADC=∠B=63°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=∠ADB﹣∠ADC=90°﹣63°=27°;(2)连接OD,如图②所示:∵CD⊥AB,∴∠CPB=90°,∴∠PCB=90°﹣∠ABC=90°﹣63°=27°,∵DE是⊙O的切线,∴DE⊥OD,∴∠ODE=90°,∵∠BOD=2∠PCB=54°,∴∠E=90°﹣∠BOD=90°﹣54°=36°.22.【解答】解:如图,过点A作AD⊥BC,垂足为D,∵∠ACB=45°,∴AD=CD,设AB=x,在Rt△ADB中,AD=AB•sin58°≈0.85x,BD=AB•cos58°≈0.53x,又∵BC=221,即CD+BD=221,∴0.85x+0.53x=221,解得,x≈160,答:AB的长约为160m.23.【解答】解:(Ⅰ)由图象可得,在前7分钟的速度为0.7÷7=0.1(km/min),故当x=2时,离宿舍的距离为0.1×2=0.2(km),在7≤x≤23时,距离不变,都是0.7km,故当x=23时,离宿舍的距离为0.7km,在28≤x≤58时,距离不变,都是1km,故当x=30时,离宿舍的距离为1km,故答案为:0.2,0.7,1;(Ⅱ)由图象可得,①食堂到图书馆的距离为1﹣0.7=0.3(km),故答案为:0.3;②小亮从食堂到图书馆的速度为:0.3÷(28﹣23)=0.06(km/min),故答案为:0.06;③小亮从图书馆返回宿舍的速度为:1÷(68﹣58)=0.1(km/min),故答案为:0.1;④当0≤x≤7时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为0.6÷0.1=6(min),当58≤x≤68时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为(1﹣0.6)÷0.1+58=62(min),故答案为:6或62;(Ⅲ)由图象可得,当0≤x≤7时,y=0.1x;当7<x≤23时,y=0.7;当23<x≤28时,设y=kx+b,,得,即当23<x≤28时,y=0.06x﹣0.68;由上可得,当0≤x≤28时,y关于x的函数解析式是y=.24.【解答】解:(Ⅰ)如图①中,过点P作PH⊥OA于H.∵∠OAB=90°,∠B=30°,∴∠BOA=90°﹣30°=60°,∴∠OPH=90°﹣60°=30°,∵OP=1,∴OH=OP=,PH=OP•cos30°=,∴P(,).(Ⅱ)①如图②中,由折叠可知,△O′PQ≌△OPQ,∴OP=O′P,OQ=O′Q,∵OP=OQ=t,∴OP=OQ=O′P=O′Q,∴四边形OPO′Q是菱形,∴QO′∥OB,∴∠ADQ=∠B=30°,∵A(2,0),∴OA=2,QA=2﹣t,在Rt△AQD中,DQ=2QA=4﹣2t,∵O′D=O′Q﹣QD=3t﹣4,∴<t<2.②①当点O′落在AB上时,重叠部分是△PQO′,此时t=,S=×()2=,当<t≤2时,重叠部分是四边形PQDC,S=t2﹣(3t﹣4)2=﹣t2+3t﹣2,当x=﹣=时,S有最大值,最大值=,当t=1时,S=,当t=3时,S=××=,综上所述,≤S≤.25.【解答】解:(Ⅰ)当a=1,m=﹣3时,抛物线的解析式为y=x2+bx﹣3.∵抛物线经过点A(1,0),∴0=1+b﹣3,解得b=2,∴抛物线的解析式为y=x2+2x﹣3.∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点坐标为(﹣1,﹣4).(Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=﹣m﹣1.∴抛物线的解析式为y=x2﹣(m+1)x+m.根据题意得,点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1﹣(m+1)=﹣m,HA=0﹣m=﹣m,∴AE==﹣m,∵AE=EF=2,∴﹣m=2,解得m=﹣2.此时,点E(﹣1,﹣2),点C(0,﹣2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF==.∴点F的坐标为(0,﹣2﹣)或(0,﹣2+).②由N是EF的中点,得CN=EF=.根据题意,点N在以点C为圆心、为半径的圆上,由点M(m,0),点C(0,m),得MO=﹣m,CO=﹣m,∴在Rt△MCO中,MC==﹣m.当MC≥,即m≤﹣1时,满足条件的点N在线段MC上.MN的最小值为MC﹣NC=﹣m﹣=,解得m=﹣;当MC<,即﹣1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC﹣MC=﹣(﹣m)=,解得m=﹣.∴当m的值为﹣或﹣时,MN的最小值是。
天津市2020年中考数学试卷(word版 含解析)

2020年天津市初中毕业生学业考试试卷数学本试卷分为第I 卷(选择题)、第II 卷(非选择题)两部分.第I 卷为第1页至第3页,第II 卷为第4页至第8页.试卷满分120分.考试时间100分钟.答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码.答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效.考试结束后,将本试卷和“答题卡”一并交回.祝你考试顺利!第I 卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.2.本卷共12题,共36分.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算()3020+-的结果等于( )A .10B .10-C .50D .50-2.2sin 45︒的值等于( )A .1BCD .23.据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为( )A .80.58610⨯B .75.8610⨯C .658.610⨯D .558610⨯ 4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .5.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .6 )A .3和4之间B .4和5之间C .5和6之间D .6和7之间7.方程组241x y x y +=⎧⎨-=-⎩,的解是( ) A .12x y =⎧⎨=⎩ B .32x y =-⎧⎨=-⎩ C .20x y =⎧⎨=⎩ D .31x y =⎧⎨=-⎩ 8.如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是( )A .()6,3B .()3,6C .()0,6D .()6,69.计算221(1)(1)x x x +++的结果是( ) A .11x + B .()211x + C .1 D .1x +10.若点()1,5A x -,()2,2B x ,()3,5C x 都在反比例函数10y x =的图象上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .231x x x <<C .132x x x <<D .312x x x <<11.如图,在ABC ∆中,90ACB ∠=︒,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点B 的对应点E 恰好落在边AC 上,点A 的对应点为D ,延长DE 交AB 于点F ,则下列结论一定正确的是( )A .AC DE =B .BC EF = C .AEFD ∠=∠ D .AB DF ⊥12.已知抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点()2,0,其对称轴是直线12x =.有下列结论:①0abc >②关于x 的方程2ax bx c a ++=有两个不等的实数根; ③12a <-. 其中,正确结论的个数是( )A .0B .1C .2D .32020年天津市初中毕业生学业考试试卷数学第II 卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔).2.本卷共13题,共84分.二、填空题(本大题共6小题,每小题3分,共18分)13.计算75x x x +-的结果等于______.14.计算1)的结果等于_______.15.不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是_______.16.将直线2y x =-向上平移1个单位长度,平移后直线的解析式为______.17.如图,ABCD 的顶点C 在等边BEF ∆的边BF 上,点E 在AB 的延长线上,G 为DE 的中点,连接CG .若3AD =,2AB CF ==,则CG 的长为_______.18.如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点A ,C 均落在格点上,点B 在网格线上,且53AB =.(I )线段AC 的长等于______;(II )以BC 为直径的半圆与边AC 相交于点D ,若P ,Q 分别为边AC ,BC 上的动点,当BP PQ +取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P ,Q ,并简要说明点P ,Q 的位置是如何找到的(不要求证明)_______.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组321251x x x ≤+⎧⎨+≥-⎩①②. 请结合题意填空,完成本题的解答(I )解不等式①,得_______;(II )解不等式②,得_______;(III )把不等式①和②的解集在数轴上表示出来:(IV )原不等式组的解集为_______.20.农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm )进行了测量.根据统计的结果,绘制出如下的统计图①和图②.图① 图②题请根据相关信息,解答下列问题:(I )本次抽取的麦苗的株数为_____,图①中m 的值为_______;(II )求统计的这组苗高数据的平均数、众数和中位数.21.在O 中,弦CD 与直径AB 相交于点P ,63ABC ∠=︒.图① 图②(I )如图①,若100APC ∠=︒,求BAD ∠和CDB ∠的大小;(II )如图②,若CD AB ⊥,过点D 作O 的切线,与AB 的延长线相交于点E ,求E ∠的大小.22.如图,A ,B 两点被池塘隔开,在AB 外选一点C ,连接AC ,BC .测得221BC m =,45ACB ∠=︒,58ABC ∠=︒.根据测得的数据,求AB 的长(结果取整数).参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈.23.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km ,图书馆离宿舍1km .周末,小亮从宿舍出发,匀速走了7min 到食堂;在食堂停留16min 吃早餐后,匀速走了5min 到图书馆;在图书馆停留30min 借书后,匀速走了10min 返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm 与离开宿舍的时间xmin 之间的对应关系.请根据相关信息,解答下列问题:(I )填表:(II )填空:①食堂到图书馆的距离为______km ;②小亮从食堂到图书馆的速度为______ /km min ;③小亮从图书馆返回宿舍的速度为______/km min ;④当小亮离宿舍的距离为0.6km 时,他离开宿舍的时间为______min .(III )当028x ≤≤时,请直接写出y 关于x 的函数解析式.24.将一个直角三角形纸片OAB 放置在平面直角坐标系中,点()0,0O ,点()2,0A ,点B 在第一象限,90OAB ∠=︒,30B ∠=︒,点P 在边OB 上(点P 不与点O ,B 重合).图① 图②(I )如图①,当1OP =时,求点P 的坐标;(II )折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且OQ OP =,点O 的对应点为O ',设OP t =.①如图②,若折叠后O PQ '∆与OAB ∆重叠部分为四边形,O P ',O Q '分别与边AB 相交于点C ,D ,试用含有t 的式子表示O D '的长,并直接写出t 的取值范围;②若折叠后O PQ '∆与OAB ∆重叠部分的面积为S ,当13t ≤≤时,求S 的取值范围(直接写出结果即可).25.已知点()1,0A 是抛物线2y ax bx m =++(a ,b ,m 为常数,0a ≠,0m <)与x 轴的一个交点. (I )当1a =,3m =-时,求该抛物线的顶点坐标;(II )若抛物线与x 轴的另一个交点为(),0M m ,与y 轴的交点为C ,过点C 作直线l 平行于x 轴,E 是直线l 上的动点,F 是y 轴上的动点,EF =①当点E 落在抛物线上(不与点C 重合),且AE EF =时,求点F 的坐标;②取EF的中点N,当m为何值时,MN的最小值是?22020年天津市初中毕业生学业考试试卷数学答案与解析本试卷分为第I 卷(选择题)、第II 卷(非选择题)两部分.第I 卷为第1页至第3页,第II 卷为第4页至第8页.试卷满分120分.考试时间100分钟.答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码.答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效.考试结束后,将本试卷和“答题卡”一并交回.祝你考试顺利!第I 卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.2.本卷共12题,共36分.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算()3020+-的结果等于( )A .10B .10-C .50D .50-【解析】经化简30(20)302010+-=-=,故答案选A2.2sin 45︒的值等于( )A .1BCD .2【解析】sin 45︒=,∴2sin 45︒=B 3.据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为( )A .80.58610⨯B .75.8610⨯C .658.610⨯D .558610⨯ 【解析】科学记数法的表示为10N a ⨯,其中1||10a ≤<,N 为小数点移动的位数,∴答案为5.86×1074.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D . 【解析】由轴对称的定义可知,C 选项为正确答案5.下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A .B .C .D . 【解析】主视图为从前往后看,故答案为D6 )A .3和4之间B .4和5之间C .5和6之间D .6和7之间【解析<4和5之间,故选B7.方程组241x y x y +=⎧⎨-=-⎩,的解是( )A .12x y =⎧⎨=⎩B .32x y =-⎧⎨=-⎩C .20x y =⎧⎨=⎩D .31x y =⎧⎨=-⎩【解析】将两个方程相加可得,33x =,∴1x =,将1x =代入24x y +=,可得2y =,∴方程组的解为12x y =⎧⎨=⎩,故选A8.如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是( )A .()6,3B .()3,6C .()0,6D .()6,6【解析】答案为D ,根据正方形的定义可得6BC CD ==,∴D (6,6)9.计算221(1)(1)x x x +++的结果是( ) A .11x + B .()211x + C .1 D .1x +【解析】222111(1)(1)(1)1x x x x x x ++==++++,故选A 10.若点()1,5A x -,()2,2B x ,()3,5C x 都在反比例函数10y x=的图象上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .231x x x <<C .132x x x <<D .312x x x <<【解析】 将123(,5),(,2),(,5)A x B x C x -都在反比例函数10y x=的图象上,则1232,5,2x x x =-== 故选C 11.如图,在ABC ∆中,90ACB ∠=︒,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点B 的对应点E 恰好落在边AC 上,点A 的对应点为D ,延长DE 交AB 于点F ,则下列结论一定正确的是( )A .AC DE =B .BC EF = C .AEFD ∠=∠ D .AB DF ⊥【解析】由旋转的性质可知,AC=CD ,BC=CE ,∠CED=∠AEF=∠B ∴A 、B 、C 选项错误,∵∠A+∠B=90°,∴∠A+∠AEF=90°,∴∠AFE=180°-(∠A+∠AEF )=90°,∴AB ⊥DF ,故选D 12.已知抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点()2,0,其对称轴是直线12x =.有下列结论:①0abc >②关于x 的方程2ax bx c a ++=有两个不等的实数根; ③12a <-. 其中,正确结论的个数是( )A .0B .1C .2D .3【解析】 由抛物线的对称轴为直线12x =,可得122b a -=,∴b a =-,将(2,0)代入抛物线2y ax bxc =++,可得2c a =-,∵1c >,∴12a <-,3()(2)20abc a a a a =--=<,∴①错误,①正确,方程2ax bx c a ++=可以看成抛物线2y ax bx c =++与直线y a =的交点,∵二次函数开口向下,且与y 轴的交点(0,c ),∴二次函数的最大值>1,∴直线y a =与2y ax bx c =++的交点个数为2个,故①正确,∴正确结论的个数为2个.故选C2020年天津市初中毕业生学业考试试卷数学第II 卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔).2.本卷共13题,共84分.二、填空题(本大题共6小题,每小题3分,共18分)13.计算75x x x +-的结果等于______.【解析】合并同类项可得3x ,故答案为3x .14.计算1)的结果等于_______.【解析】根据平方差公式可得221)16=-=,故答案为615.不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是_______.【解析】根据概率总的情况有8种,摸到红球的情况3种,故摸到红球的概率为38P =,故答案为3816.将直线2y x =-向上平移1个单位长度,平移后直线的解析式为______.【解析】根据直线平移的规律为:“上+,下-”故直线平移后的解析式为21y x =-+,答案为:21y x =-+17.如图,ABCD 的顶点C 在等边BEF ∆的边BF 上,点E 在AB 的延长线上,G 为DE 的中点,连接CG .若3AD =,2AB CF ==,则CG 的长为_______.【解析】连接DF ,延长GC 交DF 于H ,连接GF ,由□ABCD 的性质可得∠A=60°,∠BCD=60°,AD=BC=3又∵AB=CF=CD ,∴∠CFD=∠CDF=30°,由正△BEF 可得,BF=BE=EF=5,∠BFE=60°,∴∠EFD=90°,在Rt △EFD 中,G 为斜边DE 中点,∴GF=GD ,∴在△GCD 和△GCF 中,GD=GF ,GC=GC ,CD=CF ,∴△GCD ≌△GCF ,∴∠DGC=∠FGC ,∴GH ⊥DF ,DH=FH ∴CH=12CD=1,,∴DF=且GH 为△DFE 的中位线,∴HG=12EF=52,∴CG=32GH CH -=.故答案为3218.如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点A ,C 均落在格点上,点B 在网格线上,且53AB =.(I )线段AC 的长等于______;(II )以BC 为直径的半圆与边AC 相交于点D ,若P ,Q 分别为边AC ,BC 上的动点,当BP PQ +取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P ,Q ,并简要说明点P ,Q 的位置是如何找到的(不要求证明)_______.【解析】(I)线段AC ==(II )如图,取格点M ,N ,连接MN ,连接BD 并延长,与MN 相交于点B ';连接B C ',与半圆相交于点E ,连接BE ,与AC 相交于点P ,连接B P '并延长,与BC 相交于点Q ,则点P ,Q 即为所求.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组321251x x x ≤+⎧⎨+≥-⎩①②.请结合题意填空,完成本题的解答(I )解不等式①,得_______;(II )解不等式②,得_______;(III )把不等式①和②的解集在数轴上表示出来:(IV )原不等式组的解集为_______.【解析】解:(I )1x ≤(II )3x ≥-(III )(IV )31x -≤≤. 20.农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm )进行了测量.根据统计的结果,绘制出如下的统计图①和图②.图① 图②题请根据相关信息,解答下列问题:(I )本次抽取的麦苗的株数为_____,图①中m 的值为_______;(II )求统计的这组苗高数据的平均数、众数和中位数.【解析】20.解:(I )25,24.(II )观察条形统计图,132143154161017615.6234106x ⨯+⨯+⨯+⨯+⨯==++++ ∴这组数据的平均数是15.6.在这组数据中,16出现了10次,出现的次数最多,∴这组数据的众数为16.将这组数据按从小到大的顺序排列,其中处于中间位置的数是16,∴这组数据的中位数为16.21.在O 中,弦CD 与直径AB 相交于点P ,63ABC ∠=︒.图① 图②(I )如图①,若100APC ∠=︒,求BAD ∠和CDB ∠的大小;(II )如图②,若CD AB ⊥,过点D 作O 的切线,与AB 的延长线相交于点E ,求E ∠的大小. 【解析】解:(I )APC ∠是PBC ∆的一个外角,63ABC ∠=︒,100APC ∠=︒,37C APC PBC ∴∠=∠-∠=︒在O 中,BAD C ∠=∠,37BAD ∴∠=︒. AB 为O 的直径,90ADB ∴∠=︒在O 中,63ADC BC ∠=∠=︒A ,又CDB ADB ADC ∠=∠-∠27CDB ∴∠=︒.(II )如图,连接ODCD AB ⊥90CPB ∴∠=︒9027PCB PBC ∴∠=︒-∠=︒在O 中,2BOD BCD ∠=∠,54BOD ∴∠=︒. DE 是O 的切线,OD DE ∴⊥,即90ODE ∠=︒.90E EOD ∴∠=︒-∠36E ∴∠=︒22.如图,A ,B 两点被池塘隔开,在AB 外选一点C ,连接AC ,BC .测得221BC m =,45ACB ∠=︒,58ABC ∠=︒.根据测得的数据,求AB 的长(结果取整数).参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈.【解析】解:如图,过点A 作AH CB ⊥,垂足为H .根据题意,45ACB ∠=︒,58ABC ∠=︒,221BC =.在Rt CAH ∆中,tan AH ACH CH∠= tan 45AH CH AH ∴==︒. 在Rt BAH ∆中,tan AH ACH CH ∠=, tan 45AH CH AH ∴==︒在Rt BAH ∆中,tan AH ABH BH ∠=,sin AH ABH AB∠= tan 58AH BH ∴=︒,sin 58AH AB =︒又CB CH BH =+,221tan 58AH AH ∴=+︒,可得221tan 581tan 58AH ⨯︒=+︒()221tan 58221 1.601601tan 58sin 58(1 1.60)0.85AB ⨯︒⨯∴=≈=+︒⋅︒+⨯答:AB 的长约为160m .23.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km ,图书馆离宿舍1km .周末,小亮从宿舍出发,匀速走了7min 到食堂;在食堂停留16min 吃早餐后,匀速走了5min 到图书馆;在图书馆停留30min 借书后,匀速走了10min 返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm 与离开宿舍的时间xmin 之间的对应关系.请根据相关信息,解答下列问题:(I )填表:(II )填空:①食堂到图书馆的距离为______km ;②小亮从食堂到图书馆的速度为______ /km min ;③小亮从图书馆返回宿舍的速度为______/km min ;④当小亮离宿舍的距离为0.6km 时,他离开宿舍的时间为______min .(III )当028x ≤≤时,请直接写出y 关于x 的函数解析式. 【解析】(I )0.5,0.7,1.(II )①0.3;②0.06;③0.1④6或62.(III )当07x ≤≤时,0.1y x =当723x <≤时,0.7y =当2328x <≤时,0.060.68y x =-.24.将一个直角三角形纸片OAB 放置在平面直角坐标系中,点()0,0O ,点()2,0A ,点B 在第一象限,90OAB ∠=︒,30B ∠=︒,点P 在边OB 上(点P 不与点O ,B 重合).图① 图②(I )如图①,当1OP =时,求点P 的坐标;(II )折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且OQ OP =,点O 的对应点为O ',设OP t =.①如图②,若折叠后O PQ '∆与OAB ∆重叠部分为四边形,O P ',O Q '分别与边AB 相交于点C ,D ,试用含有t 的式子表示O D '的长,并直接写出t 的取值范围;②若折叠后O PQ '∆与OAB ∆重叠部分的面积为S ,当13t ≤≤时,求S 的取值范围(直接写出结果即可).【解析】解:(1)如图,过点P 作PH x ⊥轴,垂足为H ,则90OHP ∠=︒90OAB ∠=︒,30B ∠=︒,9060BOA B ∴∠=︒-∠=︒9030OPH POH ∴∠=︒-∠=︒在Rt OHP ∆中,1OP =,1122OH OP ∴==,HP ==.∴点P 的坐标为1,22⎛⎫ ⎪ ⎪⎝⎭.(II )①由折叠知,O PQ OPQ '∆≅∆,O P OP '∴=,O Q OQ '=又OQ OP t ==,O P Op OQ O Q t ''∴====∴四边形OQO P '为菱形.//QO OB '∴.可得30ADQ B ∠=∠=︒点()2,0A ,2OA ∴=.有2QA OA OQ t =-=-在Rt QAD ∆中,242QD QA t ==-O D O Q QD ''=-,34O D t '∴=-,其中t 的取值范围是423t <<.S ≤≤25.已知点()1,0A 是抛物线2y ax bx m =++(a ,b ,m 为常数,0a ≠,0m <)与x 轴的一个交点. (I )当1a =,3m =-时,求该抛物线的顶点坐标;(II )若抛物线与x 轴的另一个交点为(),0M m ,与y 轴的交点为C ,过点C 作直线l 平行于x 轴,E 是直线l 上的动点,F 是y 轴上的动点,EF =①当点E 落在抛物线上(不与点C 重合),且AE EF =时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是2? 【解析】解:(1)当1a =,3m =-时,抛物线的解析式为23y x bx =+-.抛物线经过点()1,0A ,013b ∴=+-.解得2b =.∴抛物线的解析式为223y x x =+-.2223(1)4y x x x =+-=+-,∴抛物线的顶点坐标为()1,4--.(II )①抛物线2y ax bx m =++经过点()1,0A 和(),0M m ,0m <, 0a b m ∴=++,1a ∴=,1b m =--.∴抛物线的解析式为2(1)y x m x m =-++.根据题意,得点()0,C m ,点()1,E m m +.过点A 作AH l ⊥于点H由点()1,0A ,得点()1,H m .在Rt EAH ∆中,1(1)EH m m =-+=-,0HA m m =-=-,AE ∴==.AE EF ===.解得2m =-.此时,点()1,2E --,点()0,2C -,有1EC =.点F 在y 轴上,∴在Rt EFC ∆中,CF =∴点F 的坐标为(0,2--或(0,2-.②由N 是EF 的中点,得12CN EF ==根据题意,点N 在以点C 为半径的圆上.由点(),0M m ,点()0,C m ,得MO m =-,CO m =-∴在Rt MCO ∆中,MC ==.当MC ≥,即1m ≤-时,满足条件的点N 落在线段MC 上,MN 的最小值为2MC NC -==, 解得32m =-;当MC <,即10m -<<时,满足条件的点N 落在线段CM 的延长线上,MN 的最小值为()2NC MC -==, 解得12m =-∴当m 的值为32-或12-时,MN .。
天津市和平区2020年中考数学模拟(3月)试卷(含解析)

2020年天津市和平区中考数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣1)2019的结果等于()A.﹣2019 B.2019 C.﹣1 D.12.2cos30°的值等于()A.B.C.D.3.为贯彻落实党中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000平方米,其中数据186000000用科学记数法表示是()A.1.86×107B.186×106C.1.86×108D.0.186×1094.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A.B.C.D.5.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.6.估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7.化简﹣的结果是()A.x+1 B.x﹣1 C.x D.﹣x8.方程组的解是()A.B.C.D.9.反比例函数y=图象上三个点的坐标为(x1,y1)、(x2,y2)、(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y1<y3<y2 10.如图,将△ABC绕C顺时针旋转,使点B落在AB边上的点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,则下列结论中错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.B′C平分∠BB′A′D.∠B′CA=∠B′AC11.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB 上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.712.已知抛物线y=ax2+3x+c(a,c为常数,且a≠0)经过点(﹣1,﹣1),(0,3),有下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小;③3是方程ax2+2x+c=0的一个根;④当﹣1<x<3时,ax2+2x+c>0其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分)13.已知反比例函数的图象经过点A,B,点A的坐标为(1,3),点B的纵坐标为1,则点B的横坐标为.14.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠BAD′=70°,则α=(度).15.如图,“石头、剪刀、布”是民间广为流传的游戏,游戏时,双方每次任意出“石头”、“剪刀”、“布”这三种手势中的一种,那么双方出现相同手势的概率P=.16.与直线y=2x平行的直线可以是(写出一个即可).17.如图,点D、E、F分别在正三角形ABC的三边上,且△DEF也是正三角形,若△ABC的边长为a,△DEF的边长为b.则△AEF的内切圆半径为.18.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,(Ⅰ)AC的长=;(Ⅱ)BD+DC的最小值是.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.(8分)(Ⅰ)解方程:x(2x﹣5)=4x﹣10;(Ⅱ)已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根,求k的取值范围.20.(8分)已知抛物线y=x2+bx+c过点(0,0),(1,3),求抛物线的解析式,并求出抛物线的顶点坐标.21.(10分)已知,AB为⊙O的直径,弦CD⊥AB于点E,在CD的延长线上取一点P,PG 与⊙O相切于点G,连接AG交CD于点F.(Ⅰ)如图①,若∠A=20°,求∠GFP和∠AGP的大小;(Ⅱ)如图②,若E为半径OA的中点,DG∥AB,且OA=2,求PF的长.22.(10分)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.23.(10分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.(Ⅰ)求y与x的函数解析式,请直接写出x的取值范围;(Ⅱ)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?24.(10分)如图,四边形AOBC是正方形,点C的坐标是(4,0).(Ⅰ)正方形AOBC的边长为,点A的坐标是.(Ⅱ)将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;(Ⅲ)动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).25.(10分)已知二次函数y=ax2﹣2ax+3的最大值为4,且该抛物线与y轴的交点为C,顶点为D.(Ⅰ)求该二次函数的解析式及点C,D的坐标;(Ⅱ)点P(t,0)是x轴上的动点,①求|PC﹣PD|的最大值及对应的点P的坐标;②设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2﹣2a|x|+3的图象只有一个公共点,求t的取值范围.2020年天津市和平区中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据有理数的乘方的运算法则计算可得.【解答】解:(﹣1)2019=﹣1,故选:C.【点评】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的运算法则.2.【分析】根据特殊角的三角函数值直接解答即可.【解答】解:2cos30°=2×.故选:B.【点评】此题考查了特殊角的三角函数值,是需要识记的内容.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将186000000用科学记数法表示为:1.86×108.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据中心对称图形的概念求解.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、不是中心对称图形,本选项错误;D、是中心对称图形,本选项正确.故选:D.【点评】此题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.6.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:∵3<<4,∴4<+1<5,故选:B.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题关键,又利用了不等式的性质.7.【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式==x,故选:C.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.【分析】可用两种方式解决本题:①将选项中的x与y的值分别代入题干中两个方程验证;②直接解方程组选出答案.此处选用第二种方法.【解答】解:①﹣②得:4y=8解得y=2将y=2代入①可解得:x=4∴原方程组的解为:故选:B.【点评】本题考察二元一次方程组的解法,因此要对二元一次方程组的解法非常熟悉.9.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据x1<x2<0<x3即可得出结论.【解答】解:∵反比例函数y=中,k=3>0,∴此函数图象的两个分支分别位于第一三象限,且在每一象限内y随x的增大而减小.∵x1<x2<0<x3,∴(x1,y1)、(x2,y2)在第三象限,(x3,y3)在第一象限,∴y2<y1<0<y3.故选:B.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10.【分析】根据旋转的性质得到∠BCB′=∠ACA′,故A正确,根据等腰三角形的性质得到∠B=∠BB'C,根据三角形的外角的性质得到∠A'CB'=2∠B,等量代换得到∠ACB=2∠B,故B正确;等量代换得到∠A′B′C=∠BB′C,于是得到B′C平分∠BB′A′,故D正确.【解答】解:根据旋转的性质得,∠BCB'和∠ACA'都是旋转角,则∠BCB′=∠ACA′,故A正确,∵CB=CB',∴∠B=∠BB'C,又∵∠A'CB'=∠B+∠BB'C,∴∠A'CB'=2∠B,又∵∠ACB=∠A'CB',∴∠ACB=2∠B,故B正确;∵∠A′B′C=∠B,∴∠A′B′C=∠BB′C,∴B′C平分∠BB′A′,故C正确;故选:D.【点评】本题考查了旋转的性质,角平分线的定义,等腰三角形的性质,正确的识别图形是解题的关键.11.【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′===5.故选:B.【点评】此题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD的值最小是解题的关键.12.【分析】先由抛物线y=ax2+3x+c(a,c为常数,且a≠0)经过点(﹣1,﹣1),(0,3),列方程组求出a,c,从而解得其解析式,进而求得其对称轴,再根据二次函数与方程和二次函数与不等式的关系可解.【解答】解:把点(﹣1,﹣1),(0,3)代入y=ax2+3x+c得:∴∴y=﹣x2+3x+3∴①ac<0正确;该抛物线的对称轴为:,∴②当x>1时,y的值随x值的增大而减小是错误的;方程ax2+2x+c=0可化为:方程ax2+3x+c=x,把x=3代入y=﹣x2+3x+3得y=3,∴﹣x2+2x+3=0,故③正确;∴(3,3)在该抛物线上,又∵抛物线y=ax2+3x+c(a,c为常数,且a≠0)经过点(﹣1,﹣1),∴抛物线y=ax2+3x+c与y=x的交点为(﹣1,﹣1)和(3,3),当﹣1<x<3时,ax2+3x+c>x,即ax2+2x+c>0④当﹣1<x<3时,ax2+2x+c>0,故④正确.综上,①③④正确.故选:C.【点评】本题考查了二次函数解析式、二次函数的对称轴、二次函数与方程、二次函数与不等式的关系,综合性较强,难度较大.二、填空题(本大题共6小题,每小题3分,共18分)13.【分析】设点B的横坐标为t,利用反比例函数图象上点的坐标特征得到t×1=1×3,然后解方程求出t即可.【解答】解:设点B的横坐标为t,∵反比例函数的图象经过点A,B,∴t×1=1×3,∴t=3,即点B的横坐标为3.故答案为3.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.【分析】根据旋转的定义,找到旋转角,利用角的和差关系即可求解.【解答】解:根据旋转的定义可知,∠BAB′=α,∵∠BAB′+∠BAD′=90°,∴α=90°﹣70°=20°.故答案为20.【点评】本题主要考查旋转的定义及性质、矩形的性质,解题的关键是找准旋转角.15.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与双方出现相同手势的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,双方出现相同手势的有3种情况,∴双方出现相同手势的概率P=.故答案为:.【点评】此题考查了列表法与树状图法求概率的知识.此题比较简单,注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,注意概率=所求情况数与总情况数之比.16.【分析】两直线平行的条件是k相同,因此满足y=2x+b的形式,且b≠0即可.【解答】解:∵满足y=2x+b的形式,且b≠0的所有直线互相平行,∴可以是直线y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象的性质,理解k值的含义是解答本题的关键.17.【分析】欲求△AEF的内切圆半径,可以画出图形,然后利用题中已知条件,挖掘隐含条件求解.【解答】解:如图,由于△ABC,△DEF都为正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,∴∠1+∠2=∠2+∠3=120°,∠1=∠3;在△AEF和△CFD中,,∴△AEF≌△CFD(AAS);同理可证:△AEF≌△CFD≌△BDE;∴BE=AF,即AE+AF=AE+BE=a.设M是△AEF的内心,MH⊥AE于H,则AH=(AE+AF﹣EF)=(a﹣b);∵MA平分∠BAC,∴∠HAM=30°;∴HM=AH•tan30°=(a﹣b)•=(a﹣b).故答案为:(a﹣b).【点评】本题考查了等边三角形的性质以及全等三角形的判定与性质以及内心的性质,根据已知得出AH的长是解题关键.18.【分析】(Ⅰ)如图,过B作BE⊥AC于E,根据等腰三角形的性质和解直角三角形即可得到结论;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+DC的值最小,解直角三角形即可得到结论.【解答】解:(Ⅰ)如图,过B作BE⊥AC于E,∵BA=BC=4,∴AE=CE,∵∠A=30°,∴AE=AB=2,∴AC=2AE=4;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+DC的值最小,∵BF=CF=2,∴BD=CD=,∴∴BD+DC的最小值=2,故答案为:4,2.【点评】本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.【分析】(Ⅰ)方程变形为x(2x﹣5)﹣2(2x﹣5)=0,然后利用因式分解法解方程;(Ⅱ)根据判别式的意义得到△=22﹣4•(2k﹣4)>0,然后解关于k的不等式即可.【解答】解:(Ⅰ)x(2x﹣5)﹣2(2x﹣5)=0,(2x﹣5)(x﹣2)=0,2x﹣5=0或x﹣2=0,所以x1=,x2=2;(Ⅱ)△=22﹣4•(2k﹣4)>0,所以k<.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.20.【分析】将(0,0),(1,3)代入y=x2+bx+c求得b,c的值,得到此函数的解析式;再把一般式转化为顶点式,由顶点式可得顶点的坐标.【解答】解:分别将(0,0),(1,3)代入函数解析式,得出二元一次方程组解得所以,该二次函数的解析式为y=x2+2x;该二次函数的解析式y=x2+2x可化为:y=(x+1)2﹣1,所以该抛物线的顶点坐标为(﹣1,﹣1).【点评】本题考查了二次函数解析式的求法,以及二次函数顶点式的应用.21.【分析】(Ⅰ)连接OG,在Rt△AEF中,∠A=20°,可得∠GFP=∠EFA=70°,因为OA=OG,所以∠OGA=∠A=20°,因为PG与⊙O相切于点G,得∠OGP=90°,可得∠AGP =90°﹣20°=70°.;(Ⅱ)如图,连结BG,OG,OD,AD,证明△OAD为等边三角形,得∠AOD=60°,所以∠AGD=30°,因为DG∥AB,所以∠BAG=∠AGD=30°,在Rt△AGB中可求得AG=6,在Rt △AEF中可求得AF=2,再证明△GFP为等边三角形,所以PF=FG=AG﹣AF=6﹣2=4.【解答】解:(Ⅰ)连接OG,∵CD⊥AB于E,∴∠AEF=90°,∵∠A=20°,∴∠EFA=90°﹣∠A=90°﹣20°=70°,∴∠GFP=∠EFA=70°,∵OA=OG,∴∠OGA=∠A=20°,∵PG与⊙O相切于点G,∴∠OGP=90°,∴∠AGP=∠OGP﹣∠OGA=90°﹣20°=70°.(Ⅱ)如图,连结BG,OG,OD,AD,∵E为半径OA的中点,CD⊥AB,∴OD=AD=OA,∴△OAD为等边三角形,∴∠AOD=60°,∴∠AGD=∠AOD=30°,∵DG∥AB,∴∠BAG=∠AGD=30°,∵AB为⊙O的直径,OA=2,∴∠AGB=90°,AB=4,∴AG=AB•cos30°=6,.∵OG=OA,∴∠OGA=∠BAG=30°,∵PG与⊙O相切于点G,∴∠OGP=90°,∴∠FGP=90°﹣30°=60°,∵∠AEF=90°,AE=,∠BAG=30°,∴AF=2,∠GFP=∠EFA=60,∴△GFP为等边三角形,∴PF=FG=AG﹣AF=6﹣2=4.【点评】本题考查圆的切线的性质,等边三角形的判定和性质,直角三角形的性质.解题的关键是掌握圆的切线的性质.22.【分析】①在Rt△AHP中,由tan∠APH=tanα=,即可解决问题;②设BC⊥HQ于C.在Rt△BCQ中,求出CQ==1500米,由PQ=1255米,可得CP=245米,再根据AB=HC=PH﹣PC计算即可;【解答】解:①在Rt△AHP中,∵AH=500,由tan∠APH=tanα===2,可得PH=250米.∴点H到桥左端点P的距离为250米.②设BC⊥HQ于C.在Rt△BCQ中,∵BC=AH=500,∠BQC=30°,∴CQ==1500米,∵PQ=1255米,∴CP=245米,∵HP=250米,∴AB=HC=250﹣245=5米.答:这架无人机的长度AB为5米.【点评】本题考查解直角三角形﹣仰角俯角问题,锐角三角函数,矩形判定和性质等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.23.【分析】(Ⅰ)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(Ⅱ)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题.【解答】解:(Ⅰ)由题意:y=380x+280(62﹣x)=100x+17360.∵30x+20(62﹣x)≥1441,∴x≥20.1,又∵x为整数,∴x的取值范围为21≤x≤62的整数;(Ⅱ)由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=19460元.即租21辆A型号客车时总费用最省,最省的总费用是19460元.【点评】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.24.【分析】(Ⅰ)由正方形性质可得AO=AC=OB=BC,AB⊥OC,OE=EC,AE=BE,由勾股定理可求AO,AE的长,即可求解;(Ⅱ)由旋转的性质可得OA=OA'=4,∠OA'B'=∠A=90°,可求A'C的长,由S重叠部分=S△OBC﹣S△A'PC可求重叠部分的面积;(Ⅲ)利用分类讨论思想和等腰三角形的性质可求t的值.【解答】解:(Ⅰ)如图,连接AB,交OC于点E,∵四边形AOBC是正方形∴AO=AC=OB=BC,AB⊥OC,OE=EC,AE=BE,∵点C的坐标是(4,0).∴OC=4∴OE=EC=2∵OA2+AC2=OC2=32,∴OA=4∴AE==2∴正方形边长为4,点A坐标为(2,2)故答案为:4,(2,2)(Ⅱ)如图,∵旋转45°,∠AOC=45°∴点A'落在OC上,∴OA=OA'=4,∠OA'B'=∠A=90°∴点A'(4,0),A'C=OC﹣OA'=4﹣4∵∠ACB=45°,∴∠A'PC=∠A'CP=45°∴A'C=A'P=4﹣4∴S重叠部分=S△OBC﹣S△A'PC=8﹣×(4)2=16﹣16(Ⅲ)∵t=4时,点P与A重合,点Q与C重合,且△OAC是等腰三角形∴当t=4时,△OPQ为等腰三角形当点P在OA上,点Q在OB上时,OP=t,OQ=2t,则直角三角形OPQ不是等腰三角形;当点P在OA上,点Q在BC上时,∵△OPQ是等腰三角形∴点Q在OP的垂直平分线上,∴2t﹣4=∴t=当点P在AC上时,点Q在AC上时,OP≠OQ≠PQ∴△OPQ不是等腰三角形.∴当t=4或时,△OPQ为等腰三角形.【点评】本题是四边形综合题,正方形的性质,等腰直角三角形的性质,旋转的性质,勾股定理以及分类讨论思想的运用,熟练运用这些性质进行推理是本题的关键.25.【分析】(Ⅰ)可用对称轴公式直接求出y=ax2﹣2ax+3的对称轴,然后写出顶点D的坐标,将顶点坐标代入y=ax2﹣2ax+3即可求出点C的坐标;(Ⅱ)①求出直线CD的解析式,再求出CD与x轴交点即可求出P点坐标,CD的长度即为|PC﹣PD|的最大值;②根据题意画出图形,分别表示出关键点即抛物线与x轴交点与点P重合时的图象,由图象即可看出t的取值范围.【解答】解:(Ⅰ)在二次函数y=ax2﹣2ax+3中,∵x=﹣=1,∴y=ax2﹣2ax+3的对称轴为x=1,∵y=ax2﹣2ax+3的最大值为4,∴抛物线的顶点D(1,4),将D(1,4)代入y=ax2﹣2ax+3中,得a=﹣1,∴该二次函数的解析式为y=﹣x2+2x+3,∴C点坐标为(0,3),D点坐标为(1,4);(Ⅱ)①∵|PC﹣PD|≤CD,∴当P,C,D三点在一条直线上时,|PC﹣PD|取得最大值,如图1,连接DC并延长交x轴于点P,将点D(1,4),C(0,3)代入y=kx+b,得,解得k=1,b=3,∴y CD=x+3,当y=0时,x=﹣3,∴P(0,﹣3),CD==,∴|PC﹣PD|的最大值为,P(﹣3,0);②y=a|x|2﹣2a|x|+3可化为y=,将P(t,0),Q(0,2t)代入y=kx+b,得,解得:k=﹣2,b=2t,∴y PQ=﹣2x+2t,情况一:如图2﹣1,当线段PQ过点(﹣3,0),即点P与点(﹣3,0)重合时,线段PQ与函数y=的图象只有一个公共点,此时t=﹣3,综合图2﹣1,图2﹣2,所以当t≤﹣3时,线段PQ与函数y=的图象只有一个公共点;情况二:如图2﹣3,当线段PQ过(0,3),即点Q与点C重合时,线段PQ与函数y=的图象只有一个公共点,此时t=,如图2﹣4,当线段PQ过点(3,0),即点P与点A(3,0)重合时,t=3,此时线段PQ 与函数y=的图象有两个公共点,综合图2﹣3,图2﹣4,所以当≤t<3时,线段PQ与函数y=的图象只有一个公共点;情况三:如图2﹣5,将y=﹣2x+2t带入y=﹣x2+2x+3(x≥0),整理,得x2﹣4x+2t﹣3=0,△=16﹣4(2t﹣3)=28﹣8t,令28﹣8t=0,解得t=,∴当t=时,线段PQ与与函数y=的图象只有一个公共点;综上所述,t的取值范围为t≤﹣3或≤t<3或t=.【点评】本题考查了待定系数法求解析式,三角形两边之差小于第三边,抛物线与直线公共点的个数等,解题关键是要根据题意画出图形.。
2020年天津市中考数学试卷和答案解析

2020年天津市中考数学试卷和答案解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算30+(﹣20)的结果等于()A.10B.﹣10C.50D.﹣50解析:根据有理数的加法法则计算即可,异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去减小的绝对值.参考答案:解:30+(﹣20)=+(30﹣20)=10.故选:A.知识点:本题主要考查了有理数的加法,熟记运算法则是解答本题的关键.2.(3分)2sin45°的值等于()A.1B.C.D.2解析:根据sin45°=解答即可.参考答案:解:2sin45°=2×=.故选:B.知识点:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要熟练掌握.3.(3分)据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()A.0.586×108B.5.86×107C.58.6×106D.586×105解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.参考答案:解:58600000=5.86×107,故选:B.知识点:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.解析:直接利用轴对称图形的性质分析得出答案.参考答案:解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.知识点:此题主要考查了轴对称图形的性质,正确掌握相关定义是解题关键.5.(3分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.解析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.参考答案:解:从正面看有两列,左列底层一个小正方形,右列三个小正方形.故选:D.知识点:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.(3分)估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间解析:用“夹逼法”找到在哪两个可化为整数的二次根式之间即可.参考答案:解:∵<<,∴4<<5,故选:B.知识点:考查估算无理数大小的知识;用“夹逼法”估算无理数是常用的估算无理数的方法.7.(3分)方程组的解是()A.B.C.D.解析:方程组利用加减消元法求出解即可.参考答案:解:,①+②得:3x=3,解得:x=1,把x=1代入①得:y=2,则方程组的解为.故选:A.知识点:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(3分)如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C的坐标是()A.(6,3)B.(3,6)C.(0,6)D.(6,6)解析:利用正方形的性质求出OB,BC,CD即可.参考答案:解:∵四边形OBCD是正方形,∴OB=BC=CD=OD,∠CDO=∠CBO=90°,∵O,D两点的坐标分别是(0,0),(0,6),∴OD=6,∴OB=BC=CD=6,∴C(6,6).故选:D.知识点:本题考查了点的坐标,正方形的性质等知识,解题的关键是熟练掌握正方形的性质,属于中考常考题型.9.(3分)计算+的结果是()A.B.C.1D.x+1解析:直接利用分式的加减运算法则计算得出答案.参考答案:解:原式==.故选:A.知识点:此题主要考查了分式的加减法,正确化简分式是解题关键.10.(3分)若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x2解析:将点A(x1,﹣5),B(x2,2),C(x3,5)分别代入反比例函数y=,求得x1,x2,x3的值后,再来比较一下它们的大小.参考答案:解:∵点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,∴﹣5=,即x1=﹣2,2=,即x2=5;5=,即x3=2,∵﹣2<2<5,∴x1<x3<x2;故选:C.知识点:本题考查了反比例函数图象上点的坐标特征.所有反比例函数图象上的点的坐标都满足该函数的解析式.11.(3分)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A 的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DE B.BC=EF C.∠AEF=∠D D.AB⊥DF解析:依据旋转可得,△ABC≌△DEC,再根据全等三角形的性质,即可得出结论.参考答案:解:由旋转可得,△ABC≌△DEC,∴AC=DC,故A选项错误,BC=EC,故B选项错误,∠AEF=∠DEC=∠B,故C选项错误,∠A=∠D,又∵∠ACB=90°,∴∠A+∠B=90°,∴∠D+∠B=90°,∴∠BFD=90°,即DF⊥AB,故D选项正确,故选:D.知识点:本题主要考查了旋转的性质,解题时注意:旋转前、后的图形全等.12.(3分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a<﹣.其中,正确结论的个数是()A.0B.1C.2D.3解析:由题意得到抛物线的开口向下,对称轴﹣=,b=﹣a,判断a,b与0的关系,得到abc<0,即可判断①;根据题意得到抛物线开口向下,顶点在x轴上方,即可判断②;根据抛物线y=ax2+bx+c经过点(2,0)以及b=﹣a,得到4a﹣2a+c=0,即可判断③.参考答案:解:∵抛物线的对称轴为直线x=,而点(2,0)关于直线x=的对称点的坐标为(﹣1,0),∵c>1,∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=,∴﹣=,∴b=﹣a>0,∴abc<0,故①错误;∵抛物线开口向下,与x轴有两个交点,∴顶点在x轴的上方,∵a<0,∴抛物线与直线y=a有两个交点,∴关于x的方程ax2+bx+c=a有两个不等的实数根;故②正确;∵抛物线y=ax2+bx+c经过点(2,0),∴4a+2b+c=0,∵b=﹣a,∴4a﹣2a+c=0,即2a+c=0,∴﹣2a=c,∵c>1,∴﹣2a>1,∴a<﹣,故③正确,故选:C.知识点:本题考查了二次函数图象与系数的关系:对于二次函数y =ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y 轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x+7x﹣5x的结果等于3x.解析:根据合并同类项法则求解即可.参考答案:解:x+7x﹣5x=(1+7﹣5)x=3x.故答案为:3x.知识点:本题考查了合并同类项,解答本题的关键是掌握合并同类项的法则.14.(3分)计算(+1)(﹣1)的结果等于6.解析:利用平方差公式解答.参考答案:解:原式=()2﹣12=7﹣1=6.故答案是:6.知识点:本题主要考查了二次根式的混合运算,平方差公式,应用平方差公式计算时,应注意:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.15.(3分)不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.解析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.参考答案:解:∵袋子中装有8个小球,其中红球有3个,∴从袋子中随机取出1个球,则它是红球的概率是.故答案为:.知识点:本题考查了概率公式.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)将直线y=﹣2x向上平移1个单位长度,平移后直线的解析式为y=﹣2x+1.解析:根据一次函数图象上下平移时解析式的变化规律求解.参考答案:解:将直线y=﹣2x向上平移1个单位,得到的直线的解析式为y=﹣2x+1.故答案为y=﹣2x+1.知识点:本题考查了一次函数图象与几何变换:对于一次函数y=kx+b,若函数图象向上平移m(m>0)个单位,则平移的直线解析式为y=kx+b+m.17.(3分)如图,▱ABCD的顶点C在等边△BEF的边BF上,点E 在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB =CF=2,则CG的长为.解析:根据平行四边形的性质和等边三角形的性质,可以得到BF 和BE的长,然后可以证明△DCG和△EHG全等,然后即可得到CG的长.参考答案:解:∵四边形ABCD是平行四边形,∴AD=BC,CD=AB,DC∥AB,∵AD=3,AB=CF=2,∴CD=2,BC=3,∴BF=BC+CF=5,∵△BEF是等边三角形,G为DE的中点,∴BF=BE=5,DG=EG,延长CG交BE于点H,∵DC∥AB,∴∠CDG=∠HEG,在△DCG和△EHG中,,∴△DCG≌△EHG(ASA),∴DC=EH,CG=HG,∵CD=2,BE=5,∴HE=2,BH=3,∵∠CBH=60°,BC=BH=3,∴△CBH是等边三角形,∴CH=BC=3,∴CG=CH=,故答案为:.知识点:本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.18.(3分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上,且AB=.(Ⅰ)线段AC的长等于.(Ⅱ)以BC为直径的半圆与边AC相交于点D,若P,Q分别为边AC,BC上的动点,当BP+PQ取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P,Q,并简要说明点P,Q的位置是如何找到的(不要求证明)取格点M,N,连接MN,连接BD并延长,与MN相交于点B′,连接B′C,与半圆相交于点E,连接BE,与AC相交于点P,连接B′P并延长,与BC相交于点Q,则点P,Q即为所求.解析:(Ⅰ)利用网格根据勾股定理即可求出线段AC的长;(Ⅱ)取格点M,N,连接MN,连接BD并延长,与MN相交于点B′,连接B′C,与半圆相交于点E,连接BE,与AC相交于点P,连接B′P并延长,与BC相交于点Q,即可得点P,Q.参考答案:解:(Ⅰ)线段AC的长等于=;(Ⅱ)如图,取格点M,N,连接MN,连接BD并延长,与MN相交于点B′,连接B′C,与半圆相交于点E,连接BE,与AC相交于点P,连接B′P并延长,与BC相交于点Q,则点P,Q即为所求.知识点:本题考查了作图﹣复杂作图、勾股定理、圆周角定理、轴对称﹣最短路线问题,解决本题的关键是掌握轴对称性质.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤1;(Ⅱ)解不等式②,得x≥﹣3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣3≤x≤1.解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.参考答案:解:(Ⅰ)解不等式①,得x≤1;(Ⅱ)解不等式②,得x≥﹣3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣3≤x≤1.故答案为:x≤1,x≥﹣3,﹣3≤x≤1.知识点:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm)进行了测量.根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为25,图①中m的值为24;(Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.解析:(Ⅰ)根据13cm长的株数和所占的百分比,可以求得本次抽取的麦苗的株数,再根据扇形统计图中的数据,可以计算出m 的值;(Ⅱ)根据条形统计图中的数据,可以计算出平均数,写出众数和中位数.参考答案:解:(Ⅰ)本次抽取的麦苗有:2÷8%=25(株),m%=1﹣8%﹣12%﹣16%﹣40%=24%,故答案为:25,24;(Ⅱ)平均数是:==15.6,众数是16,中位数是16.知识点:本题考查条形统计图、扇形统计图、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(10分)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.解析:(1)由三角形的外角性质得出∠C=37°,由圆周角定理得∠BAD=∠C=37°,∠ADC=∠B=63°,∠ADB=90°,即可得出答案;(2)连接OD,求出∠PCB=27°,由切线的性质得出∠ODE=90°,由圆周角定理得出∠BOD=2∠PCB=54°,即可得出答案.参考答案:解:(1)∵∠APC是△PBC的一个外角,∴∠C=∠APC﹣∠ABC=100°﹣63°=37°,由圆周角定理得:∠BAD=∠C=37°,∠ADC=∠B=63°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=∠ADB﹣∠ADC=90°﹣63°=27°;(2)连接OD,如图②所示:∵CD⊥AB,∴∠CPB=90°,∴∠PCB=90°﹣∠ABC=90°﹣63°=27°,∵DE是⊙O的切线,∴DE⊥OD,∴∠ODE=90°,∵∠BOD=2∠PCB=54°,∴∠E=90°﹣∠BOD=90°﹣54°=36°.知识点:本题考查了切线的性质、圆周角定理、三角形的外角性质、直角三角形的性质等知识;熟练掌握切线的性质和圆周角定理是解题的关键.22.(10分)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.解析:通过作高,构造直角三角形,利用直角三角形的边角关系,列方程求解即可.参考答案:解:如图,过点A作AD⊥BC,垂足为D,∵∠ACB=45°,∴AD=CD,设AB=x,在Rt△ADB中,AD=AB•sin58°≈0.85x,BD=AB•cos58°≈0.53x,又∵BC=221,即CD+BD=221,∴0.85x+0.53x=221,解得,x≈160,答:AB的长约为160m.知识点:本题考查直角三角形的边角关系,掌握直角三角形的边角关系,即锐角三角函数,是正确解答的前提,通过作辅助线构造直角三角形是常用的方法.23.(10分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min 到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开宿舍25202330的时间/min离宿舍的0.20.50.70.71距离/km(Ⅱ)填空:①食堂到图书馆的距离为0.3km;②小亮从食堂到图书馆的速度为0.06km/min;③小亮从图书馆返回宿舍的速度为0.1km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为6或62min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.解析:(Ⅰ)根据题意和函数图象,可以将表格补充完整;(Ⅱ)根据函数图象中的数据,可以将各个小题中的空补充完整;(Ⅲ)根据(Ⅱ)中的结果和函数图象中的数据,可以写出当0≤x ≤28时,y关于x的函数解析式.参考答案:解:(Ⅰ)由图象可得,在前7分钟的速度为0.7÷7=0.1(km/min),故当x=2时,离宿舍的距离为0.1×2=0.2(km),在7≤x≤23时,距离不变,都是0.7km,故当x=23时,离宿舍的距离为0.7km,在28≤x≤58时,距离不变,都是1km,故当x=30时,离宿舍的距离为1km,故答案为:0.2,0.7,1;(Ⅱ)由图象可得,①食堂到图书馆的距离为1﹣0.7=0.3(km),故答案为:0.3;②小亮从食堂到图书馆的速度为:0.3÷(28﹣23)=0.06(km/min),故答案为:0.06;③小亮从图书馆返回宿舍的速度为:1÷(68﹣58)=0.1(km/min),故答案为:0.1;④当0≤x≤7时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为0.6÷0.1=6(min),当58≤x≤68时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为(1﹣0.6)÷0.1+58=62(min),故答案为:6或62;(Ⅲ)由图象可得,当0≤x≤7时,y=0.1x;当7<x≤23时,y=0.7;当23<x≤28时,设y=kx+b,,得,即当23<x≤28时,y=0.06x﹣0.68;由上可得,当0≤x≤28时,y关于x的函数解析式是y=.知识点:本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.(10分)将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0,0),点A(2,0),点B在第一象限,∠OAB=90°,∠B=30°,点P在边OB上(点P不与点O,B重合).(Ⅰ)如图①,当OP=1时,求点P的坐标;(Ⅱ)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且OQ=OP,点O的对应点为O',设OP=t.①如图②,若折叠后△O'PQ与△OAB重叠部分为四边形,O'P,O'Q分别与边AB相交于点C,D,试用含有t的式子表示O'D的长,并直接写出t的取值范围;②若折叠后△O'PQ与△OAB重叠部分的面积为S,当1≤t≤3时,求S的取值范围(直接写出结果即可).解析:(Ⅰ)如图①中,过点P作PH⊥OA于H.解直角三角形求出OH,PH即可.(Ⅱ)①解直角三角形求出DQ,DO′即可.②求出点O′落在AB上时,S=×()2=.当<t≤2时,重叠部分是四边形PQDC,S=t2﹣(3t﹣4)2=﹣t2+3t ﹣2,当x=﹣=时,S有最大值,最大值=.再求出当t=1或3时,S的值即可判断.参考答案:解:(Ⅰ)如图①中,过点P作PH⊥OA于H.∵∠OAB=90°,∠B=30°,∴∠BOA=90°﹣30°=60°,∴∠OPH=90°﹣60°=30°,∵OP=1,∴OH=OP=,PH=OP•cos30°=,∴P(,).(Ⅱ)①如图②中,由折叠可知,△O′PQ≌△OPQ,∴OP=O′P,OQ=O′Q,∵OP=OQ=t,∴OP=OQ=O′P=O′Q,∴四边形OPO′Q是菱形,∴QO′∥OB,∴∠ADQ=∠B=30°,∵A(2,0),∴OA=2,QA=2﹣t,在Rt△AQD中,DQ=2QA=4﹣2t,∵O′D=O′Q﹣QD=3t﹣4,∴<t<2.②①当点O′落在AB上时,重叠部分是△PQO′,此时t=,S=×()2=,当<t≤2时,重叠部分是四边形PQDC,S=t2﹣(3t﹣4)2=﹣t2+3t﹣2,当x=﹣=时,S有最大值,最大值=,当t=1时,S=,当t=3时,S=××=,综上所述,≤S≤.知识点:本题属于四边形综合题,考查了菱形的判定和性质,翻折变换,多边形的面积,解直角三角形,二次函数的性质等知识,解题的关键是理解题意,学会利用特殊位置解决问题,属于中考压轴题.25.(10分)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线1平行于x轴,E是直线1上的动点,F是y 轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F 的坐标;②取EF的中点N,当m为何值时,MN的最小值是?解析:(Ⅰ)将A(1,0)代入抛物线的解析式求出b=2,由配方法可求出顶点坐标;(Ⅱ)①根据题意得出a=1,b=﹣m﹣1.求出抛物线的解析式为y=x2﹣(m+1)x+m.则点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).根据题意求出m的值,可求出CF的长,则可得出答案;②得出CN=EF=.求出MC=﹣m,当MC≥,即m≤﹣1时,当MC<,即﹣1<m<0时,根据MN的最小值可分别求出m的值即可.参考答案:解:(Ⅰ)当a=1,m=﹣3时,抛物线的解析式为y =x2+bx﹣3.∵抛物线经过点A(1,0),∴0=1+b﹣3,解得b=2,∴抛物线的解析式为y=x2+2x﹣3.∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点坐标为(﹣1,﹣4).(Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=﹣m﹣1.∴抛物线的解析式为y=x2﹣(m+1)x+m.根据题意得,点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1﹣(m+1)=﹣m,HA=0﹣m=﹣m,∴AE==﹣m,∵AE=EF=2,∴﹣m=2,解得m=﹣2.此时,点E(﹣1,﹣2),点C(0,﹣2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF==.∴点F的坐标为(0,﹣2﹣)或(0,﹣2+).②由N是EF的中点,得CN=EF=.根据题意,点N在以点C为圆心、为半径的圆上,由点M(m,0),点C(0,m),得MO=﹣m,CO=﹣m,∴在Rt△MCO中,MC==﹣m.当MC≥,即m≤﹣1时,满足条件的点N在线段MC上.MN的最小值为MC﹣NC=﹣m﹣=,解得m=﹣;当MC<,即﹣1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC﹣MC=﹣(﹣m)=,解得m=﹣.∴当m的值为﹣或﹣时,MN的最小值是.知识点:本题是二次函数综合题,考查了二次函数的性质,待定系数法,二次函数图象上点的坐标特征,勾股定理等知识,熟练掌握二次函数的性质是解题的关键.。
2020年天津市红桥区中考数学一模试卷 (解析版)

2020年天津市红桥区中考数学一模试卷一、选择题(共12小题).1.计算(﹣2)×6的结果等于()A.﹣12B.12C.﹣4D.42.sin60°的值等于()A.B.C.D.13.下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.北京大兴国际机场主航站楼和配套服务楼、停车楼总建筑规模约1400000m3.将1400000用科学记数法表示应为()A.0.14×108B.1.4×107C.1.4×106D.14×1055.右图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.估计的值应在()A.5和6之间B.4和5之间C.3和4之间D.2和3之间7.计算的结果是()A.2B.2a﹣2C.1D.8.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6B.x1=﹣6,x2=2C.x1=﹣3,x2=4D.x1=﹣4,x2=3 9.若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1 10.如图,在△ABC中,∠BAC=90°,AB=AC=6,点D为△ABC内一点,∠BAD=15°,AD=3,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE交AC于点F,则AF的长为()A.B.C.3D.11.如图,在四边形ABCD中,∠A=∠D=90°,AB=5,AD=4,CD=3,点P是边AD 上的动点,则△PBC周长的最小值为()A.8B.C.12D.12.对于一个函数:当自变量x取a时,其函数值y也等于a,我们称a为这个函数的不动点.若二次函数y=x2+2x+c(c为常数)有两个不相等且都小于1的不动点,则c的取值范围是()A.c<﹣3B.﹣3<c<﹣2C.﹣2<c<D.c>二、填空题(本大题共6小题,每小题3分,共18分)13.x2•x3的计算结果是.14.计算()()的结果等于.15.不透明袋子中装有9个球,其中有2个红球、4个绿球和3个蓝球.这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.直线y=3x﹣2与x轴的交点坐标为17.我国古代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则sinθ的值为.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均落在格点上.;(Ⅰ)AC的长等于;(Ⅱ)点P落在格点上,M是边BC上任意一点,点B关于直线AM的对称点为B',当PB'最短时,请在如图所示的网格中,用无刻度的直尺,画出点B',并简要说明点B'的位置是如何找到的.(不要求证明)三、解答题(本大题共7小题,共66分解答应写出文字说明、演算步骤或推理过程)19.解不等式组,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.某校为了解八年级学生参加社会实践活动情况,随机调查了本校部分八年级学生在第一学期参加社会实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中的m的值为;(Ⅱ)求本次抽样调查获取的样本数据的众数、中位数和平均数;(Ⅲ)若该校八年级学生有200人,估计参加社会实践活动时间大于7天的学生人数.21.已知PA,PB分别与⊙O相切于点A,B,∠APB=80°,C为⊙O上点.(Ⅰ)如图①,求∠ACB的大小;(Ⅱ)如图②,AD为⊙O的直径,若AB=BC,求∠DAC的大小.22.如图,航拍无人机在C处测得正前方一栋建筑物顶部A处的仰角为45°,测得底部B 的俯角为31°.已知该建筑物的高度AB为32m,根据测得的数据,计算此时航拍无人机距地面的高度CD(结果保留整数).参考数据:tan31°≈0.60.23.甲、乙两家商场平时以同样的价格出售相同的商品.“五一”节期间两家商场都让利酬宾.在甲商场按累计购物金额的80%收费:在乙商场累计购物金额超过200元后,超出200元的部分按70%收费.设小红在同一商场累计购物金额为x元,其中x>200.(Ⅰ)根据题意,填写下表(单位:元):累计购物金额500700900……在甲商场实际花费560……在乙商场实际花费550……(Ⅱ)设小红在甲商场实际花费y1元,在乙商场实际花费y2元,分别求y1,y2关于x的函数解析式;(Ⅲ)“五一”节期间小红如何选择这两家商场去购物更省钱?24.将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(8,0),点C (0,6).P是边OC上的﹣一点(点P不与点O,C重合),沿着AP折叠该纸片,得点O的对应点O'.(Ⅰ)如图①,当点O'落在边BC上时,求点O'的坐标;(Ⅱ)若点O'落在边BC的上方,O'P,O'A与分别与边BC交于点D,E.①如图②,当∠OAP=30°时,求点D的坐标;②当CD=O'D时,求点D的坐标(直接写出结果即可).25.已知抛物线y=ax2﹣2x+c(a,c为常数,a≠0)与直线y=kx+b都经过A(0,﹣3),B(3,0)两点,P是该抛物线上的一个动点,过点P作x轴的垂线交直线AB于点Q.(Ⅰ)求此抛物线和直线AB的解析式;(Ⅱ)当点P在直线AB下方时,求PQ+BQ取得最大值时点P的坐标;(Ⅲ)设该抛物线的顶点为C,直线AB与该抛物线的对称轴交于点E,当以点P,Q,C,E为顶点的四边形是平行四边形时,求点P的坐标.参考答案一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,有一项是符合题目要求的)1.计算(﹣2)×6的结果等于()A.﹣12B.12C.﹣4D.4【分析】根据有理数乘法法则计算即可.解:(﹣2)×6=﹣(2×6)=﹣12.故选:A.2.sin60°的值等于()A.B.C.D.1【分析】根据特殊角的三角函数值直接解答即可.解:根据特殊角的三角函数值可知:sin60°=.故选:C.3.下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、是中心对称图形,也是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项正确;D、不是中心对称图形,也不是轴对称图形,故此选项错误;故选:C.4.北京大兴国际机场主航站楼和配套服务楼、停车楼总建筑规模约1400000m3.将1400000用科学记数法表示应为()A.0.14×108B.1.4×107C.1.4×106D.14×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:1400000=1.4×106.故选:C.5.右图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】画出从正面看到的图形即可得到它的主视图.解:从正面看,共有3列,每列的小正方形的个数从左到右依次为1、2、1.故选:B.6.估计的值应在()A.5和6之间B.4和5之间C.3和4之间D.2和3之间【分析】直接利用估算无理数的方法分析得出答案.解:4<<5,则的值应在4和5之间.故选:B.7.计算的结果是()A.2B.2a﹣2C.1D.【分析】根据同分母的分式相加减的法则求出即可.解:﹣====2,故选:A.8.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6B.x1=﹣6,x2=2C.x1=﹣3,x2=4D.x1=﹣4,x2=3【分析】将x2+x﹣12分解因式成(x+4)(x﹣3),解x+4=0或x﹣3=0即可得出结论.解:x2+x﹣12=(x+4)(x﹣3)=0,则x+4=0,或x﹣3=0,解得:x1=﹣4,x2=3.故选:D.9.若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1【分析】分别计算出自变量为﹣3、﹣2和1对应的函数值,然后比较函数值的大小即可.解:当x=﹣3时,y1=﹣=1;当x=﹣2时,y2=﹣=;当x=1时,y3=﹣=﹣3,所以y3<y1<y2.故选:B.10.如图,在△ABC中,∠BAC=90°,AB=AC=6,点D为△ABC内一点,∠BAD=15°,AD=3,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE交AC于点F,则AF的长为()A.B.C.3D.【分析】过点A作AG⊥DE于点G,由旋转的性质推出∠AED=∠ADG=45°,∠AFD =60°,利用锐角三角函数分别求出AG,GF,AF的长.解:如图,过点A作AG⊥DE于G,∵将△ABD绕点A按逆时针方向旋转,使AB与AC重合,∴AD=AE=3,∠DAE=90°,∠BAD=∠CAE=15°∴∠ADE=∠AED=45°,DE=AD=3,∵AG⊥DE,∴AG=DG=GE=,∵∠AFG=∠CAE+∠AED=60°,∴AG=GF,AF=2GF,∴GF=,AF=2GF=,故选:B.11.如图,在四边形ABCD中,∠A=∠D=90°,AB=5,AD=4,CD=3,点P是边AD 上的动点,则△PBC周长的最小值为()A.8B.C.12D.【分析】作点C关于AD的对称点E,连接EB交AD于点P′,连接CP′,则EP′=CP′,ED=CD,此时△P′BC周长最小为:P′C+P′B+BC=PE+P′B+BC=EB+BC,作BF⊥DC的延长线于点F,在Rt△BCF和Rt△BFE中,根据勾股定理即可得△PBC 周长的最小值.解:作点C关于AD的对称点E,连接EB交AD于点P′,连接CP′,则EP′=CP′,ED=CD,此时△P′BC周长最小为:P′C+P′B+BC=PE+P′B+BC=EB+BC,作BF⊥DC的延长线于点F,∠A=∠ADC=90°,∴四边形ABFD是矩形,∴BF=AD=4,DF=AB=5,∴CF=DF﹣CD=5﹣3=2,EF=DF+ED=5+3=8,∴在Rt△BCF和Rt△BFE中,根据勾股定理,得BC==2,BE==4,∴BC+BE=6.所以△PBC周长的最小值为6.故选:D.12.对于一个函数:当自变量x取a时,其函数值y也等于a,我们称a为这个函数的不动点.若二次函数y=x2+2x+c(c为常数)有两个不相等且都小于1的不动点,则c的取值范围是()A.c<﹣3B.﹣3<c<﹣2C.﹣2<c<D.c>【分析】由函数的不动点概念得出x1、x2是方程x2+2x+c=x的两个实数根,由x1<1<x2知△>0且x=1时y>0,即可求解.解:由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2是方程x2+2x+c=x的两个不相等实数根,且x1、x2都小于1,整理,得:x2+x+c=0,由x2+x+c=0有两个不相等的实数根知:△>0,即1﹣4c>0①,令y=x2+x+c,画出该二次函数的草图如下:而x1、x2(设x2在x1的右侧)都小于1,即当x=1时,y=x2+x+c=2+c>0②,联立①②并解得:﹣2<c<;故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.x2•x3的计算结果是x5.【分析】根据同底数幂的乘法,可得答案.解:x2•x3=x5,故答案为:x5.14.计算()()的结果等于4.【分析】利用平方差公式计算.解:原式=7﹣3=4.故答案为4.15.不透明袋子中装有9个球,其中有2个红球、4个绿球和3个蓝球.这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【分析】用红球的个数除以球的总个数即可得.解:从袋子中随机取出1个球,共有9种等可能结果,其中摸到的是红球的有2种结果,所以从袋子中随机取出1个球,它是红球的概率为,故答案为:.16.直线y=3x﹣2与x轴的交点坐标为(,0)【分析】交点既在x轴上,又在直线直线y=3x﹣2上,而在x轴上的点其纵坐标为0,因此令y=0,代入关系式求出x即可.解:当y=0时,即3x﹣2=0,解得:x=;∴直线y=3x﹣2与x轴的交点坐标为(,0)故答案为:(,0)17.我国古代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则sinθ的值为.【分析】根据正方形的面积公式可得大正方形的边长为5,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,设直角三角形中θ所对的直角边为x,则x2+(x+5)2=(5)2,解得x1=5,x2=﹣10(舍去),∴sinθ==.故答案为:.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均落在格点上.;(Ⅰ)AC的长等于;(Ⅱ)点P落在格点上,M是边BC上任意一点,点B关于直线AM的对称点为B',当PB'最短时,请在如图所示的网格中,用无刻度的直尺,画出点B',并简要说明点B'的位置是如何找到的.(不要求证明)【分析】(1)利用勾股定理即可解决问题.(2)连接AP,想办法在AP上取一点B′,使得AB′=2时,PB′的值最小.方法:取格点G,H,连接GH交AP于点B′,由平行线分线段成比例定理可知AB′=2,点B′即为所求.解:(1)AC==.故答案为.(2)如图,点B′即为所求.三、解答题(本大题共7小题,共66分解答应写出文字说明、演算步骤或推理过程)19.解不等式组,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≥﹣2;(Ⅱ)解不等式②,得x≤2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣2≤x≤2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:(Ⅰ)解不等式①,得x≥﹣2;(Ⅱ)解不等式②,得x≤2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣2≤x≤2,故答案为:x≥﹣2,x≤2,﹣2≤x≤2.20.某校为了解八年级学生参加社会实践活动情况,随机调查了本校部分八年级学生在第一学期参加社会实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中的m的值为20;(Ⅱ)求本次抽样调查获取的样本数据的众数、中位数和平均数;(Ⅲ)若该校八年级学生有200人,估计参加社会实践活动时间大于7天的学生人数.【分析】(Ⅰ)根据5天的人数和所占的百分比求出抽样调查总人数,用6天的人数除以总人数即可求出m的值;(Ⅱ)根据众数、中位数和平均数的计算公式分别进行解答即可;(Ⅲ)用八年级的人数乘以参加社会实践活动时间大于7天的学生人数所占的百分比即可.解:(Ⅰ)本次接受随机抽样调查的学生人数为:14÷35%=40(人),m%=×100%=20%,则m=20;故答案为:40,20;(Ⅱ)在这组样本数据中,5出现了14次,出现的次数最多,则众数是5天;将这组数据从小到达排列,其中处于中间的两个数都是6,有=6,则这组样本数据的中位数是6天;这组数据的平均数是:=6.4(天);(Ⅲ)根据题意得:200×(10%+10%)=40(人),答:参加社会实践活动时间大于7天的学生人数有40人.21.已知PA,PB分别与⊙O相切于点A,B,∠APB=80°,C为⊙O上点.(Ⅰ)如图①,求∠ACB的大小;(Ⅱ)如图②,AD为⊙O的直径,若AB=BC,求∠DAC的大小.【分析】(Ⅰ)连接OA,OB,根据PA,PB与⊙O的相切于点A,B,和四边形内角和即可求出∠ACB的大小;(Ⅱ)连接BD,根据AD为⊙O的直径,可得∠ABD=90°,再根据同弧所对圆周角相等即可求出∠DAC的大小.解:(Ⅰ)如图①,连接OA,OB,∵PA,PB与⊙O的相切于点A,B,∴∠PAO=∠PBO=90°,∵∠APB=80°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,∴∠ACB=AOB=50°;(Ⅱ)如图②,连接BD,∵AD为⊙O的直径,∴∠ABD=90°,由(1)知:∠ACB=50°,∴∠ADB=∠ACB=50°,∴∠BAD=90°﹣50°=40°,∵AB=BC,∴∠BAC=∠BCA=50°,∴∠DAC=∠BAC﹣∠BAD=10°.22.如图,航拍无人机在C处测得正前方一栋建筑物顶部A处的仰角为45°,测得底部B 的俯角为31°.已知该建筑物的高度AB为32m,根据测得的数据,计算此时航拍无人机距地面的高度CD(结果保留整数).参考数据:tan31°≈0.60.【分析】过点C作CE⊥AB于点E,根据题意可得四边形DBEC是矩形,再根据锐角三角函数即可求出航拍无人机距地面的高度CD.解:如图,过点C作CE⊥AB于点E,根据题意可知:CD⊥BD,AB⊥BD,所以可得四边形DBEC是矩形,∴CD=BE,CE=BD,∴在Rt△BCD中,∠ACE=45°,∴AE=CE,∴CE=AE=AB﹣BE=AB﹣CD=32﹣CD,在Rt△BEC中,∠BCE=31°,∴tan31°=,即0.60≈,解得CD≈12(米).答:此时航拍无人机距地面的高度CD约为12米.23.甲、乙两家商场平时以同样的价格出售相同的商品.“五一”节期间两家商场都让利酬宾.在甲商场按累计购物金额的80%收费:在乙商场累计购物金额超过200元后,超出200元的部分按70%收费.设小红在同一商场累计购物金额为x元,其中x>200.(Ⅰ)根据题意,填写下表(单位:元):累计购物金额500700900……在甲商场实际花费400560720……在乙商场实际花费410550690……(Ⅱ)设小红在甲商场实际花费y1元,在乙商场实际花费y2元,分别求y1,y2关于x的函数解析式;(Ⅲ)“五一”节期间小红如何选择这两家商场去购物更省钱?【分析】(Ⅰ)根据两种购买方案即可求解;(Ⅱ)根据题意即可得出y1,y2关于x的函数解析式;(Ⅲ)利用(Ⅱ)所得代数式,分两种情况列不等式求解.解:(Ⅰ)在甲商场购买x元的金额时,实际花费是0.8x(元);500×80%=400(元),900×80%=720(元),在乙商场购买x(x>200)元的金额时,实际花费是200+(x﹣200)×70%=0.7x+60.200+(500﹣200)×70%=410(元),200+(900﹣200)×70%=690(元),故答案是:400;720;410;690;(Ⅱ)根据题意得,y1=0.8x,y2=200+(x﹣200)×0.7=0.7x+60;(Ⅲ)设在甲、乙两个商场实际花费的差为y元,则y=y1﹣y2=0.1x﹣60,当y=0时,即0.1x﹣60=0,得x=600,∴当x=600时,小红在甲、乙两商场的实际花费相同.∵0.1>0,∴y随x的增大而增大,当200<x<600时,有y<0,在甲商场购物更省钱.当x>600时,有y>0,在乙商场购物更省钱.24.将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(8,0),点C (0,6).P是边OC上的﹣一点(点P不与点O,C重合),沿着AP折叠该纸片,得点O的对应点O'.(Ⅰ)如图①,当点O'落在边BC上时,求点O'的坐标;(Ⅱ)若点O'落在边BC的上方,O'P,O'A与分别与边BC交于点D,E.①如图②,当∠OAP=30°时,求点D的坐标;②当CD=O'D时,求点D的坐标(直接写出结果即可).【分析】(Ⅰ)由矩形的性质及已知点的坐标可得AB、OC、OA、CB的长及∠B的度数,再由折叠的性质及勾股定理可得O'A和BO'的值,求得CO'的值即点O'的横坐标,其纵坐标为6,则点O'的坐标可得.(Ⅱ)①根据OP=OA•tan30°、CP=6﹣OP及CD=CP•tan60°,求得CD的长,则可知点D的横坐标,其纵坐标为6,则点D的坐标可得;②连接AD,设CD=x,则BD=BC﹣CD=8﹣x,O'D=CD=x,在Rt△ADO'中和在Rt△ABD中,分别由勾股定理得出AD2,从而得出关于x的方程,解得x的值,则问题可解.解:(Ⅰ)∵点A(8,0),点C(0,6),OABC为矩形,∴AB=OC=6,OA=CB=8,∠B=90°.根据题意,由折叠可知△AOP≌△AO'P,∴O'A=OA=8.在Rt△AO'B中,BO'==2.∴CO'=BC﹣BO'=8﹣2.∴点O'的坐标为(8﹣2,6).(Ⅱ)①∵∠OAP=30°,∴∠OPA=60°,∵∠OPA=∠O'PA,∴∠CPD=180°﹣∠OPA﹣∠O'PA=60°.∵OA=8,∴OP=OA•tan30°=.∴CP=6﹣OP=6﹣.∴CD=CP•tan60°=6﹣8.∴点D的坐标为(6﹣8,6).②连接AD,如图:设CD=x,则BD=BC﹣CD=8﹣x,O'D=CD=x,根据折叠可知AO'=AO=8,∠PO'A=∠POA=90°,∴在Rt△ADO'中,AD2=AO'2+DO'2=82+x2=x2+64;在Rt△ABD中,AD2=BD2+AB2=(8﹣x)2+62=x2﹣16x+100;∴x2+64=x2﹣16x+100,解得:x=,∴CD=,∴D(,6).25.已知抛物线y=ax2﹣2x+c(a,c为常数,a≠0)与直线y=kx+b都经过A(0,﹣3),B(3,0)两点,P是该抛物线上的一个动点,过点P作x轴的垂线交直线AB于点Q.(Ⅰ)求此抛物线和直线AB的解析式;(Ⅱ)当点P在直线AB下方时,求PQ+BQ取得最大值时点P的坐标;(Ⅲ)设该抛物线的顶点为C,直线AB与该抛物线的对称轴交于点E,当以点P,Q,C,E为顶点的四边形是平行四边形时,求点P的坐标.【分析】(Ⅰ)根据抛物线y=ax2﹣2x+c(a,c为常数,a≠0)与直线y=kx+b都经过A(0,﹣3),B(3,0)两点,可以得到抛物线和一次函数的解析式;(Ⅱ)根据点P在直线AB下方,可以设出点P的坐标,得到点P横坐标的取值范围,然后即可得到PQ+BQ取得最大值时点P的坐标;(Ⅲ)根据题意,利用分类讨论的方法,可以求得满足条件的点P的坐标,本题得以解决.解:(Ⅰ)∵抛物线y=ax2﹣2x+c(a,c为常数,a≠0)过A(0,﹣3),B(3,0)两点,∴,得,即抛物线的解析式为y=x2﹣2x﹣3;∵直线y=kx+b经过A(0,﹣3),B(3,0)两点,∴,得,即直线AB的解析式为y=x﹣3;(Ⅱ)设点P(m,m2﹣2m﹣3),则点Q(m,m﹣3),∵点P在直线AB下方,∴0<m<3,∴PQ=(m﹣3)﹣(m2﹣2m﹣3)=﹣m2+3m,设直线PQ与x轴交于点H,则H(m,0),∵OA=OB=3,∠AOB=90°,∴∠OBA=45°,∴BQ=BH=(3﹣m),∴PQ+BQ=(﹣m2+3m)+×(3﹣m)=﹣(m﹣)2+,∴当m=时,PQ+BQ取得最大值,此时点P的坐标为(,﹣),即当PQ+BQ取得最大值时点P的坐标是(,﹣);(Ⅲ)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点C的坐标为(1,﹣4),∵CE∥y轴,∴点E的横坐标为1,将x=1代入直线AB的解析式y=x﹣3,得y=﹣2,∴点E(1,﹣2),∴CE=(﹣2)﹣(﹣4)=2,当点P在直线AB下方时,四边形ECPQ是平行四边形,则CE=PQ,∴﹣m2+3m=2,解得,m1=2,m2=1(舍去),∴点P的坐标为(2,﹣3);当点P在直线AB上方时,四边形ECQP是平行四边形,则CE=PQ,∴m2﹣3m=2,解得,m3=,m4=,∴点P的坐标为(,),(,);综上所示,点P的坐标为(2,﹣3)或(,)或(,).。
2020年天津市中考数学模拟试题(含答案) (6)
2020年天津市中考数学模拟试卷(典型考点整理)一.选择题(共8小题)1.已知,那么下列等式中,不成立的是()A.B.C.D.4x=3y2.下列交通标志是中心对称图形的为()A.B.C.D.3.二次函数y=x2的对称轴是()A.直线y=1 B.直线x=1 C.y轴D.x轴4.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tan A的值为()A.B.C.D.35.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±26.如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使△ABC∽△PBD,则点P的位置应落在()A.点P1上B.点P2上C.点P3上D.点P4上7.A,B是⊙O上的两点,OA=1,劣弧的长是,则∠AOB的度数是()A.30 B.60°C.90°D.120°8.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC 向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数图象大致是()A.B.C.D.二.填空题(共8小题)9.写出一个经过点(1,﹣2)的函数的表达式,所写的函数的表达式为.10.如图,在平面直角坐标系中,△DEF是由△ABC旋转得到的,则旋转的角度是°.11.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为.12.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.13.如图,将一副三角板中含有30°角的三角板的直角顶点落在等腰直角三角形的斜边的中点D处,并绕点D旋转,两直角三角板的两直角边分别交于点E,F,下列结论:①DE=DF;②S四边形AEDF =S△BED+S△CFD;③S△ABC=EF2;④EF2=BE2+CF2,其中正确的序号是.14.一名身高为1.6m的同学的影长为1.2m,同一时刻旗杆影长为9m,那么旗杆的高度是m.15.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有个.16.如图.六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形对角线,请在大长方形中完成下列画图,要求:(1)仅用无刻度直尺;(2)保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图(2)中画出线段AB的垂直平分线,并简要说明画图的方法(不要求证明).三.解答题(共12小题)17.计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣118.如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.19.在直角坐标系中△ABC三个顶点坐标分别为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧);(2)请直接写出点B′及点C′的坐标;(3)求线段BC的对应线段B′C′所在直线的解析式.20.如图所示,有一圆弧形拱桥,拱的跨度AB=30m,拱形的半径R=30m,则拱形的弧长为多少?21.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,求学校旗杆的高度.22.如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA 于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.23.如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.24.如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O 相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC与点D.(1)如果BE=15,CE=9,求EF的长;(2)证明:①△CDF∽△BAF;②CD=CE;(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.25.如果一个函数的图象关于y轴对称,我们就称这个函数为偶函数.(1)按照上述定义判断下列函数中,是偶函数.A.y=3x B.y=x+1 C.D.y=x2(2)若二次函数y=x2+bx﹣4是偶函数,该函数图象与x轴交于点A和点B,顶点为P.求△ABP的面积.26.抛物线y=﹣x2与直线y=kx﹣2k+3交于A,B两点,若∠AOB =90°,求k的值.27.已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.28.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE 为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.参考答案与试题解析一.选择题(共8小题)1.已知,那么下列等式中,不成立的是()A.B.C.D.4x=3y【分析】直接利用比例的性质将原式变形进而得出答案.【解答】解:A、∵,∴=,此选项正确,不合题意;B、∵,∴=﹣,此选项错误,符合题意;C、∵,∴=,此选项正确,不合题意;D、∵,∴4x=3y,此选项正确,不合题意;故选:B.2.下列交通标志是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的定义即可解答.【解答】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意.故选:C.3.二次函数y=x2的对称轴是()A.直线y=1 B.直线x=1 C.y轴D.x轴【分析】根据抛物线y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,据此解答可得.【解答】解:二次函数y=x2的对称轴是直线x=0,即y轴,故选:C.4.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tan A的值为()A.B.C.D.3【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sin A===,∴tan A==,故选:B.5.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±2【分析】将点M坐标代入反比例函数解析式得出关于a的方程,解之可得.【解答】解:∵点M(a,2a)在反比例函数y=的图象上.∴2a=.∴解得:a=±2,故选:D.6.如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使△ABC∽△PBD,则点P的位置应落在()A.点P1上B.点P2上C.点P3上D.点P4上【分析】由图可知∠BPD一定是钝角,若要△ABC∽△PBD,则PB、PD与AB、AC的比值必须相等,可据此进行判断.【解答】解:由图知:∠BAC是钝角,又△ABC∽△PBD,则∠BPD一定是钝角,∠BPD=∠BAC,又BA=2,AC=2,∴BA:AC=1:,∴BP:PD=1:或BP:PD=:1,只有P2符合这样的要求,故P点应该在P2.故选:B.7.A,B是⊙O上的两点,OA=1,劣弧的长是,则∠AOB的度数是()A.30 B.60°C.90°D.120°【分析】直接利用已知条件通过弧长公式求出圆心角的度数即可.【解答】解:∵OA=1,的长是,∴,解得:n=60,∴∠AOB=60°,故选:B.8.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC 向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数图象大致是()A.B.C.D.【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【解答】解:由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数图象大致是二次函数图象,开口向下.故选:C.二.填空题(共8小题)9.写出一个经过点(1,﹣2)的函数的表达式,所写的函数的表达式为.【分析】此题只需根据一次函数的形式或反比例函数的形式或二次函数的形式等写出适合(1,﹣2)的解析式即可.【解答】解:将点(1,﹣2)代入一次函数或反比例函数的形式或二次函数得:y=﹣2x,,y=﹣2x2等.故答案为:(答案不唯一).10.如图,在平面直角坐标系中,△DEF是由△ABC旋转得到的,则旋转的角度是90 °.【分析】根据网格结构,先找出对应点连线的垂直平分线的交点为旋转中心,那么一对对应点与旋转中心连线的夹角即为旋转角.【解答】解:由图可知,A与D、B与E分别是对应点,作出线段AD、BE的垂直平分线,得到旋转中心P的坐标为(﹣1,0),则∠BPE=90°.故答案为90.11.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为 1 .【分析】根据直角三角形30度角的性质即可解决问题.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=1,故答案为1.12.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为(﹣1,﹣2).【分析】连接CB,作CB的垂直平分线,根据勾股定理和半径相等得出点O的坐标即可.【解答】解:连接CB,作CB的垂直平分线,如图所示:在CB的垂直平分线上找到一点D,CD═DB=DA=,所以D是过A,B,C三点的圆的圆心,即D的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),13.如图,将一副三角板中含有30°角的三角板的直角顶点落在等腰直角三角形的斜边的中点D处,并绕点D旋转,两直角三角板的两直角边分别交于点E,F,下列结论:①DE=DF;②S四边形AEDF =S△BED+S△CFD;③S△ABC=EF2;④EF2=BE2+CF2,其中正确的序号是①②④.【分析】连接AD,如图,利用等腰直角三角形的性质得AB=AC,∠B=∠C=45°,AD⊥BC,BD=CD=AD,∠1=45°,再证明△DBE ≌△DAF得到DE=DF,则可对①进行判断;同理可得△DCF≌△DAE,则可对②进行判断;利用三角形面积公式得到S△ABC=AD2,由于当DE⊥AB时,四边形AEDF为矩形,此时AD=EF,于是可对③进行判断;利用勾股定理得到EF2=AE2+AF2,由于△DBE≌△DAF,△DCF ≌△DAE,则BE=AF,CF=AE,从而可对④进行判断.【解答】解:连接AD,如图,∵△ABC为等腰直角三角形,∴AB=AC,∠B=∠C=45°,∵点D为等腰直角△ABC的斜边的中点,∴AD⊥BC,BD=CD=AD,AD平分∠BAC,∴∠2+∠3=90°,∠1=45°,∵∠EDF=90°,即∠4+∠3=90°,∴∠2=∠4,在△DBE和△DAF中,∴△DBE≌△DAF(ASA),∴DE=DF,所以①正确;同理可得△DCF≌△DAE,∴S四边形AEDF=S△BED+S△CFD,所以②正确;∵S△ABC=•AD•BC=•AD•2AD=AD2,而只有当DE⊥AB时,四边形AEDF为矩形,此时AD=EF,∴S△ABC不一定等于EF2,所以③错误;在Rt△AEF中,EF2=AE2+AF2,∵△DBE≌△DAF,△DCF≌△DAE,∴BE=AF,CF=AE,∴EF2=BE2+CF2,所以④正确.故答案为①②④.14.一名身高为1.6m的同学的影长为1.2m,同一时刻旗杆影长为9m,那么旗杆的高度是12 m.【分析】利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.【解答】解:∵同一时刻物高与影长成正比例.设旗杆的高是xm.∴1.6:1.2=x:9∴x=12.即旗杆的高是12米.故答案为:12.15.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有15 个.【分析】由摸到红球的频率稳定在0.25附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在0.25左右,∴口袋中得到红色球的概率为0.25,∴=,解得:x=15,即白球的个数为15个,故答案为:15.16.如图.六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形对角线,请在大长方形中完成下列画图,要求:(1)仅用无刻度直尺;(2)保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图(2)中画出线段AB的垂直平分线,并简要说明画图的方法(不要求证明)点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.【分析】(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,故答案为:点M是长方形AFBE是对角线交点,点N是正方形ABCD 的对角线的交点,直线MN就是所求的线段AB的垂直平分线.三.解答题(共12小题)17.计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣1【分析】先代入三角函数值、计算绝对值、零指数幂和负整数指数幂,再进一步计算可得.【解答】解:原式=×﹣3+1+2=1﹣3+1+2=1.18.如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.【分析】(1)根据题意可得∠B+∠A=90°,∠A+∠F=90°,则∠B=∠F,从而得出△ADF∽△EDB;(2)由(1)得∠B=∠F,再CD是Rt△ABC斜边AB上的中线,得出CD=DB,根据等边对等角得∠DCE=∠F,则可证明△CDE∽△FDC,从而得出=,化为乘积式即可CD2=DF•DE.【解答】证明:(1)在Rt△ABC中,∠B+∠A=90°∵DF⊥AB∴∠BDE=∠ADF=90°∴∠A+∠F=90°,∴∠B=∠F,∴△ADF∽△EDB;(2)由(1)可知△ADF∽△EDB∴∠B=∠F,∵CD是Rt△ABC斜边AB上的中线∴CD=AD=DB,∴∠DCE=∠B,∴∠DCE=∠F,∴△CDE∽△FDC,∴=,∴CD2=DF•DE.19.在直角坐标系中△ABC三个顶点坐标分别为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧);(2)请直接写出点B′及点C′的坐标;(3)求线段BC的对应线段B′C′所在直线的解析式.【分析】(1)根据画位似图形的一般步骤和相似比找出图形;(2)根据相似比和相似三角形的性质求出点B′及点C′的坐标;(3)运用待定系数法求出一次函数解析式.【解答】解:(1)如图△A′B′C′即为所求;(2)∵△ABC与△A′B′C′的相似比为1:3,∴B′(0,6),C′(3,0);(3)设B′C′所在直线的解析式为y=kx+b,,解得,∴B′C′所在直线的解析式y=﹣2x+6.20.如图所示,有一圆弧形拱桥,拱的跨度AB=30m,拱形的半径R=30m,则拱形的弧长为多少?【分析】过O作OD⊥AB,交AB于点C,交于点D,如图所示,利用垂径定理得到C为AB的中点,由AB长求出AC长,在直角三角形AOC中,利用锐角三角函数定义求出sin∠AOC的值,利用特殊角的三角函数值求出∠AOC度数,进而求出∠AOB度数,利用弧长公式即可求出拱形的弧长.【解答】解:过O作OD⊥AB,交AB于点C,交于点D,如图所示,∴C为AB的中点,即AC=BC=AB=15m,在Rt△AOC中,sin∠AOC===,∴∠AOC=60°,∴∠AOB=2∠AOC=120°,则拱形的弧长l==20π.21.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,求学校旗杆的高度.【分析】根据同一时刻物高与影长成正比,因而作DE⊥AB于点E,则AE与DE的比值,即同一时刻物高与影长的比值,即可求解.【解答】解:作DE⊥AB于点E,根据题意得:=,=,解得:AE=8米.则AB=AE+BE=8+2=10米.即旗杆的高度为10米.22.如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA 于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.【分析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB的解析式,进而求出AG,用三角形的面积公式即可得出结论.(3)分三种情形分别讨论求解即可解决问题;【解答】解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(,1),A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.(3)如图2中,①当∠AOE1=90°时,∵直线AC的解析式为y=x,∴直线OE1的小时为y=﹣x,当y=2时,x=﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线AE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).23.如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.【分析】画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为4,所以两次抽取的牌上的数字都是偶数的概率=.24.如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O 相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC与点D.(1)如果BE=15,CE=9,求EF的长;(2)证明:①△CDF∽△BAF;②CD=CE;(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.【分析】(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且=.【解答】(1)解:∵直线l与以BC为直径的圆O相切于点C.∴∠BCE=90°,又∵BC为直径,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:,解得:EF=;(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴,∴,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=CD=CE,在Rt△BCE中,tan∠CBE=,∴∠CBE=30°,故为60°,∴F在直径BC下方的圆弧上,且=.25.如果一个函数的图象关于y轴对称,我们就称这个函数为偶函数.(1)按照上述定义判断下列函数中,D是偶函数.A.y=3x B.y=x+1 C.D.y=x2(2)若二次函数y=x2+bx﹣4是偶函数,该函数图象与x轴交于点A和点B,顶点为P.求△ABP的面积.【分析】(1)根据对称性进行判断;(2)根据偶函数的定义,知二次函数的对称轴是y轴,则其中的b=0,从而进一步求得点A、B、P的坐标,根据三角形的面积公式即可求出该三角形的面积.【解答】解:(1)A、y=3x是经过一、三象限的直线,其对称轴不是y轴,则不是偶函数;B、y=x+1是经过一、二、三象限的直线,其对称轴不是y轴,则不是偶函数;C、是在一、三象限的双曲线,其对称轴不是y轴,则不是偶函数;D、y=x2是关于y轴对称的抛物线,则是偶函数.故答案为D.(2)∵二次函数y=x2+bx﹣4是偶函数,∴其对称轴是y轴,则b=0.即二次函数y=x2﹣4.则A(﹣2,0),B(2,0),P(0,﹣4),则△ABP的面积=×4×4=8.26.抛物线y=﹣x2与直线y=kx﹣2k+3交于A,B两点,若∠AOB =90°,求k的值.【分析】将y=kx﹣2k+3代入y=x2,得x2﹣kx+2k﹣3=0,根据二次函数图象上点的坐标特征以及根与系数的关系得出y1=x12,y2=x22,x1•x2=4k﹣6,那么y1•y2=k2﹣3k+当∠AOB=90°时,如图1,过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N.证明△AOM∽△OBN,根据相似三角形对应边成比例得出y1•y2=﹣x1•x2,依此列出关于k的方程,求出k的值即可.【解答】解:将y=kx﹣2k+3代入y=x2,得x2﹣kx+2k﹣3=0,设抛物线y=﹣x2与直线y=kx﹣2k+3交于A(x1,y1),B(x2,y2)两点,∴y1=x12,y2=x22,x1•x2=4k﹣6,∴y1•y2=(x12)•(x22)=(x1•x2)2=(4k﹣6)2=4k2﹣6k+9 当∠AOB=90°时,如图:,过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N.在△AOM与△OBN中,,∴△AOM∽△OBN,∴=,即=,∴y1•y2=﹣x1•x2,∴4k2﹣6k+9=﹣4k+6,∵k>0,∴k=,27.已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.【分析】(1)直接利用旋转的性质结合全等三角形的判定与性质得出答案;(2)直接利用等边三角形的性质结合勾股定理即可得出答案.【解答】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ,在△BAP和△CAQ中,∴△BAP≌△CAQ(SAS),∴PB=QC;(2)解:∵由(1)得△APQ是等边三角形,∴AP=PQ=3,∠AQP=60°,∵∠APB=150°,∴∠PQC=150°﹣60°=90°,∵PB=QC,∴QC=4,∴△PQC是直角三角形,∴PC===5.28.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE 为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD 是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO与△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切线;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四边形ABCD是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.。
2020年天津市中考数学模拟试题(含答案) (4)
2020年天津市中考数学模拟试卷(典型考点整理)一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为美元.9.(3分)已知k为整数,且满足<k<,则k的值是.10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是°.12.(3分)已知二元一次方程组,则2a+3b=.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是.14.(3分)已知不等式组无解,则a的取值范围是.15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:﹣3的相反数是3.故选:A.【点评】本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB【分析】如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即ABAC=ACBC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.【解答】解:∵P为线段AB的黄金分割点,且AP<PB,∴PB2=AP•AB.故选:C.【点评】本题考查了黄金分割的概念,熟记定义是解题的关键.4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变【分析】根据方差和平均数的定义即可得到结论.【解答】解:原数据的平方数为=165;原数据的方差为[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2+(165﹣165)2=;去掉最后一个数165后的数据的平均数为=165,去掉最后一个数165后的数据的方差为×[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2]=,故平均数不变,方差变大,故选:A.【点评】本题考查了方差和平均数,数据定义是解题的关键.6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5【分析】根据题意A、B的横坐标化为相反数,所以设A(﹣m,﹣)则B(m,),根据题意中位线等于上下底和的一半,求得表示出OC,然后根据S△ABO=S△AOC+S△BOC 即可求得.【解答】解:∵C是AB的中点,∴设A(﹣m,﹣)则B(m,),∴OC=(+)=,∴S△ABO=S△AOC+S△BOC=××2m=.故选:B.【点评】本题考查了反比例函数和一次函数的交点,根据题意表示出交点的坐标是解题的关键.二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=2.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.【点评】解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为 1.3×1012美元.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:13000 0000 0000=1.3×1012.故答案为:1.3×1012.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(3分)已知k为整数,且满足<k<,则k的值是3.【分析】先估算出和的范围,再得出答案即可.【解答】解:∵2<<3,3<<4,∴整数k=3,故答案为:3.【点评】本题考查了估算无理数的大小和实数的大小比较,能估算出和的范围是解此题的关键10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.【分析】列举出所有情况,看所求的情况占总情况的多少即可得出答案.【解答】解:共(正,正)、(反,反)、(正,反)、(反、正)4种情况,则出现一正一反的概率是=;故答案为:.【点评】此题考查了列举法求概率,解题的关键是找到所有的情况,用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是105°.【分析】利用三角形内角和定理计算即可.【解答】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,故答案为:105.【点评】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.12.(3分)已知二元一次方程组,则2a+3b=9.【分析】将两方程相减即可得.【解答】解:,①﹣②,得:2a+3b=9,故答案为:9.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是8.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【点评】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.14.(3分)已知不等式组无解,则a的取值范围是a≤1.【分析】根据不等式组无解,则两个不等式的解集没有公共部分解答.【解答】解:∵不等式组无解,∴a的取值范围是a≤1.故答案为:a≤1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于﹣1.【分析】由已知得出a﹣c=2,求出a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc ﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,即可得出所求的值.【解答】解:∵a﹣b=b﹣c=1,∴a﹣c=2,∴a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,∴ab+bc+ac=a2+b2+c2﹣3=2﹣3=﹣1;故答案为:﹣1.【点评】本题考查了完全平方式以及配方法;能够运用完全平方式熟练推导与记忆a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2]是解题的关键.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.【分析】设⊙O与CD相切于F,连接OF,得到∠OFE=90°,根据勾股定理得到AB =5,根据直角三角形的性质得到AD=CD,由相似三角形的性质即可得到结论.【解答】解:设⊙O与CD相切于F,连接OF,∴∠OFE=90°,∵∠ACB=90°,BC=3,AC=4,∴AB=5,∵点D为斜边AB的中点,∴AD=CD,∴∠A=∠ACD,∵∠OFC=∠ACB=90°,∴△COF∽△ABC,∴=,设⊙O的半径为r,∴OC=4﹣r,∴=,∴r=,故答案为:.【点评】本题考查了切线的性质,直角三角形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=【分析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2+1﹣6×+9=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章的结果,再利用概率公式求解即可求得答案.【解答】解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.【点评】本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有80人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.【分析】(1)32÷40%=80(人),课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人),据此补图;(2),所以a=20;(3)根据题意得:1800×=360(人),所以该校全体学生中喜爱“实验实践”的人数约为360人.【解答】解:(1)32÷40%=80(人),故答案为80,课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人)补图如下(2),所以a=20;(3)根据题意得:1800×=360(人),答:该校全体学生中喜爱“实验实践”的人数约为360人.【点评】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.【分析】(1)由平行四边形的性质和角平分线的性质可证BA=BE=AF,即可证四边形ABEF是菱形;(2)由菱形的性质和勾股定理可求BE=5,由菱形的面积公式可求AH=,由平行四边形的面积公式可求AD的长.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BA=BE,同理:AB=AF∴AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形(2)如图,过A作AH⊥BE,∵四边形ABEF是菱形,∴AO=EO=AE=3,BO=FO=BF=4,AE⊥BF,∴BE==5,∵S菱形ABEF=AE•BF=×6×8=24,∴BE•AH=24,∴AH=,∴S平行四边形ABCD=AD×AH=36,∴AD=.【点评】本题考查了菱形的性质和判定,平行四边形的性质,熟练运用菱形的性质是本题的关键.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.【分析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.【解答】(1)证明:∵△=[﹣(m+2)]2﹣4×2m=(m﹣2)2≥0,∴不论m为何值,该方程总有两个实数根;(2)解:∵AB、AC的长是该方程的两个实数根,∴AB+AC=m+2,AB•AC=2m,∵△ABC是直角三角形,∴AB2+AC2=BC2,∴(AB+AC)2﹣2AB•AC=BC2,即(m+2)2﹣2×2m=32,解得:m=±,∴m的值是±.又∵AB•AC=2m,m为正数,∴m的值是.【点评】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.【分析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论..【解答】解:(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,,∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r﹣2,∵CE2+OE2=OC2,∴32+(r﹣2)2=r2,解得r=,∴AD=,∵AE=AD﹣DE,∴AE=﹣2=.【点评】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?【分析】本题是通过构建函数模型解答销售利润的问题.(1)根据销售利润=销售量×(售价﹣进价),依据题意易得出W与x之间的函数关系式,(2)令W=750,求解即可,因为要确保顾客得到优惠,故最后x应取最小值【解答】解:(1)根据题意,得:W=(﹣2x+100)(x﹣10)整理得W=﹣2x2+120x﹣1000∴W与x之间的函数关系式为:W=﹣2x2+120x﹣1000(2)∵每天销售利润W为750元,∴W=﹣2x2+120x﹣1000=750解得x1=35,x2=25又∵要确保顾客得到优惠,∴x=25答:应将销售单价定位25元【点评】本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.再根据销售利润=销售量×(售价﹣进价),建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)【分析】(1)延长CE交AO于点G,过点E作EF⊥AC垂足为F.解直角三角形即可得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)如图,延长CE交AO于点G,过点E作EF⊥AC垂足为F.由题意可知:∠ACG=30°,∠AEG=75°,CE=20,∴∠EAC=∠AEG﹣∠ACG=45°,∵EF=CE×Sin∠FCE=10,∴AE==10,∴AE的长度为10m;(2)∵CF=CE×cos∠FCE=10,AF=EF=10,∴AC=CF+AF=10+10,∴AG=AC×Sin∠ACG=5+5,∴AO=AG+GO=5+5+1.6=5+6.6≈15,∴高度AO约为15m.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.【分析】(1)过点E作AE的垂线即可;(2)如图,过点E作EM⊥AB、EN⊥BC,先证明矩形MBNE是正方形,则∠AEM=∠FEN,再证明△AEM≌△FEN,从而得到AE=EF;(3)利用△AEM≌△FEN得到S△AEM=S△FEN,则S四边形ABFE=S正方形MBNE,利用正方形面积公式得到BM=2,则AM=AB﹣BM=1,然后利用勾股定理计算AE的长.【解答】解:(1)如图,(2)如图,过点E作EM⊥AB、EN⊥BC,∴∠EMB=∠MBN=∠ENB=90°,∴四边形MBNE是矩形,又∵四边形ABCD为正方形,∴BD平分∠ABC,∴EM=EN,∴矩形MBNE是正方形,∵∠AEM+∠MEF=∠MEF+∠FEN=90°,∴∠AEM=∠FEN,又∵∠AME=∠FNE=90°,EM=EN,∴△AEM≌△FEN(ASA),∴AE=EF;(3)∵△AEM≌△FEN,∴S△AEM=S△FEN,∴S四边形ABFE=S正方形MBNE,∵四边形ABFE的面积为4,∴BM2=4,∴BM=2(取正舍负),∴AM=AB﹣BM=1,∴AE==.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了正方形的性质.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.【分析】(1)先求出二次函数y=ax2﹣2ax=a(x﹣1)2﹣a顶点C(1,﹣a),当x=1时,一次函数值y=﹣a所以点C在一次函数y=﹣ax的图象上;(2)存在.将点(k,y1)、(k+2,y2)(k≠0,±2)代入二次函数解析式,y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),因为满足=,,整理,得,,解得k=±4,经检验:k=±4是原方程的根,所以整数k的值为±4;(3)分两种情况讨论:①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a.【解答】解:(1)∵二次函数y=ax2﹣2ax=a(x﹣1)2﹣a,∴顶点C(1,﹣a),∵当x=1时,一次函数值y=﹣a∴点C在一次函数y=﹣ax的图象上;(2)存在.∵点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,∴y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),∵满足=,∴,整理,得,∴,∴,解得k=±4,经检验:k=±4是原方程的根,∴整数k的值为±4.(3)∵点E是二次函数图象上一动点,∴E(n,an2﹣2an),∵EF∥y轴,F在一次函数图象上,∴F(n,﹣an).①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,∵a>0,∴当n=﹣1时,EF有最大值,且最大值是2a,又∵0<a≤2,∴0<2a≤4,即EF的最大值是4;②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a,此时EF的最大值是,又∵0<a≤2,∴0<≤,即EF的最大值是;综上所述,EF的最大值是4.【点评】本题考查了二次函数,熟练掌握二次函数的性质是解题的关键.。
2020年天津市和平区中考数学二模试卷 解析版
2020年天津市和平区中考数学二模试卷一.选择题(共12小题)1.计算(﹣2)3﹣(﹣2)2的结果是()A.﹣4B.4C.12D.﹣122.2sin60°的值等于()A.1B.C.D.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.2016年某市用于资助贫困学生的助学金总额是9680000元,将9680000用科学记数法表示为()A.96.8×105B.9.68×106C.9.68×107D.0.968×1085.在水平的讲台桌上放置圆柱形笔筒和长方体形粉笔盒(如图),则它的主视图是()A.B.C.D.6.估计3的值在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间7.化简的结果是()A.x+1B.C.x﹣1D.8.已知是方程组的解,则a+b的值是()A.﹣1B.1C.﹣5D.59.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B 恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.B.6C.4D.510.反比例函数图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1 11.如图,正方形ABCD的边长为2,点E是BC边上一点,以AB为直径在正方形内作半圆O,将△DCE沿DE翻折,点C刚好落在半圆O的点F处,则CE的长为()A.B.C.D.12.已知二次函数y1=mx2+4mx﹣5m(m≠0),一次函数y2=2x﹣2,有下列结论:①当x>﹣2时,y随x的增大而减小;②二次函数y1=mx2+4mx﹣5m(m≠0)的图象与x轴交点的坐标为(﹣5,0)和(1,0);③当m=1时,y1≤y2;④在实数范围内,对于x的同一个值,这两个函数所对应的函数值y2≤y1均成立,则m=.其中,正确结论的个数是()A.0B.1C.2D.3二.填空题(共6小题)13.计算﹣5a2•2a3的结果等于.14.计算(2﹣3)(3+2)的结果等于.15.一枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子1次,向上一面的点数大于2且小于5的概率是.16.如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(﹣4,0),点D的坐标为(﹣1,4),反比例函数y=(x>0)的图象恰好经过点C,则k的值为.17.如图,△ABC是等边三角形,AB=3,点E在AC上,AE=AC,D是BC延长线上一点,将线段DE绕点E逆时针旋转90°得到线段FE,当AF∥BD时,线段AF的长为.18.如图,在每个小正方形的边长为1的网格中,A,B,C为格点,D为小正方形边的中点.(I)AC的长等于;(II)点P,Q分别为线段BC,AC上的动点,当PD+PQ取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PD,PQ,并简要说明点P和点Q的位置是如何找到的(不要求证明).三.解答题(共7小题)19.解不等式组请结合题意填空,完成本题的解答.(I)解不等式①,得;(II)解不等式②,得;(II)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为.20.某校对九年一班50名学生进行长跑项目的测试,根据测试成绩制作了两个统计图.请根据相关信息,解答下列问题:(I)本次测试的学生中,得3分的学生有人,得4分的学生有人;(II)求这50个数据的平均数、众数和中位数.21.如图,AC是⊙O的直径,P A、PB是⊙O的切线,切点分别是点A、B (1)如图1,若∠BAC=25°,求∠P的度数.(2)如图2,若M是劣弧AB上一点,∠AMB=∠AOB,求∠P的度数.22.如图,两座建筑物的水平距离BC为60m,从C点测得A点的仰角α为53°,从A点测得D点的俯角β为37°,求两座建筑物的高度(参考数据:sin37°≈,cos37°≈,tan37°≈,sin53°≈,cos53°≈,tan53°≈).23.某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆游泳的次数为x次(x为正整数).(I)根据题意,填写下表:游泳次数51015 (x)方式一的总费用(元)350650…方式二的总费用(元)2000400…(II)若小亮计划今年游泳的总费用为2000元,选择哪种付费方式,他游泳的次数比较多?(III)当x>12时,小亮选择哪种付费方式更合算?并说明理由.24.在平面直角坐标系中,△ABC是直角三角形,∠ABC=90°,∠CAB=60°,点O(0,0),点A(1,0),点B(﹣1,0),点C在第二象限,点P(﹣2,).(I)如图①,求C点坐标及∠PCB的大小;(II)将△ABC绕C点逆时针旋转得到△MNC,点A,B的对应点分别为点M,N,S为△PMN的面积.①如图②,当点N落在边CA上时,求S的值;②求S的取值范围(直接写出结果即可).25.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(2,0)和点(﹣1,2).(I)求抛物线的解析式;(II)P(m,t)为抛物线上的一个动点,点P关于原点的对称点为P'.当点P'落在该抛物线上时,求m的值;(III)P(m,t)(m<2)是抛物线上一动点,连接P A,以P A为边作图示一侧的正方形APFG,随着点P的运动,正方形的大小与位置也随之改变,当顶点F或G恰好落在y 轴上时,求对应的P点坐标.2020年天津市和平区中考数学二模试卷参考答案与试题解析一.选择题(共12小题)1.计算(﹣2)3﹣(﹣2)2的结果是()A.﹣4B.4C.12D.﹣12【分析】原式利用乘方的意义计算,相减即可得到结果.【解答】解:原式=﹣8﹣4=﹣12.故选:D.2.2sin60°的值等于()A.1B.C.D.【分析】把sin60°的数值代入,进行乘法计算即可.【解答】解:原式=2×=.故选:D.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不符合题意;B、是轴对称图形,是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意.故选:B.4.2016年某市用于资助贫困学生的助学金总额是9680000元,将9680000用科学记数法表示为()A.96.8×105B.9.68×106C.9.68×107D.0.968×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将9680000用科学记数法表示为:9.68×106.故选:B.5.在水平的讲台桌上放置圆柱形笔筒和长方体形粉笔盒(如图),则它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得左边有1个高的长方形,右边有一个矮的长方形.故选:B.6.估计3的值在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间【分析】先估算出的范围,进而得出3的值的范围.【解答】解:∵,∴,即3的值在6和7之间.故选:B.7.化简的结果是()A.x+1B.C.x﹣1D.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1.故选:A.8.已知是方程组的解,则a+b的值是()A.﹣1B.1C.﹣5D.5【分析】根据二元一次方程组的解法即可求出答案.【解答】解:将代入,可得:,两式相加:a+b=﹣1,故选:A.9.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B 恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.B.6C.4D.5【分析】根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三角形的性质得到AF=CF,于是得到结论.【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:B.10.反比例函数图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【分析】先根据反比例函数的系数k2+1>0判断出函数图象在一、三象限,在每个象限内,y随x的增大而减小,再根据x1<x2<0<x3,判断出y1、y2、y3的大小.【解答】解:∵反比例函数的比例系数k2+1>0,∴图象在第一、三象限,在每个象限内,y随x的增大而减小,又∵x1<x2<0<x3,∴y2<y1<0,y3>0,∴y2<y1<y3.故选:B.11.如图,正方形ABCD的边长为2,点E是BC边上一点,以AB为直径在正方形内作半圆O,将△DCE沿DE翻折,点C刚好落在半圆O的点F处,则CE的长为()A.B.C.D.【分析】连接OD,OF,判定△AOD≌△FOD,可得∠DAO=∠DFO=90°,O,F,E 在同一直线上,设CE=EF=x,则BE=2﹣x,OE=1+x,依据勾股定理可得Rt△BOE 中,BO2+BE2=OE2,列方程即可得到CE的长.【解答】解:如图,连接OD,OF,由AO=FO=1,AD=FD,DO=DO,可得△AOD≌△FOD,∴∠DAO=∠DFO=90°,又∵∠DFE=∠C=90°,∴O,F,E在同一直线上,设CE=EF=x,则BE=2﹣x,OE=1+x,在Rt△BOE中,BO2+BE2=OE2,∴12+(2﹣x)2=(1+x)2,解得x=,∴CE=,故选:A.12.已知二次函数y1=mx2+4mx﹣5m(m≠0),一次函数y2=2x﹣2,有下列结论:①当x>﹣2时,y随x的增大而减小;②二次函数y1=mx2+4mx﹣5m(m≠0)的图象与x轴交点的坐标为(﹣5,0)和(1,0);③当m=1时,y1≤y2;④在实数范围内,对于x的同一个值,这两个函数所对应的函数值y2≤y1均成立,则m=.其中,正确结论的个数是()A.0B.1C.2D.3【分析】根据二次函数图象性质,一次函数的性质,抛物线与直线的交点等情况可得出结论.【解答】解:①∵y1=mx2+4mx﹣5m=m(x+2)2﹣9m,y2=2x﹣2,当x>﹣2时,y2随x的增大而增大,当m<0时,y1随x的增大而减小,故①错误;②令y1=0,则mx2+4mx﹣5m=0,x=1或﹣5,二次函数y1=mx2+4mx﹣5m(m≠0)的图象与x轴交点的坐标为(﹣5,0)和(1,0),故②正确;③当m=1时,二次函数y1=mx2+4mx﹣5m的图象与一次函数y2=2x﹣2的图象的交点的横坐标为﹣3和1,∴当﹣3<x<1时,y1≤y2;故③错误;④∵mx2+4mx﹣5m=2x﹣2整理得,mx2+(4m﹣2)x+2﹣5m=0,当△=(4m﹣2)2﹣4m(2﹣5m)=0时,函数值y2≤y1成立,解得m=,故④正确.故选:C.二.填空题(共6小题)13.计算﹣5a2•2a3的结果等于﹣10a5.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=﹣10a5,故答案为:﹣10a5.14.计算(2﹣3)(3+2)的结果等于﹣1.【分析】根据平方差公式可以解答本题.【解答】解:(2﹣3)(3+2)=(2)2﹣32=8﹣9=﹣1,故答案为:﹣1.15.一枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子1次,向上一面的点数大于2且小于5的概率是.【分析】先向上一面的点数大于2且小于5的数,再根据概率公式求解即可.【解答】解:∵抛掷这枚骰子1次,向上一面的点数大于2且小于5的数为3,4,∴抛掷这枚骰子1次,向上一面的点数大于2且小于5的概率为=;故答案为:.16.如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(﹣4,0),点D的坐标为(﹣1,4),反比例函数y=(x>0)的图象恰好经过点C,则k的值为16.【分析】要求k的值,求出点C坐标即可,由菱形的性质,再构造直角三角形,利用勾股定理,可以求出相应的线段的长,转化为点的坐标,进而求出k的值.【解答】解:过点C、D作CE⊥x轴,DF⊥x轴,垂足为E、F,∵ABCD是菱形,∴AB=BC=CD=DA,易证△ADF≌△BCE,∵点A(﹣4,0),D(﹣1,4),∴DF=CE=4,OF=1,AF=OA﹣OF=3,在Rt△ADF中,AD=,∴OE=EF﹣OF=5﹣1=4,∴C(4,4)∴k=4×4=16故答案为:16.17.如图,△ABC是等边三角形,AB=3,点E在AC上,AE=AC,D是BC延长线上一点,将线段DE绕点E逆时针旋转90°得到线段FE,当AF∥BD时,线段AF的长为1+.【分析】如图过点E作EM⊥AF于M,交BD于N.解直角三角形求出AM,EN,利用全等三角形的性质证明MF=EN即可解决问题.【解答】解:如图过点E作EM⊥AF于M,交BD于N.∵△ABC是等边三角形,∴AB=BC=AC=3,∠ACB=60°,∵AE=AC,∴AE=2,EC=1,∵AF∥BD,∴∠EAM=∠ACB=60°,∵EM⊥AF,∴∠AME=90°,∴∠AEM=30°,∴AM=AE=1,∵AF∥BD,EM⊥AF,∴EN⊥BC,∴EN=EC•sin60°=,∵∠EMF=∠END=∠FED=90°,∴∠MEF+∠MFE=90°,∠MEF+∠DEN=90°,∴∠EFM=∠DEN,∵ED=EF,∴△EMF≌△DNE(AAS),∴MF=EN=,∴AF=AM+MF=1+,故答案为1+.18.如图,在每个小正方形的边长为1的网格中,A,B,C为格点,D为小正方形边的中点.(I)AC的长等于5;(II)点P,Q分别为线段BC,AC上的动点,当PD+PQ取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PD,PQ,并简要说明点P和点Q的位置是如何找到的(不要求证明)BC与网格的交点为P,连接PD,取格点E,F,连接EF得到点G,取格点M,N,连接MN,得到格点H,连接GH交AC于Q,连接PQ,此时DP+P A 的值最小.【分析】(Ⅰ)利用勾股定理解决问题即可.(Ⅱ)思路:作点D关于BC的对称点D′,过D′作AC的垂线交BC于P,交AC于Q,此时DP+PQ的值最小.方法:BC与网格的交点为P,连接PD,取格点E,F,连接EF得到点G,取格点M,N,连接MN,得到格点H,连接GH交AC于Q,连接PQ,此时DP+P A的值最小(可以证明TA=AC=5,推出∠T=∠ACT,证明∠PQC=90°,∠∠DPT=∠QPC可得结论).【解答】解:(Ⅰ)AC==5;故答案为5.(Ⅱ)如图,PD、PQ为所作.故答案为:BC与网格的交点为P,连接PD,取格点E,F,连接EF得到点G,取格点M,N,连接MN,得到格点H,连接GH交AC于Q,连接PQ,此时DP+P A的值最小.三.解答题(共7小题)19.解不等式组请结合题意填空,完成本题的解答.(I)解不等式①,得x≤5;(II)解不等式②,得x<4;(II)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为x<4.【分析】分别解两个不等式,然后根据公共部分找确定不等式组的解集,再利用数轴表示解集;【解答】解:解不等式①,得x≤5;解不等式②,得x<4;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为x<4,故答案为:x≤5;x<4;x<4.20.某校对九年一班50名学生进行长跑项目的测试,根据测试成绩制作了两个统计图.请根据相关信息,解答下列问题:(I)本次测试的学生中,得3分的学生有5人,得4分的学生有25人;(II)求这50个数据的平均数、众数和中位数.【分析】(1)3分的占50人的10%,4分的占50人的50%,可求出答案呢;(2)根据平均数、中位数、众数的意义分别求出结果即可.【解答】解:(1)50×10%=5(人),50×50%=25(人),故答案为:5,25;(2)==3.7,因此这组数的平均数为3.7;在这组数据中,4出现了25次,出现的次数最多,因此这组数据的众数是4;将这组数据按照从小到大排列后,处在第25、26位的两个数都是4,因此中位数是4,答:这50个数据的平均数、众数和中位数分别为3.7,4,4.21.如图,AC是⊙O的直径,P A、PB是⊙O的切线,切点分别是点A、B (1)如图1,若∠BAC=25°,求∠P的度数.(2)如图2,若M是劣弧AB上一点,∠AMB=∠AOB,求∠P的度数.【分析】(1)先根据切线长定理得到P A=PB,则利用等腰三角形的性质得∠P AB=∠PBA,再根据切线的性质得∠CAP=90°,于是利用互余计算出∠P AB=65°,然后根据三角形内角和定理计算∠P的度数.(2)在弧AC上取一点D,连接AD,CD,利用已知条件和圆的内接四边形的性质即可求出∠P的度数.【解答】解:(1)∵P A,PB是⊙O的切线,∴P A=PB,∴∠P AB=∠PBA,∵P A为切线,∴CA⊥P A.∴∠CAP=90°,∵∠BAC=25°,∴∠P AB=90°﹣∠BAC=65°,∴∠P=180°﹣2∠P AB=50°;(2)在弧AC上取一点D,连接AD,CD,∴∠AOB=2∠ADC,∵∠AMB+∠ADC=180°,∠AMB=∠AOB,∴∠ADC+2∠ADC=180°,∴∠ADC=60°,∴∠AOB=120°,∴∠P=360°﹣90°﹣90°﹣120°=60°.22.如图,两座建筑物的水平距离BC为60m,从C点测得A点的仰角α为53°,从A点测得D点的俯角β为37°,求两座建筑物的高度(参考数据:sin37°≈,cos37°≈,tan37°≈,sin53°≈,cos53°≈,tan53°≈).【分析】过点D作DE⊥AB于E,则DE=BC=60m,在Rt△ABC中,求出AB,在Rt △ADE中求出AE即可解决问题;【解答】解:过点D作DE⊥AB于E,则DE=BC=60m,在Rt△ABC中,tan53°=,∴=,∴AB=80(m),在Rt△ADE中,tan37°=,∴=,∴AE=45(m),∴BE=CD=AB﹣AE=35(m),答:两座建筑物的高度分别为80m和35m.23.某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆游泳的次数为x次(x为正整数).(I)根据题意,填写下表:游泳次数51015 (x)方式一的总费用(元)350500650...30x+200方式二的总费用(元)2000400600 (40x)(II)若小亮计划今年游泳的总费用为2000元,选择哪种付费方式,他游泳的次数比较多?(III)当x>12时,小亮选择哪种付费方式更合算?并说明理由.【分析】(I)根据总价=单价×数量结合两种收费方式的细则,即可得出结论;(II)分选择方式一和选择方式二两种情况,根据总价等于2000元,即可得出关于x的一元一次方程,解之即可得出x的值,再比较后即可得出结论;(III)分选项方式一合算、选择两种方式费用相同及选择方式二合算三种情况,列出关于x的一元一次不等式(或一元一次方程),解之即可得出结论.【解答】解:(I)200+30×10=500(元),30x+200(元);40×15=600(元),40x.故答案为:500;30x+200;600;40x.(II)选择方式一:30x+200=2000,解得:x=60;选择方式二:40x=2000,解得:x=50.∵60>50,∴小亮选择方式一游泳次数比较多.(III)当选择方式一合算时,30x+200<40x,解得:x>20;当选择两种方式费用一样时,30x+200=40x,解得:x=20;当选择方式二合算时,30x+200>40x,解得:x<20.答:当12<x<20时,选择方式二合算;当x=20时,选择方式一和选择方式二费用相同;当x>20时,选择方式一合算.24.在平面直角坐标系中,△ABC是直角三角形,∠ABC=90°,∠CAB=60°,点O(0,0),点A(1,0),点B(﹣1,0),点C在第二象限,点P(﹣2,).(I)如图①,求C点坐标及∠PCB的大小;(II)将△ABC绕C点逆时针旋转得到△MNC,点A,B的对应点分别为点M,N,S为△PMN的面积.①如图②,当点N落在边CA上时,求S的值;②求S的取值范围(直接写出结果即可).【分析】(Ⅰ)由条件求出AB=2,由tan∠CAB=可求出BC的长,则点C的坐标可求出;如图1,过点P作PE⊥CB,垂足为点E,过点P作PF⊥x轴,垂足为点F,求出PE=1,CE=,则可求出答案;转的性质得出CN=CB=2,MN=AB=2,求出∠BCA=30°,可求出PH的长,根据三角形面积公式可得出答案;②求出S△PMN的最大值和最小值即可得出答案.【解答】解:(Ⅰ)∵点A(1,0),点B(﹣1,0),∴OA=1,OB=1,∴AB=2,在Rt△ABC中,∠CAB=60°,∵tan∠CAB=,∴BC=AB•tan60°=2×=2,∴C(﹣1,2).如图1,过点P作PE⊥CB,垂足为点E,过点P作PF⊥x轴,垂足为点F,∴∠PFB=∠PEB=90°,∵∠ABC=∠FBC=90°,∴四边形PFBE为矩形,∵P(﹣2,),∴OF=2,PF=,∴FB=OF﹣OB=1,∴BE=PF=,PE=FB=1,∴CE=CB﹣BE=2﹣=.在Rt△CPE中,∵tan∠PCE==,∴∠PCB=30°.G,则四边形PHNG为矩形,∴PH=GN,∵△MNC是由△ABC旋转得到的,∴CN=CB=2,MN=AB=2,∵∠ABC=90°,∠CAB=60°,∴∠BCA=30°,由(Ⅰ)可知∠PCB=30°,PE=1,∴PC=2,∠PCG=∠PCB+∠BCA=60°.在Rt△PCG中,∠CPG=30°,∴CG=PC=1.∴PH=GN=CN﹣CG=CB﹣CG=2﹣1.∴S=MN•PH=×2×PH=PH=2﹣1.②S的取值范围为2+2.如图3,当点N在PC的延长线上时,S△PMN最大.此时PN=PC+CN=2+2,∴S==2+2.如图4,当点N在CP的延长线上时,S△PMN最小.此时PN=CN﹣CP=2﹣2,∴S=×2×=2﹣2.∴2+2.即S的取值范围为2+2.25.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(2,0)和点(﹣1,2).(I)求抛物线的解析式;(II)P(m,t)为抛物线上的一个动点,点P关于原点的对称点为P'.当点P'落在该抛物线上时,求m的值;(III)P(m,t)(m<2)是抛物线上一动点,连接P A,以P A为边作图示一侧的正方形APFG,随着点P的运动,正方形的大小与位置也随之改变,当顶点F或G恰好落在y 轴上时,求对应的P点坐标.【分析】(Ⅰ)根据抛物线y=﹣x2+bx+c经过点A(2,0)和点(﹣1,2),可以得到该抛物线的解析式;(Ⅱ)根据P(m,t)为抛物线上的一个动点,点P关于原点的对称点为P',可以得到点P'的坐标,然后根据点P和点P'都在该抛物线上,即可得到m的值;(Ⅲ)根据题意,画出相应的图形,即可得到点P的坐标.【解答】解:(Ⅰ)∵抛物线y=﹣x2+bx+c经过点A(2,0)和点(﹣1,2),∴,得,即该抛物线的解析式为y=﹣x2+x+;(Ⅱ)∵P(m,t)为抛物线上的一个动点,点P关于原点的对称点为P',∴点P'(﹣m,﹣t),∵点P和点P'落在该抛物线y=﹣x2+x+上,∴,∴(﹣m2+m+)+(﹣m2﹣m+)=0,解得,m1=,m2=﹣,即m的值是或﹣;(Ⅲ)当点G落在y轴上时,如右图1所示,过点P作PM⊥OA于点M,∵四边形APFG是正方形,∴AP=GA,∠P AG=90°,∴∠P AM+∠GAO=90°,∵∠AOG=90°,∴∠AGO+∠GAO=90°,∴∠P AM=∠AGO,又∵∠PMA=∠AOG=90°,∴△PMA≌△AOG(AAS),∴PM=AO=2,∴t=2,∴﹣m2+m+=2,解得,m1=,m2=﹣1,∴点P的坐标为(,2)或(﹣1,2);当点F落在y轴上时,如图2所示,过点P作PM⊥x轴于点M,过点F作FN⊥PM于点N,同理可证,△PFN≌△APM,∴FN=PM,∴t=m,∴m=﹣m2+m+,解得,m3=,m4=,∴点P的坐标为(,)或(,);综上所述,点P的坐标为:(,2)、(﹣1,2)、(,)或(,).。
2020年天津市河西区中考数学一模试卷(含答案解析)
2020年天津市河西区中考数学一模试卷副标题题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.计算8−(2−5)的结果等于()A. 2B. 11C. −2D. −82.sin60°的值为()A. 12B. √33C. √22D. √323.下列图形中,可以看作是轴对称图形的是()A. B.C. D.4.北京故宫的占地面积约为720000m2,将720000用科学记数法表示为()A. 72×104B. 7.2×105C. 7.2×106D. 0.72×1065.如图,是一个由4个相同的正方体组成的立体图形,它的左视图是()A. B. C. D.6.化简1x−2+2x2−4的结果是()A. 1x+2B. x+4x2−4C. x+2D. x+47.如图,数轴上A、B两点所表示的数分别是−4和2,点C是线段AB的中点,则点C所表示的数是()A. −1B. −√3C. −1.2D. −38.下列各选项中因式分解正确的是()A. a2+b2=(a+b)(a−b)B. x2−1=(x−1)2C. −2y2+4y=−2y(y+2)D. m2n−2mn+n=n(m−1)29.下列关于反比例函数y=6x的说法正确的是()A. y 随x 的增大而增大B. x >0时,y 随x 的增大而增大C. y 随x 的增大而减小D. x >0时,y 随x 的增大而减小10. 在平面直角坐标系中,将点A(x,−y)向上平移2个单位长度,再向左平移3个单位长度,得到点A′,则点A′的坐标是( )A. (x +3,2−y)B. (x +3,−y −2)C. (x −3,2−y)D. (x −3,−y −2)11. 甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A.120x=150x−8B. 120x+8=150xC. 120x−8=150xD.120x=150x+812. 已知抛物线y =2x 2−4x +c 与直线y =2有两个不同的交点.下列结论:①c <4;②当x =1时,y 有最小值c −2;③方程2x 2−4x +c −2=0有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则c =52. 其中正确的结论的个数是( ) A. 4 B. 3 C. 2 D. 1 二、填空题(本大题共6小题,共18.0分)13. 使式子√a −1有意义的a 的取值范围是______. 14. 计算(a +b)(c +d)的结果等于______.15. 在单词matℎematics(数学)中任意选择一个字母,选中字母“a ”的概率为______. 16. 直线y =x +2与x 轴的交点坐标为______.17. 如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN ,若AB =9,BE =6,则MN 的长为______.18. 如图,Rt △ABC 中,∠ACB =90°,AC =BC =2,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为______.三、解答题(本大题共7小题,共66.0分)19. 解不等式组{2x −1≥−1,①2x +1≤3,②请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得______ ; (Ⅱ)解不等式②,得______ ;(Ⅲ)把不等式①和②的解集在数轴上表示出来; (Ⅳ)原不等式组的解集为______ .20.为了推动阳光体育运动的广泛开展,引导学生走向操场、走进大自然、走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为______,图①中m的值为______;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买150双运动鞋,建议购买35号运动鞋多少双?21.如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线CF交BD延长线于点C.(Ⅰ)若∠C=25°,求∠BAF的度数;(Ⅱ)若AB=AC,CD=2,求AB的长.22.建筑物BC上有一旗杆AB,由距BC40m的D处观察旗杆顶部A的仰角为60°观察底部B的仰角为45°,求旗杆的角度(精确到0.1m).23.甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过20kg时,价格为7元/kg;一次购买数量超过20kg时,其中有20kg的价格仍为7元/kg,超过20kg部分的价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为xkg(x>0).(Ⅰ)根据题意填空:①若一次购买数量为10kg时,在甲批发店的花费为______元,在乙批发店的花费为______元;②若一次购买数量为50kg时,在甲批发店的花费为______元,在乙批发店的花费为______元;(Ⅱ)设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为______kg;②若小王在同一个批发店一次购买苹果的数量为30kg,则他在甲、乙两个批发店中的______批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了260元,则他在甲、乙两个批发店中的______批发店购买数量多.24.将一个正方形纸片AOBC放置在平面直角坐标系中,点A(0,4),点O(0,0),B(4,0),C(4,4)点.动点E在边AO上,点F在边BC上,沿EF折叠该纸片,使点O的对应点M始终落在边AC上(点M不与A,C重合),点B落在点N处,MN与BC交于点P.(Ⅰ)如图①,当∠AEM=30°时,求点E的坐标;(Ⅱ)如图②,当点M落在AC的中点时,求点E的坐标;(Ⅲ)随着点M在AC边上位置的变化,△MPC的周长是否发生变化?如变化,简述理由;如不变,直接写出其值.25.抛物线y=−x2+bx+c(b,c为常数)与x轴交于点(x1,0)和(x2,0),与y轴交于点A,点E为抛物线顶点.(Ⅰ)当x1=−1,x2=3时,求点E,点A的坐标;(Ⅱ)①若顶点E在直线y=x上时,用含有b的代数式表示c;②在①的前提下,当点A的位置最高时,求抛物线的解析式;(Ⅲ)若x1=−1,b>0,当P(1,0)满足PA+PE值最小时,求b的值.答案和解析1.【答案】B【解析】解:原式=8−(−3)=8+3=11.故选:B.依据减法法则进行计算即可.本题主要考查的是有理数的减法,熟练掌握有理数的减法法则是解题的关键.2.【答案】D【解析】解:sin60°=√32,故选:D.根据特殊角三角函数值,可得答案.本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.3.【答案】A【解析】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不符合题意;故选:A.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.【答案】B【解析】解:将720000用科学记数法表示为7.2×105.故选:B.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】B【解析】解:从左边看上下各一个小正方形,故选:B.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.【答案】B【解析】解:1x−2+2x2−4=x+2(x+2)(x−2)+2(x+2)(x−2)=x+4(x+2)(x−2)=x+4x2−4;故选:B.先通分,变为同分母分式,再利用同分母分式的加减法则计算即可.本题考查了分式的加减法法则、分式的通分、约分以及因式分解;熟练掌握分式的通分是解决问题的关键.7.【答案】A【解析】解:∵数轴上A,B两点所表示的数分别是−4和2,∴线段AB的中点所表示的数=(−4+2)÷2=−1.即点C所表示的数是−1.故选:A.根据A、B两点所表示的数分别为−4和2,利用中点公式求出线段AB的中点所表示的数即可.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.8.【答案】D【解析】解:A、a2+b2,无法运用平方差公式分解因式,故此选项错误;B、x2−1=(x−1)(x+1),故此选项错误;C、−2y2+4y=−2y(y−2),故此选项错误;D、m2n−2mn+n=n(m−1)2,正确.故选:D.直接利用提取公因式法以及公式法分别分解因式进而判断即可.此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.9.【答案】D【解析】解:∵k=6>0,∴图象位于一三象限,且在每个象限内,y随x的增大而减小,故选:D.反比例函数y=kx(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;根据这个性质选择则可.本题考查了反比例函数图象的性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.注意反比例函数的图象应分在同一象限和不在同一象限两种情况分析.10.【答案】C【解析】解:将点A(x,−y)向上平移2个单位长度,再向左平移3个单位长度,得到点A′的坐标为(x−3,−y+2),即(x−3,2−y),故选:C.根据向左平移横坐标减,向上平移纵坐标加求解即可.本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.【答案】D【解析】解:设甲每小时做x个零件,可得:120x =150x+8,故选:D.设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.12.【答案】B【解析】解:①∵当y=2时,2=2x2−4x+c,∴2x2−4x+c−2=0,∴△=16−4×2×(c−2)=−8c+32,∵抛物线y=2x2−4x+c与直线y=2有两个不同的交点,∴−8c+32>0,解得:c<4,故①正确;②∵y=2x2−4x+c=2(x−1)2+c−2,∴当x=1时,y有最小值c−2;故②正确;③∵抛物线y=2x2−4x+c与直线y=2有两个不同的交点,∴方程2x2−4x+c−2=0有两个不等实根;故③正确;④解方程2x2−4x+c−2=0得,x1=2+√8−2c2,x2=2−√8−2c2,∴这两个交点的坐标分别为(2+√8−2c2,2),(2−√8−2c2,2),∴这两个交点的距离为√8−2c,∵三角形是等腰直角三角形,∴2−(c−2)=12√8−2c,解得:c=72或c=4(不合题意舍去),故④错误,故选:B.①把y=2代入抛物线的解析式得到2=2x2−4x+c,根据−8c+32>0,求得c<4,故①正确;②把抛物线的解析式化为顶点式y=2x2−4x+c=2(x−1)2+c−2,于是得到当x= 1时,y有最小值c−2;故②正确;③根据已知条件即可得到方程2x2−4x+c−2=0有两个不等实根;故③正确;④解方程得到这两个交点的坐标分别为(2+√8−2c2,2),(2−√8−2c2,2),求得这两个交点的距离为√8−2c,根据等腰直角三角形的性质列方程即可得到结论.主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.13.【答案】a≥1【解析】【分析】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.直接利用二次根式有意义的条件进而分析得出答案.【解答】解:使式子√a−1有意义,则a−1≥0,解得:a≥1.故答案为a≥1.14.【答案】ac+ad+bc+bd【解析】解:(a+b)(c+d)=ac+ad+bc+bd.故答案为:ac+ad+bc+bd.按多项式乘以多项式法则运算即可.本题考查了多项式乘以多项式,掌握多项式乘以多项式法则是解决本题的关键.15.【答案】211【解析】解:“mathematics”中共11个字母,其中共2个“a”,任意取出一个字母,有11种情况可能出现,取到字母“a”的可能性有两种,故其概率是211;故答案为211先数出“mathematics”中共多少个字母,让字母“a”的个数除以所有字母的总个数即为所求的概率.本题考查概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.16.【答案】(−2,0)【解析】解:∵令y=0,则x=−2,∴直线y=x+2与x轴的交点坐标为(−2,0).故答案为:(−2,0).令y=0,求出x的值即可.本题考查的是一次函数图象上点的坐标特点,熟知x轴上点的坐标特点是解答此题的关键.17.【答案】3√292【解析】解:连接CF,∵正方形ABCD和正方形BEFG中,AB=9,BE=6,∴GF=GB=6,BC=9,∴GC=GB+BC=6+9=15,∴CF=√GF2+GC2=√62+152=3√29.∵M、N分别是DC、DF的中点,∴MN=CF2=3√292.故答案为:3√293.连接CF,则MN为△DCF的中位线,根据勾股定理求出CF长即可求出MN的长.本题考查了正方形的性质及中位线定理、勾股定理的运用.构造基本图形是解题的关键.18.【答案】√5−1【解析】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=1BC=1,2在Rt△ACG中,AG=√AC2+CG2=√5在△AHG中,AH≥AG−HG,即当点H在线段AG上时,AH最小值为√5−1,故答案为:√5−1.BC=1,取BC中点G,连接HG,AG,由直角三角形的性质可得HG=CG=BG=12由勾股定理可求AG=√5,由三角形的三边关系可得AH≥AG−HG,当点H在线段AG 上时,可求AH的最小值.本题考查了等腰直角三角形的性质、三角形三边关系、勾股定理,确定使AH值最小时点H的位置是本题的关键.19.【答案】x≥0;x≤1;0≤x≤1【解析】解:(I)解不等式①,得x≥0.故答案为:x≥0;(II)解不等式②,得x≤1.故答案为:x≤1;(III)把不等式①和②的解集在数轴上表示为:;(IV)原不等式组的解集为:0≤x≤1.故答案为:0≤x≤1.分别求出各不等式的解集,再在数轴上表示出来,写出不等式组的解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【答案】40 15【解析】解:(Ⅰ)本次接受随机抽样调查的学生人数为:6+12+10+8+4=40(人),图①中m的值为:100−30−25−20−10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35号;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,=36;∴中位数为36+362(Ⅲ)根据题意得:150×30%=45(双),答:建议购买35号运动鞋45双.(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)用计划购买的总鞋数乘以35号运动鞋所占的百分比即可.此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.【答案】解:(Ⅰ)连接OA,AD,∵CF是⊙O的切线,∴OA⊥CF,∴∠OAC=90°,∵∠C=25°,∴∠COA=65°,∵∠COA=∠B+∠OAB,OA=OB,∴∠B=∠OAB,∴∠OAB=32.5°,∴∠BAF=∠OAF−∠OAB=90°−32.5°=57.5°;(Ⅱ)∵AB=AC,∴∠B=∠C,∵∠COA=2∠B,∴3∠C=90°,∴∠C=30°,OC,∴OA=12∵OA=OD,∴CD=DO=OA=2,AC=2√3,∴AB=AC=2√3.【解析】(Ⅰ)连接OA,AD,根据切线的性质得到OA⊥CF,求得∠OAC=90°,根据三角形的内角和得到∠COA=65°,根据等腰三角形的性质得到∠OAB=32.5°,于是得到结论;(Ⅱ)根据等腰三角形的性质得到∠B=∠C,求得∠C=30°,根据直角三角形的性质得到OA=1OC,于是得到结论.2本题考查了切线的性质,解直角三角形,等腰三角形的性质,正确的识别图形是解题的关键.22.【答案】解:∵∠ACD=90°,∠ADC=60°,∴∠A=30°,∴AD=2CD.∵CD=40m,∴AD=80m,在Rt△ADC中,由勾股定理,得AC=40√3.∵∠BDC=45°,∴∠DBC=45°,∴∠DBC=∠BDC,∴BC=CD=40m,∴AB=40√3−40≈29.3m.∴旗杆的高度为29.3m .【解析】如图,由∠ADC =60°可以求出∠A =30°,就有AD =2CD =80m ,由勾股定理就可以求出AC 的值,在△BDC 中由∠BDC =45°就可以求出BC 的值,从而求出结论. 本题考查了解直角三角形的运用,仰角的运用,直角三角形的性质的运用,勾股定理的运用,近似数的运用,解答时根据勾股定理求解是关键.23.【答案】60 70 300 290 40 甲 乙【解析】解:(I)①根据题意得,在甲批发店的花费为:6×10=60(元),在乙批发店的花费为:7×10=70(元);故答案为:60;70;②根据题意得,在甲批发店的花费为:6×50=300(元);在乙批发店的花费为:7×20+5×(50−20)=290(元);故答案为:300;290;(II)根据题意得,y 1=6x(x >0);当0<x ≤20时,y 2=7x ;当x >20时,y 2=7×20+5(x −20)=5x +40.即y 2={7x(0<x ≤20)5x +40(x >20);(III)①设他在同一个批发店一次购买苹果的数量为xkg ,根据题意得6x =7×20+5(x −20),解得,x =40,故答案为40;②在甲店的花费为:6×30=180(元),在乙店的花费为:7×20+5×(30−20)=190(元),则在甲店批发购买花费较少,故答案为:甲;③在甲店购买苹果数量为:260÷6=4313(kg),设在乙店购买苹果数量为ykg ,由题意得,5x +40=260,解得,x =44(kg),则在乙店批发购买的苹果数量较多.故答案为:乙.(I)①根据题意知,甲按单价6元计算,乙按单价7元计算;②根据题意知,甲按单价6元计算,乙20kg 按单价7元计算,30kg 按单价5元计算; (II)甲一律按单价6元列解析式,乙列分段函数,数量不超过20kg 则按单价7元列解析式,数量超过20kg ,则其中20kg 按单价7元计费,其余数量按单价5元计费,由这两部分计费和组成解析式;(III)①由于数量不超过20kg ,购买相同数量的苹果乙店花费大于甲店花费,故要使在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则数量超过20kg ,设他在同一个批发店一次购买苹果的数量为xkg ,然后根据数量超过20kg 的计费标准列出方程解答;②根据计费标准计算在两个店各自需要的花费总额,进行比较便可;③按照各店花费的标准进行列式或列方程计算便可.此题主要考查了一次函数的应用,分段函数,就是要根据自变量在不同的取值范围函数的关系不一样,需要分段进行讨论,分别进行计算,根据函数关系式可以已知自变量的值求函数值,也可以已知函数值求相应的自变量的值.24.【答案】解:(Ⅰ)如图①,∵四边形ABCD是正方形,∴∠EAM=90°.由折叠知OE=EM.设OE=x,则EM=OE=x,AE=√32x,∴AE+OE=OA,即√32x+x=4,∴x=16−8√3.∴E(0,16−8√3);(Ⅱ)如图②,∵点M是边AC的中点,∴AM=12AC=2.设OE=m,则EM=OE=m,AE=4−m,在Rt△AEM中,EM2=AM2+AE2,即x2=22+(4−x)2,解得x=52.∴E(0,52);(Ⅲ)△MPC的周长不变,为8.理由:设AM=a,则OE=EM=b,MC=4−a,在Rt△AEM中,由勾股定理得AE2+AM2=EM2,(4−b)2+a2=b2,解得16+a2=8b.∴16−a2=8(4−b)∵∠EMP=90°,∠A=∠D,∴Rt△AEM∽Rt△CMP,∴AE+EM+AM CM+MP+CP =AEMC,即4−b+b+aCM+MP+CP=4−b4−a,解得DM+MP+DP=16−a24−b =8(4−b)4−b=8.∴△CMP的周长为8.【解析】(Ⅰ)由折叠的性质知OE=EM,设OE=x,则EM=OE=x,AE=√32x,根据等量关系AE+OE=OA列出方程并解答;(Ⅱ)由线段中点的定义知AM=12AC=2.设OE=m,则EM=OE=m,AE=4−m,在Rt△AEM中,由勾股定理列出关于x的方程并解答;(Ⅲ)设AM=a,则OE=EM=b,MC=4−a,在Rt△AEM中,由勾股定理得出a、b 的关系式,可证Rt△AEM∽Rt△CMP,根据相似三角形的周长比等于相似比求△MPC的周长.本题考查的是正方形的性质、折叠的性质、相似三角形的判定和性质以及勾股定理的应用,掌握折叠是一种轴对称,折叠前后的图形对应角相等、对应边相等,灵活运用相关的性质是解题的关键.25.【答案】解:(Ⅰ)∵抛物线y =−x 2+bx +c(b,c 为常数)与x 轴交于点(x 1,0)和(x 2,0),与y 轴交于点A ,点E 为抛物线顶点,x 1=−1,x 2=3,∴点(−1,0),(3,0)在抛物线y =−x 2+bx +c 的图象上,∴{1−b +c =0−9+3b +c =0,解得{b =2c =3, ∴y =−x 2+2x +3=−(x −1)2+4,∴点A 的坐标为(0,3),点E 的坐标为(1,4);(Ⅱ)①∵y =−x 2+bx +c =−(x −b 2)2+b 2+4c 4,∴点E 的坐标为(b 2,b 2+4c 4), ∵顶点E 在直线y =x 上, ∴b 2=b 2+4c 4, ∴c =2b−b 24;②由①知,c =2b−b 24=−14b 2+12b =−14(b −1)2+14,则点A 的坐标为(0,−14(b −1)2+14),∴当b =1时,此时点A 的位置最高,函数y =−x 2+x +14,即在①的前提下,当点A 的位置最高时,抛物线的解析式是y =−x 2+x +14; (Ⅲ)∵x 1=−1,抛物线y =−x 2+bx +c 过点(x 1,0),∴−1−b +c =0,∴c =1+b ,∵点E 的坐标为(b 2,b 2+4c 4),点A 的坐标为(0,c), ∴E(b 2,(b+2)24),A(0,b +1),∴点E 关于x 轴的对称点E′(b 2,−(b+2)24), 设过点A(0,b +1)、P(1,0)的直线解析式为y =kx +t ,{t =b +1k +t =0,得{k =−b −1t =b +1, ∴直线AP 的解析式为y =(−b −1)x +(b +1)=−(b +1)x +(b +1)=(b +1)(−x +1),∵当直线AP 过点E′时,PA +PE 值最小,∴−(b+2)24=(b +1)(−b 2+1), 化简得:b 2−6b −8=0,解得:b 1=3+√17,b 2=3−√17,∵b >0,∴b =3+√17,即b的值是3+√17.【解析】(Ⅰ)根据题意和x1=−1,x2=3,可以得到点(−1,0),(3,0)在抛物线y=−x2+ bx+c的图象上,然后即可求得该抛物线的解析式,再将抛物线解析式化为顶点式,即可得到点A和点E的坐标;(Ⅱ)①将题目中的函数解析式化为顶点式,再根据题目中顶点E在直线y=x上,即可得到c和b的关系;②根据①的结果和二次函数的性质,可以求得当点A的位置最高时,抛物线的解析式;(Ⅲ)根据x1=−1,b>0和题目中的函数解析式,可以得到点A的坐标,然后即可求得直线AP的解析式,再根据最短路线问题可以得到当P(1,0)满足PA+PE值最小时b的值.本题是一道二次函数综合题目,主要考查二次函数的性质、二次函数的最值、轴对称−最短路线问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称轴是直线 x = 1 .有下列结论: 2
① abc 0 ;
②关于 x 的方程 ax2 + bx + c = a 有两个不等的实数根; ③a−1 .
2 其中,正确结论的个数是 ( )
A.0
B.1
C.2
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)
13.(3 分)计算 x + 7x − 5x 的结果等于 .
min .
24.(10 分)将一个直角三角形纸片 OAB 放置在平面直角坐标系中,点 O(0,0) ,点 A(2,0) ,
点 B 在第一象限, OAB = 90 , B = 30 ,点 P 在边 OB 上(点 P 不与点 O , B 重合).
(Ⅰ)如图①,当 OP = 1 时,求点 P 的坐标; (Ⅱ)折叠该纸片,使折痕所在的直线经过点 P ,并与 x 轴的正半轴相交于点 Q ,且 OQ = OP ,
C.
6.(3 分)估计 22 的值在 ( )
A.3 和 4 之间
B.4 和 5 之间
7.(3
分)方程组
2x + x − y
y = 4, = −1
的解是
(
)
D. C.5 和 6 之间
D.6 和 7 之间
A.
x
y
= =
1 2
B.
x y
= =
−3 −2
C.
x y
= =
2 0
D.
x
y
= =
3 −1
18.(3 分)如图,在每个小正方形的边长为 1 的网格中, ABC 的顶点 A , C 均落在格点
上,点 B 在网格线上,且 AB = 5 . 3
(Ⅰ)线段 AC 的长等于 .
第3页(共24页)
(Ⅱ)以 BC 为直径的半圆与边 AC 相交于点 D ,若 P , Q 分别为边 AC , BC 上的动点, 当 BP + PQ 取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点 P , Q ,并 简要说明点 P , Q 的位置是如何找到的(不要求证明) .
参考答案与试题解析
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只
有一项是符合题目要求的)
1.(3 分)计算 30 + (−20) 的结果等于 ( )
A.10
B. −10
C.50
D. −50
【解答】解: 30 + (−20) = +(30 − 20) =10 .
21.(10 分)在 O 中,弦 CD 与直径 AB 相交于点 P , ABC = 63 . (Ⅰ)如图①,若 APC = 100 ,求 BAD 和 CDB 的大小; (Ⅱ)如图②,若 CD ⊥ AB ,过点 D 作 O 的切线,与 AB 的延长线相交于点 E ,求 E 的
大小. 22. (10 分)如图,A ,B 两点被池塘隔开,在 AB 外选一点 C ,连接 AC ,BC .测得 BC = 221m , ACB = 45 , ABC = 58 .根据测得的数据,求 AB 的长(结果取整数). 参考数据: sin 58 0.85 , cos 58 0.53 , tan 58 1.60 .
2020 年天津市中考数学试卷
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.(3 分)计算 30 + (−20) 的结果等于 ( )
A.10
B. −10
2.(3 分) 2sin 45 的值等于 ( )
C.50
D. −50
A.1
20.(8 分)农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm) 进行了测量.根据统计的结果,绘制出如图的统计图①和图②.
请根据相关信息,解答下列问题: (Ⅰ)本次抽取的麦苗的株数为 ,图①中 m 的值为 ; (Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.
第4页(共24页)
三、解答题(本大题共 7 小题,共 66 分.解答应写出文字说明、演算步骤或推理过程)
19.(8
分)解不等式组
3x„ 2x + 1, ① 2x + 5…−1 ②
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 ;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为 .
B.
(
x
1 + 1)2
C.1
D. x + 1
10.(3
分)若点
A( x1
,−5)
,B(x2
,2)
,C(x3
,5)
都在反比例函数
y
=
10 x
的图象上,则
x1
,
x2 , x3 的大小关系是 (
)
A. x1 x2 x3
B. x2 x3 x1
C. x1 x3 x2
D. x3 x1 x2
11.(3 分)如图,在 ABC 中, ACB = 90 ,将 ABC 绕点 C 顺时针旋转得到 DEC ,使
x y
= =
−3 −2
C.
x y
= =
2 0
D.
x
y
= =
3 −1
【解答】解:
2x + x − y
y = 4① = −1②
,
① + ②得: 3x = 3 , 解得: x = 1 ,
第9页(共24页)
把 x = 1 代入①得: y = 2 ,
则方程组的解为
x
y
=1 =2
.
故选: A . 8.(3 分)如图,四边形 OBCD 是正方形, O , D 两点的坐标分别是 (0,0) , (0,6) ,点 C 在 第一象限,则点 C 的坐标是 ( )
于 x 轴, E 是直线 1 上的动点, F 是 y 轴上的动点, EF = 2 2 .
第6页(共24页)
①当点 E 落在抛物线上(不与点 C 重合),且 AE = EF 时,求点 F 的坐标; ②取 EF 的中点 N ,当 m 为何值时, MN 的最小值是 2 ?
2
第7页(共24页)
2020 年天津市中考数学试卷
B. 2
C. 3
D.2
3.(3 分)据 2020 年 6 月 24 日《天津日报》报道,6 月 23 日下午,第四届世界智能大会在 天津开幕.本届大会采取“云上”办会的全新模式呈现,40 家直播网站及平台同时在线观 看云开幕式暨主题峰会的总人数最高约为 58600000 人.将 58600000 用科学记数法表示应为 ()
出结果即可).
25.(10 分)已知点 A(1,0) 是抛物线 y = ax2 + bx + m(a ,b ,m 为常数,a 0 ,m 0) 与 x 轴 的一个交点. (Ⅰ)当 a = 1 , m = −3 时,求该抛物线的顶点坐标; (Ⅱ)若抛物线与 x 轴的另一个交点为 M (m,0) ,与 y 轴的交点为 C ,过点 C 作直线 1 平行
点 O 的对应点为 O ,设 OP = t . ①如图②,若折叠后△ OPQ 与 OAB 重叠部分为四边形, OP , OQ 分别与边 AB 相交于
点 C , D ,试用含有 t 的式子表示 OD 的长,并直接写出 t 的取值范围;
②若折叠后△ OPQ 与 OAB 重叠部分的面积为 S ,当1剟t 3 时,求 S 的取值范围(直接写
故选: A .
2.(3 分) 2sin 45 的值等于 ( )
A.1
B. 2
C. 3
D.2
【解答】解: 2sin 45 = 2 2 = 2 . 2
故选: B .
3.(3 分)据 2020 年 6 月 24 日《天津日报》报道,6 月 23 日下午,第四届世界智能大会在
天津开幕.本届大会采取“云上”办会的全新模式呈现,40 家直播网站及平台同时在线观
点 B 的对应点 E 恰好落在边 AC 上,点 A 的对应点为 D ,延长 DE 交 AB 于点 F ,则下列结 论一定正确的是 ( )
第2页(共24页)
A. AC = DE
B. BC = EF
C. AEF = D
D. AB ⊥ DF
12.(3 分)已知抛物线 y = ax2 + bx + c(a , b , c 是常数, a 0 , c 1) 经过点 (2,0) ,其对
8.(3 分)如图,四边形 OBCD 是正方形, O , D 两点的坐标分别是 (0,0) , (0,6) ,点 C 在
第一象限,则点 C 的坐标是 ( )
A. (6,3)
B. (3,6)
C. (0,6)
D. (6,6)
9.(3
分)计算
(x
x + 1)2
+
(x
1 + 1)2
的结果是 (
)
A. 1 x +1
故选: D .
9.(3
分)计算
(x
x + 1)2
+
(x
1 + 1)2
的结果是 (
A. 1 x +1
B.
(
x
1 + 1)2
【解答】解:原式 = x +1 = 1 . (x +1)2 x +1
) C.1
D. x + 1
故选: A .
10.(3
分)若点
A( x1
,−5)
,B(x2
,2)
,C(x3
,5)
都在反比例函数
y
=
10 x