四川省成都市都江堰外国语实验学校2020-2021学年八年级下学期期中数学试题
2020-2021成都市八年级数学下期中试卷含答案

A. 3 1 a2 2
B. 2 1 a2 2
C. 3 1 a2 4
D. 2 1 a2 4
8.△ABC 的三边分别是 a,b,c,其对角分别是∠A,∠B,∠C,下列条件不能判定
△ABC 是直角三角形的是( )
A.B A C B.a : b : c 5 :12 :13 C.b2 a2 c2 D.A : B : C 3 : 4 : 5
∵AD 2 (AB+BC+CD+AD), 7
∴AD 2 (2AD+12), 7
解得:AD=8, ∴BC=8; 故选 C. 【点睛】 本题考查了平行四边形的性质以及周长的计算;熟练掌握平行四边形的性质,并能进行推 理计算是解决问题的关键.
B.6
C.8
D.10
11.在矩形 ABCD 中,AB=2,AD=4,E 为 CD 的中点,连接 AE 交 BC 的延长线于 F 点,P 为 BC
上一点,当∠PAE=∠DAE 时,AP 的长为 ( )
A.4
B.
C.
D.5
12.已知一次函数 y=﹣x+m 和 y=2x+n 的图象都经过 A(﹣4,0),且与 y 轴分别交于
① 3 2
2 1
②2 3
3 2
③ 52
2 3
④ 6 5
52ห้องสมุดไป่ตู้
⑤ 2018 2017
2017 2016
(2)观察.上式,请用含 n 1, n, n 1(n 1) 的式子,把你发现的规律表示出来,并证明
结论的正确性. 25.如图,在四边形 ABCD 中, AB=4,BC=3,CD=12,AD=13,∠B=90°,连接 AC.求四边形 ABCD 的面积.
2020-2021成都市八年级数学下期中试卷(附答案)

(1)分别求每台 A 型, B 型挖掘机一小时挖土多少立方米? (2)若不同数量的 A 型和 B 型挖掘机共 12 台同时施工 4 小时,至少完成 1080 立方米的挖土量,
且总费用不超过 12960 元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最 低,最低费用是多少元?
得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市
1000 人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下
列说法正确的是( )
①每人乘坐地铁的月均花费最集中的区域在 80~100 元范围内;
②每人乘坐地铁的月均花费的平均数范围是 40~60 元范围内;
2020-2021 成都市八年级数学下期中试卷(附答案)
一、选择题
1.在学校的体育训练中,小杰投掷实心球的 7 次成绩如统计图所示,则这 7 次成绩的中位 数和平均数分别是( )
A.9.7 m ,9.9 m
B.9.7 m ,9.8 m
C.9.8 m ,9.7 m
D.9.8 m ,9.9 m
2.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使 50%左右的人获
③每人乘坐地铁的月均花费的中位数在 60~100 元范围内;
④乘坐地铁的月均花费达到 80 元以上的人可以享受折扣.
A.①②④
B.①③④
C.③④
D.①②
3.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以
小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑
C.0 或-2
A.3,4,5
B.1.5,2,2.5
C.32,42,52
四川省成都外国语学校2021-2022学年八年级下学期期中数学试卷(含答案)

2021-2022学年四川省成都外国语学校八年级(下)期中数学试卷一、选择题1.下列数学符号中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列由左边到右边的变形中,是因式分解的为()A.10x2y3=5xy2•2xy B.m2﹣n2=(m+n)(m﹣n)C.3m(R+r)=3mR+3mr D.x2﹣x﹣5=(x+2)(x﹣3)+13.下列各式:,,,,(x﹣y)中,是分式的共有()A.1个B.2个C.3个D.4个4.已知a>b,下列式子成立的是()A.ac2>bc2B.﹣5+a>﹣5+b C.﹣2a>﹣2b D.a2>b25.已知等腰三角形的两条边长分别为4和8,则它的周长为()A.16B.20C.16或20D.146.若二次三项式x2+mx﹣6可分解为(x﹣3)(x+2),则m的值为()A.1B.﹣1C.﹣2D.27.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:58.如图,将△ABC绕点A顺时针旋转到△ADE的位置,且点D恰好落在AC边上,则下列结论不一定成立的是()A.∠ABC=∠ADE B.BC=DE C.BC∥AE D.AC平分∠BAE 9.施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2B.﹣=2C.﹣=2D.﹣=210.数形结合是解决数学问题常用的思想方法.如图,直线y=2x﹣1与直线y=kx+b(k≠0)相交于点P(2,3).根据图象可知,关于x的不等式2x﹣1>kx+b的解集是()A.x<2B.x<3C.x>2D.x>3二、填空题11.分解因式:5x2﹣5y2=.12.当x=时,的值为0.13.若x<y,且(6﹣a)x>(6﹣a)y,则a的取值范围是.14.如图,在等腰Rt△ABC中,∠C=90°,按以下步骤作图:①分别以点B和点C为圆心,以大于BC的长为半径作圆,相交于点M和点N;②作直线MN交AB于点D.若AC=8,则BD=.三、解答题15.(1)解不等式组:;(2)解分式方程:.16.先化简÷(x﹣),其中x=2.17.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC向左平移4个单位所得的△A1B1C1;(2)画出将△ABC绕点B按顺时针旋转90°所得的△A2BC2(点A、C分别对应点A2、C2);(3)线段B1C2的长度为.18.已知△ABC中∠BAC=120°,BC=26,AB、AC的垂直平分线分别交BC于E、F,与AB,AC分别交于点D、G.求:(1)直接写出∠B与∠C的角度之和.(2)求∠EAF的度数.(3)求△AEF的周长.19.阅读下列材料:分解因式的常用方法有提取公因式法、公式法,但有部分项数多于3的多项式只单纯用上述方法就无法分解,如x2﹣2xy+y2﹣16,我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解.过程如下:x2﹣2xy+y2﹣16=(x﹣y)2﹣16=(x﹣y+4)(x﹣y﹣4),这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决问题:(1)分解因式:x2﹣y2+xz﹣yz.(2)已知a,b,c为△ABC的三边,且b2+2ab=c2+2ac,试判断△ABC的形状,并说明理由.20.如图1,函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标.②连接BM,如图2,在点M的运动过程中是否存在点P,使∠BMP=∠BAC,若存在,请求出点P坐标,若不存在,请说明理由.四、填空题21.已知x=+5,则代数式(x﹣2)2﹣6(x﹣2)+9的值是.22.若关于x的不等式组无解,则a的取值范围是.23.若关于x的分式方程=3的解是负数,则字母m的取值范围是.24.如图,在△ABC中,∠A=45°,∠B=30°,AC=2,点M、N分别是边AB、AC上的动点,沿MN所在的直线折叠∠A,使点A的对应点P始终落在边BC上,若△PMB 为直角三角形,则AM的长为.25.如图,△ABC是等边三角形,AB=6,E是靠近点C的三等分点,D是直线BC上一动点,线段ED绕点E逆时针旋转90°,得线段EF,当点D运动时,则AF最小值为.五、解答题26.明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?27.我们定义,关于同一个未知数的不等式A和B,若A的解都是B的解,则称A与B存在“雅含”关系,且A不等式称为B不等式的“子式”.如A:x<0,B:x<1,满足A的解都是B的解,所以A与B存在“雅含”关系,A是B 的“子式”.(1)若关于x的不等式A:x+2>1,B:x>3,请问A与B是否存在“雅含”关系,若存在,请说明谁是谁的“子式”;(2)已知关于x的不等式C:,D:2x﹣(3﹣x)<3,若C与D存在“雅含”关系,且C是D的“子式”,求a的取值范围;(3)已知2m+n=k,m﹣n=3,m≥,n<﹣1,且k为整数,关于x的不等式P:kx+6>x+4,Q:6(2x﹣1)≤4x+2,请分析是否存在k,使得P与Q存在“雅含”关系,且Q是P的“子式”,若存在,请求出k的值,若不存在,请说明理由.28.已知:如图,∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B.(1)在图1中,过点C作CE⊥CB,与直线MN于点E,①依题意补全图形;②求证:△BCE是等腰直角三角形;③图1中,线段BD、AB、CB满足的数量关系是;(2)当MN绕A旋转到如图(2)和图(3)两个位置时,其它条件不变、在图2中,线段BD、AB、CB满足的数量关系是;在图3中,线段BD、AB、CB满足的数量关系是.(3)MN在绕点A旋转过程中,当∠BCD=30°,BC=2+2时,求CD的长.2021-2022学年四川省成都外国语学校八年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列数学符号中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的定义即可求出答案.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列由左边到右边的变形中,是因式分解的为()A.10x2y3=5xy2•2xy B.m2﹣n2=(m+n)(m﹣n)C.3m(R+r)=3mR+3mr D.x2﹣x﹣5=(x+2)(x﹣3)+1【分析】根据因式分解的定义逐个判断即可.【解答】解:A.等式的左边不是多项式,所以不是因式分解,故本选项不合题意;B.是因式分解,故本选项符合题意;C.是整式乘法,不是因式分解,故本选项不符合题意;D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:B.【点评】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.3.下列各式:,,,,(x﹣y)中,是分式的共有()A.1个B.2个C.3个D.4个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,(x﹣y)中分母中含有字母,因此是分式.,的分母中均不含有字母,因此它们是整式,而不是分式.故分式有3个.故选:C.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.4.已知a>b,下列式子成立的是()A.ac2>bc2B.﹣5+a>﹣5+b C.﹣2a>﹣2b D.a2>b2【分析】根据不等式的性质及取特殊值来验证解题即可.【解答】解:当a>b时,若c=0,则c2=0,从而ac2=bc2,故A不符合题意;当a>b时,根据不等式的性质3,两边同乘以﹣2,不等号方向改变,故C不符合题意;当a>b时,如0>﹣1,但02<(﹣1)2,故D不符合题意;当a>b时,根据不等式的性质1,两边同时加(﹣5),不等号方向不变,故B符合题意.故选:B.【点评】本题考查了不等式的性质的应用,明确不等式的性质及采取特殊值验证是解题的关键.5.已知等腰三角形的两条边长分别为4和8,则它的周长为()A.16B.20C.16或20D.14【分析】因为等腰三角形的腰与底边不确定,故以4为底边和腰两种情况考虑:若4为腰,则另外一腰也为4,底边就为8,根据4+4=8,不符合三角形的两边之和大于第三边,即不能构成三角形;若4为底边,腰长为8,符合构成三角形的条件,求出此时三角形的周长即可.【解答】解:若4为腰,8为底边,此时4+4=8,不能构成三角形,故4不能为腰;若4为底边,8为腰,此时三角形的三边分别为4,8,8,周长为4+8+8=20,综上三角形的周长为20.故选:B.【点评】此题考查了等腰三角形的性质,以及三条线段构成三角形的条件,利用了分类讨论的数学思想,由等腰三角形的底边与腰长不确定,故分两种情况考虑,同时根据三角形的两边之和大于第三边,舍去不能构成三角形的情况.6.若二次三项式x2+mx﹣6可分解为(x﹣3)(x+2),则m的值为()A.1B.﹣1C.﹣2D.2【分析】先根据多项式乘以多项式法则进行计算,再根据已知条件得出答案即可.【解答】解:(x﹣3)(x+2)=x2+2x﹣3x﹣6=x2﹣x﹣6,∵二次三项式x2+mx﹣6可分解为(x﹣3)(x+2),∴m=﹣1,故选:B.【点评】本题考查了多项式乘以多项式法则和分解因式,注意:分解因式的方法有:提取公因式法,公式法,十字相乘法,分组分解法等.7.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:5【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵点O是内心,∴OE=OF=OD,∴S△ABO:S△BCO:S△CAO=•AB•OE:•BC•OF:•AC•OD=AB:BC:AC=2:3:4,故选:C.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高是相等的,这点是非常重要的.8.如图,将△ABC绕点A顺时针旋转到△ADE的位置,且点D恰好落在AC边上,则下列结论不一定成立的是()A.∠ABC=∠ADE B.BC=DE C.BC∥AE D.AC平分∠BAE 【分析】由旋转的性质得出∠ABC=∠ADE,BC=DE,∠BAC=∠CAE,则可得出答案.【解答】解:∵将△ABC绕点A顺时针旋转到△ADE的位置,且点D恰好落在AC边上,∴∠ABC=∠ADE,BC=DE,∠BAC=∠CAE,∴AC平分∠BAE.结论BC∥AE不一定成立.故选:C.【点评】本题考查了旋转的性质,熟练掌握旋转的性质是本题的关键.9.施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2B.﹣=2C.﹣=2D.﹣=2【分析】设原计划每天铺设x米,则实际施工时每天铺设(x+50)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.【解答】解:设原计划每天施工x米,则实际每天施工(x+50)米,根据题意,可列方程:﹣=2,故选:A.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.10.数形结合是解决数学问题常用的思想方法.如图,直线y=2x﹣1与直线y=kx+b(k≠0)相交于点P(2,3).根据图象可知,关于x的不等式2x﹣1>kx+b的解集是()A.x<2B.x<3C.x>2D.x>3【分析】以两函数图象交点为分界,直线y=kx+b(k≠0)在直线y=2x﹣1的下方时,x >2.【解答】解:根据图象可得:不等式2x﹣1>kx+b的解集为:x>2,故选:C.【点评】此题主要考查了一次函数与一元一次不等式,关键是能从图象中得到正确信息.二、填空题11.分解因式:5x2﹣5y2=5(x+y)(x﹣y).【分析】提公因式后再利用平方差公式即可.【解答】解:原式=5(x2﹣y2)=5(x+y)(x﹣y),故答案为:5(x+y)(x﹣y).【点评】本题考查提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提.12.当x=3时,的值为0.【分析】直接利用分式的值为零的条件得出x的值进而得出答案.【解答】解:∵的值为0,∴|x|﹣3=0,x+3≠0,解得:x=3.故答案为:3.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.13.若x<y,且(6﹣a)x>(6﹣a)y,则a的取值范围是a>6.【分析】根据不等式的基本性质,发现不等式的两边都乘(6﹣a)后,不等号的方向改变了,说明(6﹣a)是负数,从而得出答案.【解答】解:根据题意得:6﹣a<0,∴a>6,故答案为:a>6.【点评】本题考查了不等式的基本性质,掌握①不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;②不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键.14.如图,在等腰Rt△ABC中,∠C=90°,按以下步骤作图:①分别以点B和点C为圆心,以大于BC的长为半径作圆,相交于点M和点N;②作直线MN交AB于点D.若AC=8,则BD=4.【分析】根据勾股定理可得AB的长,根据作图过程可知:MN是BC的垂直平分线,连接CD,根据等腰直角三角形的性质可得AD=BD,进而可得结果.【解答】解:在等腰Rt△ABC中,∠C=90°,∴∠B=∠A=45°,∴BC=AC=8,∴AB==8,根据作图过程可知:MN是BC的垂直平分线,连接CD,∴CD=BD,∴∠DCB=∠B=45°,∴∠DCA=∠A=45°,∴AD=CD,∴BD=AD=AB=8=4.故答案为:4.【点评】本题考查了作图﹣复杂作图,等腰直角三角形,解决本题的关键是掌握基本作图方法.三、解答题15.(1)解不等式组:;(2)解分式方程:.【分析】(1)按照解一元一次不等式组的步骤,进行计算即可解答;(2)按照解分式方程的步骤,进行计算即可解答.【解答】解:(1),解不等式①得:x≤4,解不等式②得:x>﹣24,∴原不等式组的解集为:﹣24<x≤4;(2),x(x+2)﹣1=x2﹣4,解得:x=﹣,检验:当x=﹣时,x2﹣4≠0,∴x=﹣是原方程的根.【点评】本题考查了解分式方程,解一元一次不等式组,一定要注意解分式方程必须检验.16.先化简÷(x﹣),其中x=2.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:÷(x﹣)===,当x=2时,原式==.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC向左平移4个单位所得的△A1B1C1;(2)画出将△ABC绕点B按顺时针旋转90°所得的△A2BC2(点A、C分别对应点A2、C2);(3)线段B1C2的长度为.【分析】(1)根据平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可.(2)根据旋转变换的性质分别作出A,C的对应点A2,C2即可.(3)利用勾股定理求解即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2BC2即为所求.(3)线段B1C2的长度为==,故答案为:.【点评】本题考查旋转变换,解题的关键是熟练掌握旋转变换的性质,正确作出图形.18.已知△ABC中∠BAC=120°,BC=26,AB、AC的垂直平分线分别交BC于E、F,与AB,AC分别交于点D、G.求:(1)直接写出∠B与∠C的角度之和.(2)求∠EAF的度数.(3)求△AEF的周长.【分析】(1)根据三角形的内角和定理即可得到结论;(2)由AB、AC的垂直平分线分别交BC于E、F,与AB、AC分别交于点D、G.可得AE=BE,AF=GF,继而可得∠B=∠BAE,∠C=∠F AC,又由∠BAC=120°,即可求得∠B+∠C的度数,继而求得答案;(3)由AE=BE,AF=GF,可得△AEF的周长等于BC的长,于是得到结论.【解答】解:(1)∵∠BAC=120°,∴∠B+∠C=180°﹣120°=60°;(2)∵∠BAC=120°,∴∠B+∠C=60°,∵DE垂直平分AB,∴BE=AE,∴∠B=∠BAE,∵FG垂直平分AC,∴∠C=∠F AC,∴∠BAE+∠F AC=∠B+∠C=60°,∴∠EAF=120°﹣60°=60°;(3)∵BC=26,∴BE+FE+FC=26,∵EB=AE,AF=FC,∴EA+AF+EF=26,∴△AEF的周长为26.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.19.阅读下列材料:分解因式的常用方法有提取公因式法、公式法,但有部分项数多于3的多项式只单纯用上述方法就无法分解,如x2﹣2xy+y2﹣16,我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解.过程如下:x2﹣2xy+y2﹣16=(x﹣y)2﹣16=(x﹣y+4)(x﹣y﹣4),这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决问题:(1)分解因式:x2﹣y2+xz﹣yz.(2)已知a,b,c为△ABC的三边,且b2+2ab=c2+2ac,试判断△ABC的形状,并说明理由.【分析】(1)前两项先用平方差公式,后两项用提公因式,可得(x﹣y)(x+y)+z(x﹣y),再次利用提公因式法即可得出结果;(2)把b2+2ab=c2+2ac进行整理可得:(2a+b+c)(b﹣c)=0,而2a+b+c≠0,只能是b﹣c=0,则有b=c,即可判断△ABC是等腰三角形.【解答】解:(1)x2﹣y2+xz﹣yz=(x﹣y)(x+y)+z(x﹣y)=(x﹣y)(x+y+z);(2)△ABC是等腰三角形,理由:∵b2+2ab=c2+2ac,∴b2﹣c2+2ab﹣2ac=0,(b﹣c)(b+c)+2a(b﹣c)=0,(2a+b+c)(b﹣c)=0,∵2a+b+c≠0,∴b﹣c=0,即b=c,∴△ABC是等腰三角形.【点评】本题主要考查因式分解的应用,解答的关键是对因式分解的方法的掌握与熟练应用.20.如图1,函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标.②连接BM,如图2,在点M的运动过程中是否存在点P,使∠BMP=∠BAC,若存在,请求出点P坐标,若不存在,请说明理由.【分析】(1)先确定出点B坐标和点A坐标,进而求出点C坐标,最后用待定系数法求出直线BC解析式;(2)①先表示出PQ,最后用三角形面积公式即可得出结论;②分点M在y轴左侧和右侧,由对称得出∠BAC=∠ACB,∠BMP+∠BMC=90°,所以,当∠MBC=90°即可,利用勾股定理建立方程即可求解.【解答】解:(1)对于y=x+3,由x=0得:y=3,∴B(0,3).由y=0得:x+3=0,解得x=﹣6,∴A(﹣6,0),∵点C与点A关于y轴对称.∴C(6,0)设直线BC的函数解析式为y=kx+b,∴,解得,∴直线BC的函数解析式为y=﹣x+3;(2)①设点M(m,0),则点P(m,m+3),点Q(m,﹣m+3),过点B作BD⊥PQ与点D,则PQ=|﹣m+3﹣(m+3)|=|m|,BD=|m|,则△PQB的面积=PQ•BD=m2=,解得m=±,故点M的坐标为(,0)或(﹣,0);②如图,当点M在y轴的左侧时,∵点C与点A关于y轴对称,∴AB=BC,∴∠BAC=∠BCA,∵∠BMP=∠BAC,∴∠BMP=∠BCA,∵∠BMP+∠BMC=90°,∴∠BMC+∠BCA=90°∴∠MBC=180°﹣(∠BMC+∠BCA)=90°,∴BM2+BC2=MC2,设M(x,0),则P(x,x+3),∴BM2=OM2+OB2=x2+9,MC2=(6﹣x)2,BC2=OC2+OB2=62+32=45,∴x2+9+45=(6﹣x)2,解得x=﹣,∴P(﹣,),当点M在y轴的右侧时,同理可得P(,),综上,点P的坐标为(﹣,)或(,).【点评】此题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,直角三角形的判定,勾股定理,坐标轴上点的特点,分类讨论是解本题的关键.四、填空题21.已知x=+5,则代数式(x﹣2)2﹣6(x﹣2)+9的值是7.【分析】根据二次根式的性质即可求出答案.【解答】解:当x=+5时,原式=[(x﹣2)﹣3]2=(x﹣5)2=()2=7故答案为:7【点评】本题考查二次根式的性质,解题的关键是熟练运用完全平方公式,本题属于基础题型.22.若关于x的不等式组无解,则a的取值范围是a≤1.【分析】先对原不等式组解答,再根据关于x的不等式组无解,从而可以得到a的取值范围,本题得以解决.【解答】解:,解不等式①,得x>a+1,解不等式②,得x≤2a,∵关于x的不等式组无解,∴a+1≥2a,解得,a≤1,故答案为:a≤1.【点评】本题考查解一元一次不等式组,解题的关键是明确题意,找出所求问题需要的条件.23.若关于x的分式方程=3的解是负数,则字母m的取值范围是m>﹣3且m≠﹣2.【分析】根据解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【解答】解:=3方程两边同乘(x+1),得2x﹣m=3x+3解得,x=﹣m﹣3,由题意得,﹣m﹣3<0,﹣m﹣3≠﹣1,解得,m>﹣3且m≠﹣2,故答案为:m>﹣3且m≠﹣2.【点评】本题考查的是分式方程的解法,一元一次不等式的解法,掌握解分式方程的一般步骤是解题的关键.24.如图,在△ABC中,∠A=45°,∠B=30°,AC=2,点M、N分别是边AB、AC上的动点,沿MN所在的直线折叠∠A,使点A的对应点P始终落在边BC上,若△PMB 为直角三角形,则AM的长为或.【分析】分两种情形:如图1中,当∠CMB=90°时,由题意可知点P与C重合,如图2中,当∠MPB=90°时,分别求解即可.【解答】解:如图1中,当∠CMB=90°时,由题意可知点P与C重合,在Rt△ACM中,∵∠A=45°,AC=2,∴AM=CM=,在Rt△BCM中,∵∠B=30°,CM=,∴BM=CM=,∴AB=AM+BM=+,如图2中,当∠MPB=90°时,由翻折可知,AM=PM,在Rt△PMB中,∵∠B=30°,∴BM=2PM=2AM,∴3AM=AB,∴AM=.综上所述,满足条件的AM的值为或.故答案为:或.【点评】本题考查翻折变换,解直角三角形等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.25.如图,△ABC是等边三角形,AB=6,E是靠近点C的三等分点,D是直线BC上一动点,线段ED绕点E逆时针旋转90°,得线段EF,当点D运动时,则AF最小值为2+.【分析】过E作EG⊥BC于G,过A作AP⊥EG于P,过F作FH⊥EG于H,则∠DGE =∠EHF=90°,依据△DEG≌△EFH(AAS),即可得到HF=EG,进而得到当点D运动时,点F与直线GH的距离为个单位,据此可得当AF⊥EG时,AF的最小值为AP+HF =2+.【解答】解:如图所示,过E作EG⊥BC于G,过A作AP⊥EG于P,过F作FH⊥EG 于H,则∠DGE=∠EHF=90°,∵∠DEF=90°,∴∠EDG+∠DEG=90°=∠HEF+∠DEG,∴∠EDG=∠FEH,又∵EF=DE,∴△DEG≌△EFH(AAS),∴HF=EG,∵△ABC是等边三角形,AB=6,E是靠近点C的三等分点,∴AE=4,CE=2,∠AEH=∠CEG=30°,∴CG=CE=1,AP=AE=2,∴EG=CG=,∴HF=,∴当点D运动时,点F与直线GH的距离始终为个单位,∴当AF⊥EG时,AF的最小值为AP+HF=2+,故答案为:2+.【点评】本题考查了等边三角形的性质,旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.解决问题的关键是作辅助线构造全等三角形,利用全等三角形的性质即可得出点F的运动轨迹.五、解答题26.明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?【分析】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据“购买两种电脑的总费用不超过34万元,且购进乙种电脑的数量不少于甲种电脑数量的1.5倍”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.【解答】解:(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意得:=,解得:x=0.3,经检验,x=0.3是原分式方程的解,且符合题意,∴x+0.2=0.3+0.2=0.5.答:每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元.(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意得:,解得:48≤m≤50.又∵m为整数,∴m可以取48,49,50.∴学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.【点评】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.27.我们定义,关于同一个未知数的不等式A和B,若A的解都是B的解,则称A与B存在“雅含”关系,且A不等式称为B不等式的“子式”.如A:x<0,B:x<1,满足A的解都是B的解,所以A与B存在“雅含”关系,A是B的“子式”.(1)若关于x的不等式A:x+2>1,B:x>3,请问A与B是否存在“雅含”关系,若存在,请说明谁是谁的“子式”;(2)已知关于x的不等式C:,D:2x﹣(3﹣x)<3,若C与D存在“雅含”关系,且C是D的“子式”,求a的取值范围;(3)已知2m+n=k,m﹣n=3,m≥,n<﹣1,且k为整数,关于x的不等式P:kx+6>x+4,Q:6(2x﹣1)≤4x+2,请分析是否存在k,使得P与Q存在“雅含”关系,且Q是P的“子式”,若存在,请求出k的值,若不存在,请说明理由.【分析】(1)根据“雅含”关系的定义即可判断;(2)根据“雅含”关系的定义得出<2,解不等式即可;(3)首先解关于m、n的方程组即可求得m、n的值,然后根据m≥,n<﹣1,且k 为整数即可得到一个关于k的范围,从而求得k的整数值;【解答】解:(1)不等式A:x+2>1的解集为x>﹣1,A与B存在“雅含”关系,B是A的“子式”;(2)∵不等式C:的解集为x<,不等式D:2x﹣(3﹣x)<3的解集为x<2,且C是D的“子式”,∴≤2,解得a≤;(3)由求得,∵m≥,n<﹣1,∴,解得﹣1.5≤k<3,∵k为整数,∴k的值为﹣1,0,1,2;不等式P:kx+6>x+4整理得,(k﹣1)x>﹣2;不等式Q:6(2x﹣1)≤4x+2的解集为x≤1,①当k=1时,不等式P的解集是全体实数,∴P与Q存在“雅含”关系,且Q是P的“子式”,②当k>1时,不等式P的解集为x>﹣,不能满足P与Q存在“雅含”关系,③当k<1时,不等式P:kx+6>x+4的解集为x<,∵P与Q存在“雅含”关系,且Q是P的“子式”,∴k﹣1<0,且>1,解得﹣1<k<1,∴k=0,综上k的值为0或1.【点评】本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.28.已知:如图,∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B.(1)在图1中,过点C作CE⊥CB,与直线MN于点E,①依题意补全图形;②求证:△BCE是等腰直角三角形;③图1中,线段BD、AB、CB满足的数量关系是BD+AB=CB;(2)当MN绕A旋转到如图(2)和图(3)两个位置时,其它条件不变、在图2中,线段BD、AB、CB满足的数量关系是AB﹣BD=CB;在图3中,线段BD、AB、CB满足的数量关系是BD﹣AB=CB.(3)MN在绕点A旋转过程中,当∠BCD=30°,BC=2+2时,求CD的长.【分析】(1)①依题意补全图形如图所示,②判断出△CAE≌△CDB,即得结论,③过点C作CE⊥CB,得到∠BCD=∠ACE,判断出△ACE≌△DCB,确定△ECB为等腰直角三角形即可;(2)①过点C作CE⊥CB于点C,判断出△ACE≌△DCB,确定△ECB为等腰直角三角形;②解题思路同(1)③,过点C作CE⊥CB于点C,得到△ACE≌△DCB,从而确定△ECB为等腰直角三角形;(3)由(1)③,得△ACE≌△BCD,CE=BC,得到△BCE为等腰直角三角形,得到BD=DH,求出DH,即可求解.【解答】解:(1)①依题意补全图形如下图,②证明:∵∠ACD=90°,又∵CE⊥CB,∴∠ECB=90°=∠ACD,∴∠1=∠2.∵DB⊥MN于点B,∴∠ABD=90°,∴∠BAC+∠D=180°.又∵∠BAC+∠EAC=180°,∴∠D=∠EAC.又∵AC=CD,∴△CAE≌△CDB(ASA),∴CE=CB.∴△BCE是等腰直角三角形;③如图1,过点C作CE⊥CB,与MN交于点E,∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE,∵DB⊥MN,∴∠ABC+∠CBD=90°,∵CE⊥CB,∴∠ABC+∠CEA=90°,∴∠CBD=∠CEA.又∵AC=DC,∴△ACE≌△DCB(AAS),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB,故答案为:BD+AB=CB;(2)①如图2,过点C作CE⊥CB,与MN交于点E,。
【解析版】都江堰市初中数学八年级下期中经典测试卷(含解析)

一、选择题1.(0分)[ID :9932]下列运算正确的是( ) A .347+=B .1232=C .2(-2)2=-D .142136= 2.(0分)[ID :9929]如右图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角△ABC ,使∠BAC=90°,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是( )A .B .C .D .3.(0分)[ID :9927]如图,四边形ABCD 是长方形,AB=3,AD=4.已知A (﹣32,﹣1),则点C 的坐标是( )A .(﹣3,32) B .(32,﹣3) C .(3,32) D .(32,3) 4.(0分)[ID :9907]已知,如图,长方形 ABCD 中,AB =5cm ,AD =25cm ,将此长方形折叠,使点 D 与点 B 重合,折痕为 EF ,则△ABE 的面积为( )A .35cm 2B .30cm 2C .60cm 2D .75cm 25.(0分)[ID :9904]某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示: 决赛成绩/分 95 90 85 80 人数4682那么20名学生决赛成绩的众数和中位数分别是( ) A .85,90B .85,87.5C .90,85D .95,906.(0分)[ID :9902]估计26的值在( ) A .2和3之间 B .3和4之间C .4和5之间D .5和6之间7.(0分)[ID :9897]平行四边形的对角线长为x 、y ,一边长为12,则x 、y 的值可能是( ) A .8和14B .10和14C .18和20D .10和348.(0分)[ID :9882]有一直角三角形纸片,∠C =90°BC =6,AC =8,现将△ABC 按如图那样折叠,使点A 与点B 重合,折痕为DE ,则CE 的长为( )A .27B .74C .72D .49.(0分)[ID :9880]如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A 231- B 221- C 231- D 221-10.(0分)[ID :9852]在矩形ABCD 中,AB=2,AD=4,E 为CD 的中点,连接AE 交BC 的延长线于F 点,P 为BC 上一点,当∠PAE=∠DAE 时,AP 的长为 ( )A .4B .174C .92D .511.(0分)[ID :9848]星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km )与散步所用的时间(min )之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是( )A .从家出发,休息一会,就回家B .从家出发,一直散步(没有停留),然后回家C .从家出发,休息一会,返回用时20分钟D .从家出发,休息一会,继续行走一段,然后回家12.(0分)[ID :9926]如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T 如何随时间t 的变化而变化,下列从图象中得到的信息正确的是( )A .0点时气温达到最低B .最低气温是零下4℃C .0点到14点之间气温持续上升D .最高气温是8℃13.(0分)[ID :9835]如图,在Rt ABC △中,90B ∠=︒,6AB =,9BC =,将ABC △折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段BN 的长为( )A .3B .4C .5D .614.(0分)[ID :9869]如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AB ,BC 边上的中点,连接EF.若3EF=,BD=4,则菱形ABCD 的周长为( )A .4B .46C .47D .2815.(0分)[ID :9866]已知点(﹣2,y 1),(﹣1,y 2),(1,y 3)都在直线y =﹣x+b 上,则y 1,y 2,y 3的值的大小关系是( ) A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 3>y 1>y 2D .y 3>y 1>y 2二、填空题16.(0分)[ID :10029]某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表: 植树棵数(单位:棵) 4 5 6 8 10 人数(人)302225158则这100名学生所植树棵数的中位数为_____.17.(0分)[ID :10028]使二次根式1x -有意义的x 的取值范围是 _____.18.(0分)[ID :10024]小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分. 19.(0分)[ID :10020]若一元二次方程x 2﹣2x ﹣m=0无实数根,则一次函数y=(m+1)x+m ﹣1的图象不经过第_____象限.20.(0分)[ID :9998]一组数据4、5、a 、6、8的平均数5x =,则方差2s =________. 21.(0分)[ID :9951]矩形两条对角线的夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____.22.(0分)[ID :9949]如图所示,图中所有三角形都是直角三角形,所有四边形都是正方形,123916144S ===,S ,S ,则4S =_____.23.(0分)[ID :9939]在平面直角坐标系中,(1,0)(4,0)(0,3),A B C -、、若以A B C D 、、、为顶点的四边形是平行四边形,则D 点坐标是________________.24.(0分)[ID :9936]如图,已知一次函数y=kx+b 的图象与x 轴交于点(3,0),与y 轴交于点(0,2),不等式kx+b≥2解集是_______.25.(0分)[ID :9958]一根旗杆在离地面4.5 m 的地方折断,旗杆顶端落在离旗杆底部6 m 外,则旗杆折断前的高度是________.三、解答题26.(0分)[ID :10108]如图,在44⨯的方格子中,ABC ∆的三个顶点都在格点上,(1)在图1中画出线段CD ,使CD CB ⊥,其中D 是格点, (2)在图2中画出平行四边形ABEC ,其中E 是格点.27.(0分)[ID :10090]如图,一个没有上盖的圆柱形食品盒,它的高等于24cm ,底面周长为20,cm 在盒内下底面的点A 处有一只蚂蚁,蚂蚁爬行的速度为2/cm s .(1)如图1,它想沿盒壁爬行吃到盒内正对面中部点B 处的食物,那么它至少需要多少时间?(盒的厚度和蚂蚁的大小忽略不计,下同)(2)如果蚂蚁在盒壁.上爬行了一圈半才找点B 处的食物(如图2),那么它至少需要多少时间?(3)假如蚂蚁是在盒的外部下底面的A处(如图3),它想吃到盒内正对面中部点B处的食物,那么它至少需要多少时间?28.(0分)[ID:10088]请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,在图中画出分割线,拼出如图②所示的新正方形.请你参考.上述做法,解决如下问题:(1)现有10个边长为1的正方形,排列形式如图③,请把它们分割后拼接成一个新的正方形,在图③中画出分割线,并在图④的正方形网格中用实线画出拼接成的新正方形;(图中每个小正方形的边长均为1)(2)如图⑤,现有由8个相同小正方形组成的十字形纸板,请在图中画出分割线,拼出一个新正方形.29.(0分)[ID:10060]善于学习的小明在学习了一次方程(组),一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③;④;(2)如果点C的坐标为(1,3),那么不等式kx+b≤k1x+b1的解集为.30.(0分)[ID:10046]一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.D4.B5.B6.D7.C8.B9.C10.B11.D12.D13.B14.C15.A二、填空题16.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排17.x≤1【解析】由题意得:1-x≥0解得x≤1故答案为x≤1点睛:二次根式有意义的条件是:a≥018.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少19.一【解析】∵一元二次方程x2-2x-m=0无实数根∴△=4+4m<0解得m<-1∴m+1<0m-1<0∴一次函数y=(m+1)x+m-1的图象经过二三四象限不经过第一象限故答案是:一20.4【解析】【分析】首先根据其平均数为5求得a的值然后再根据方差的计算方法计算即可【详解】解:根据题意得(4+5+a+6+8)=5×5解得a=2则这组数据为45268的平均数为5所以这组数据的方差为s21.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD是矩形∴OA=ACOB=BDAC=BD∴OA=OB22.169【解析】【分析】利用正方形的基本性质和勾股定理的定义进行解答即可【详解】解:S1=9S2=16S3=144∴所对应各边为:3412∴中间未命名的正方形边长为5∴最大的直角三角形的面积52+1223.(-53)(53)(3−3)【解析】【分析】作出图形分ABBCAC为对角线三种情况进行求解【详解】如图所示①AC为对角线时AB=5∴点D的坐标为(-53)②BC为对角线时AB=5∴点D的坐标为(5324.x≤0【解析】【分析】由一次函数y=kx+b的图象过点(02)且y随x的增大而减小从而得出不等式kx+b≥2的解集【详解】解:由一次函数的图象可知此函数是减函数即y随x 的增大而减小∵一次函数y=kx25.12米【解析】【分析】【详解】解:如图所示AC=6米BC=45米由勾股定理得AB==75(米)故旗杆折断前高为:45+75=12(米)故答案为:12米三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】根据二次根式的加减法对A进行判断;根据二次根式的性质对B、C进行判断;根据分母有理化和二次根式的性质对D进行判断.【详解】A2,所以A选项错误;B、原式=B选项错误;C、原式=2,所以C选项错误;=,所以D选项正确.D3故选D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.A解析:A【解析】【分析】先做出合适的辅助线,再证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,作AD∥x轴,作CD⊥AD于点D,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,∠AOB=∠ADC,∠OAB=∠DAC,AB=AC∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选A.【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.3.D解析:D【解析】【分析】由矩形的性质可知CD=AB= 3,BC=AD= 4,结合A点坐标即可求得C点坐标.【详解】∵四边形ABCD是长方形,∴CD=AB= 3,BC=AD= 4,∵点A(﹣32,﹣1),∴点C的坐标为(﹣32+3,﹣1+4),即点C的坐标为(32,3),故选D.【点睛】本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.4.B解析:B【解析】【分析】根据折叠的条件可得:BE =DE ,在直角△ABE 中,利用勾股定理就可以求解.【详解】将此长方形折叠,使点B 与点D 重合,∴BE =ED .∵AD =25=AE +DE =AE +BE ,∴BE =25﹣AE ,根据勾股定理可知:AB 2+AE 2=BE 2. 解得:AE =12,∴△ABE 的面积为5×12÷2=30.故选B .【点睛】本题考查了勾股定理的应用.掌握勾股定理是解题的关键.5.B解析:B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B .考点:1.众数;2.中位数6.D解析:D【解析】【分析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】解:小于26的最大平方数为25,大于26的最小平方数为3656,故选择D.【点睛】本题考查了二次根式的相关定义.7.C解析:C【解析】【分析】【详解】解:平行四边形的两条对角线的一半,和平行四边形的一边能够构成三角形, ∴2x 、y 2、6能组成三角形,令x>y ∴x-y<6<x+y20-18<6<20+18故选C.【点睛】本题考查平行四边形的性质.8.B解析:B【解析】【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求AB,根据翻折不变性,可知△DAE≌△DBE,从而得到BD=AD,BE=AE,设CE=x,则AE=8-x,在Rt△CBE中,由勾股定理列方程求解.【详解】∵△CBE≌△DBE,∴BD=BC=6,DE=CE,在RT△ACB中,AC=8,BC=6,∴AB=2222=68AC BC++=10.∴AD=AB-BD=10-6=4.根据翻折不变性得△EDA≌△EDB∴EA=EB∴在Rt△BCE中,设CE=x,则BE=AE=8-x,∴BE2=BC2+CE2,∴(8-x)2=62+x2,解得x=74.故选B.【点睛】此题考查了翻折变换的问题,找到翻折后图形中的直角三角形,利用勾股定理来解答,解答过程中要充分利用翻折不变性.9.C解析:C【解析】【详解】如图,作MG⊥BC于G,MH⊥CD于H,则BG=GC,AB∥MG∥CD,∴AM=MN,∵MH⊥CD,∠D=90°,∴MH∥AD,∴NH=HD,由旋转变换的性质可知,△MBC是等边三角形,∴MC=BC=a,∠MCD=30°,∴MH=12MC=12a,,∴DH=a﹣2a,∴CN=CH﹣﹣(a)=﹣1)a,∴△MNC的面积=12×2a×﹣1)a2.故选C.10.B解析:B【解析】【分析】根据矩形的性质结合等角对等边,进而得出CF的长,再利用勾股定理得出AP的长.【详解】∵∠PAE=∠DAE,∠DAE=∠F∴∠PAE=∠F∴PA=PF∵E是CD的中点∴BF=8设AP=x,则BP=8−x在RtΔABP中,4+(8−x)2=x2得x=174故选:B点睛:此题主要考查了矩形的性质以及勾股定理等知识,正确得出FC的长是解题关键.11.D解析:D【解析】【分析】利用函数图象,得出各段的时间以及离家的距离变化,进而得出答案.【详解】由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.故选:D .【点睛】本题考查了函数的图象,解题的关键是要看懂图象的横纵坐标所表示的意义,然后再进行解答.12.D解析:D【解析】【分析】根据气温T 如何随时间t 的变化而变化图像直接可解答此题.【详解】A.根据图像4时气温最低,故A 错误;B.最低气温为零下3℃,故B 错误;C. 0点到14点之间气温先下降后上升,故C 错误;D 描述正确.【点睛】本题考查了学生看图像获取信息的能力,掌握看图像得到有用信息是解决此题的关键.13.B解析:B【解析】【分析】由折叠的性质可得DN CN =,根据勾股定理可求DN 的长,即可求BN 的长.【详解】 D 是AB 中点,6AB =,3AD BD ∴==,根据折叠的性质得,DN CN =,9BN BC CN DN ∴=-=-,在Rt DBN 中,222DN BN DB =+,22(9)9DN DN ∴=-+,5DN ∴=4BN ∴=,故选B .【点睛】本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.14.C解析:C【解析】【分析】首先利用三角形的中位线定理得出AC ,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【详解】解:∵E ,F 分别是AB ,BC 边上的中点,∴∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=12OB=12BD=2,∴,∴菱形ABCD 的周长为.故选C .15.A解析:A【解析】【分析】先根据直线y =﹣x+b 判断出函数图象,y 随x 的增加而减少,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y =﹣x+b ,k =﹣1<0,∴y 随x 的增大而减小,又∵﹣2<﹣1<1,∴y 1>y 2>y 3.故选:A .【点睛】本题考查一次函数的图象性质:当k >0,y 随x 增大而增大;当k <0时,y 将随x 的增大而减小.二、填空题16.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排解析:5【解析】【分析】直接利用中位数定义求解.【详解】第50个数和第55个数都是5,所以这100名学生所植树棵数的中位数为5(棵).故答案为5.【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.x≤1【解析】由题意得:1-x≥0解得x≤1故答案为x≤1点睛:二次根式有意义的条件是:a≥0解析:x≤1【解析】由题意得:1-x≥0,解得x≤1.故答案为x≤1.a≥0.18.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少解析:82【解析】【分析】设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.【详解】设第三次考试成绩为x,∵三次考试的平均成绩不少于80分,∴7286803x++≥,解得:82x≥,∴他第三次数学考试至少得82分,故答案为:82【点睛】本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.19.一【解析】∵一元二次方程x2-2x-m=0无实数根∴△=4+4m<0解得m<-1∴m+1<0m-1<0∴一次函数y=(m+1)x+m-1的图象经过二三四象限不经过第一象限故答案是:一解析:一【解析】∵一元二次方程x2-2x-m=0无实数根,∴△=4+4m<0,解得m<-1,∴m+1<0,m-1<0,∴一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限.故答案是:一.20.4【解析】【分析】首先根据其平均数为5求得a的值然后再根据方差的计算方法计算即可【详解】解:根据题意得(4+5+a+6+8)=5×5解得a=2则这组数据为45268的平均数为5所以这组数据的方差为s解析:4【解析】【分析】首先根据其平均数为5求得a的值,然后再根据方差的计算方法计算即可.【详解】解:根据题意得(4+5+a+6+8)=5×5,解得a=2,则这组数据为4,5,2,6,8的平均数为5,所以这组数据的方差为s2= 15[(4-5)2+(5-5)2+(2-5)2+(6-5)2+(8-5)2]=4.故答案为:4【点睛】本题考查方差的定义、意义、计算公式,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.21.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD是矩形∴OA=ACOB=BDAC=BD∴OA=OB解析:10【解析】【分析】首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△AOB是等边三角形,即可解答本题.【详解】解:如图:∵四边形ABCD是矩形,∴OA=12AC,OB=12BD,AC=BD∴OA=OB,∵∠A0B=60°,∴△AOB是等边三角形,∴OA=OB=AB=5,∴AC=2OA=10,即矩形对角线的长为10.故答案为:10.【点睛】本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键.22.169【解析】【分析】利用正方形的基本性质和勾股定理的定义进行解答即可【详解】解:S1=9S2=16S3=144∴所对应各边为:3412∴中间未命名的正方形边长为5∴最大的直角三角形的面积52+12解析:169【解析】【分析】利用正方形的基本性质和勾股定理的定义进行解答即可.【详解】解:S 1=9,S2=16,S3=144,∴所对应各边为:3,4,12.∴中间未命名的正方形边长为5.∴最大的直角三角形的面积4S 52+122=169.故答案为169.【点睛】本题考查了勾股定理的定义和正方形的基本性质,分析图形得到正方形和勾股定理的联系是解答本题的关键.23.(-53)(53)(3−3)【解析】【分析】作出图形分ABBCAC为对角线三种情况进行求解【详解】如图所示①AC为对角线时AB=5∴点D的坐标为(-53)②BC为对角线时AB=5∴点D的坐标为(53解析:(-5,3)、(5,3)、(3,−3)【解析】【分析】作出图形,分AB、BC、AC为对角线三种情况进行求解.【详解】如图所示,①AC为对角线时,AB=5,∴点D的坐标为(-5,3),②BC为对角线时,AB=5,∴点D的坐标为(5,3),③AB为对角线时,C平移至A的方式为向左平移1个单位,向下平移3个单位,∴点B 向左平移1个单位,向下平移3个单位得到点D的坐标为(3,−3),综上所述,点D的坐标是(-5,3)、(5,3)、(3,−3).故答案为:(-5,3)、(5,3)、(3,−3).【点睛】本题考查了坐标与图形的性质,平行四边形的判定,根据题意作出图形,注意要分情况进行讨论.24.x≤0【解析】【分析】由一次函数y=kx+b的图象过点(02)且y随x的增大而减小从而得出不等式kx+b≥2的解集【详解】解:由一次函数的图象可知此函数是减函数即y随x的增大而减小∵一次函数y=kx解析:x≤0【解析】【分析】由一次函数y=kx+b的图象过点(0,2),且y随x的增大而减小,从而得出不等式kx+b≥2的解集.【详解】解:由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(0,2),∴当x≤0时,有kx+b≥2.故答案为x≤0.【点睛】本题考查的是一次函数与一元一次不等式的关系,能利用数形结合求出不等式的解集是解答此题的关键.25.12米【解析】【分析】【详解】解:如图所示AC=6米BC=45米由勾股定理得AB==75(米)故旗杆折断前高为:45+75=12(米)故答案为:12米解析:12米【解析】【分析】【详解】解:如图所示,AC=6米,BC=4.5米,由勾股定理得,22(米).4.56故旗杆折断前高为:4.5+7.5=12(米).故答案为:12米.三、解答题26.(1)见解析;(2)见解析.【解析】【分析】,且点D是格点即可.(2)作一个△BEC与△BAC全等即可得出(1)过点C作CD CB图形.【详解】(1)解:如图,线段CD就是所求作的图形.(2)解:如图,ABEC就是所求作的图形【点睛】本题考查作图-应用与设计,平行四边形的判定等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.27.(1)61s;(2)329s;(3)349s【解析】【分析】(1)从A到B有两种走法:从内壁直接爬过去和从盒子底部直接爬过去,画出展开图,求出AB的长度,比较即可得出结果;(2)根据勾股定理解答即可;(3)要求圆柱体中两点之间的最短路径,最直接的作法,就是将正方体展开,作出B关于边EF的对称点D,然后利用勾股定理求出AD的长,再算出时间.【详解】(1)图1展开图,如图①、图②所示:图①中(直接沿着盒壁爬过去):261AB=图②中(沿底面直径爬过去再竖直爬上去):2012ABπ=+2026112π<+261261t s∴=÷=(2)如图:蚂蚁走过的最短路径为:223012629AB=+=,所用时间为:6292329s=;(3)如图2,作B关于EF的对称点D,连接AD,蚂蚁走的最短路程是AP+PB=AD,由图可知,AC=10cm,CD=24+12=36(cm),AD=22+=cm,361013961396÷2=349(s),从A到C所用时间为349秒.【点睛】本题考查的是平面展开-最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键.28.(1)见解析;(2)见解析【解析】【分析】(1)根据面积为10的正方形的边长为10,可得三个并列的小正方形的对角线的长为10;(2)根据面积为8的正方形的边长为8,可得三个并列的小正方形的对角线的长为8.【详解】(1)如图所示即为所求.(2)如图所示即为所求.【点睛】本题主要考查了图形的设计,正确理解小正方形的面积的和等于拼成的正方形的面积是解题的关键.29.(1)①kx +b =0,②11y kx b y k x b =+⎧⎨=+⎩,③kx +b >0,④kx +b <0;(2)x ≥1. 【解析】【分析】(1)①由于点B 是函数y=kx+b 与x 轴的交点,因此B 点的横坐标即为方程kx+b=0的解;②因为C 点是两个函数图象的交点,因此C 点坐标必为两函数解析式联立所得方程组的解;③函数y=kx+b 中,当y >0时,kx+b >0,因此x 的取值范围是不等式kx+b >0的解集; 同理可求得④的结论.(2)由图可知:在C 点右侧时,直线y=kx+b 的函数值要小于直线y=k 1x+b 1的函数值.【详解】 解:(1)根据观察得:①kx +b =0,②11y kx b y k x b =+⎧⎨=+⎩,③kx +b >0,④kx +b <0. 故答案为:kx +b =0,11y kx b y k x b =+⎧⎨=+⎩,kx +b >0,kx +b <0; (2)∵点C 的坐标为(1,3),∴不等式kx +b ≤k 1x +b 1的解集为x ≥1.故答案为:x ≥1.【点睛】此题主要考查了一次函数与一元一次方程及一元一次不等式,二元一次方程组之间的内在联系.30.(1)x >﹣2;(2)①(1,6);②10.【解析】【分析】(1)求不等式kx +b >0的解集,找到x 轴上方的范围就可以了,比C 点横坐标大就行了 (2)①我们可以先根据B ,C 两点求出k 值,因为不等式kx +b >﹣4x +a 的解集是x >1 所以B 点横坐标为1,利用x=1代入y 1=kx +b ,即求出B 点的坐标;②将B 点代入y 2=﹣4x +a 中即可求出a 值.【详解】解:(1)∵A (0,4),C (﹣2,0)在一次函数y 1=kx +b 上,∴不等式kx +b >0的解集是x >﹣2,故答案为:x >﹣2;(2)①∵A (0,4),C (﹣2,0)在一次函数y1=kx+b 上,∴b=4-2k+b=0⎧⎨⎩,得b=4k=2⎧⎨⎩,∴一次函数y1=2x+4,∵不等式kx+b>﹣4x+a的解集是x>1,∴点B的横坐标是x=1,当x=1时,y1=2×1+4=6,∴点B的坐标为(1,6);②∵点B(1,6),∴6=﹣4×1+a,得a=10,即a的值是10.【点睛】本题主要考查学生对于一次函数图像性质的掌握程度。
-四川省成都市2020-2021学年八年级下学期期中数学试卷 Word版

2020-2021学年四川省成都市八年级(下)期中数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每题只有一个符合题意,答案涂在答题卡上)1.下列各式中,是分式的是()A.B.C.D.2.下列医护图案既是轴对称图形又是中心对称图形的是()A.B..C..D..3.不等式组的最大整数解是()A.0B.﹣1C.﹣2D.34.下列各项变形式,是因式分解的是()A.m(m+2n)=m2+2mn B.a2﹣4a+4=(a﹣2)2C.y2﹣1=y(y﹣)D.24xy2=3x•8y25.下列分式中,x取任意实数总有意义的是()A.B.C.D.6.2021年是中国共产党建党100周年,某校为了纪念党的生日,计划组织540名学生去外地参观学习.现有A,B两种不同型号的客车可供选择,在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租6辆,设A型客车每辆坐x人,则根据题意可列方程为()A.﹣=6B.﹣=6C.﹣=6D.﹣=67.已知正多边形的一个外角等于40°,则这个正多边形的内角和为()A.1440°B.1260°C.1080°D.900°8.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式0<2x<ax+4的解集是()A.0<x<3B.<x<6C.<x<4D.0<x<9.如图,四边形ABCD中,AD∥BC,∠C=90°,AB=AD,连接BD,∠BAD的角平分线交BD,BC分别于点O、E,若EC=3,CD=4,则BO的长为()A.4B.3C.D.210.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中错误的是()A.∠DCF=∠BCD B.EF=CFC.S△BEC=2S△CEF D.∠DFE=3∠AEF二、填空题(本大题共4小题,每小题4分,共16分,答案写在答题卡上)11.分式的值为0,则m=.12.已知a﹣b=2,ab=﹣1,则3a﹣3(ab+b)的值是.13.如图,在Rt△ABC中,∠BAC=90°,BC=4,E、F分别是BC,AC的中点延长BA 到点D,使AD=AB,则DF=.14.若关于x的方程=有增根,则m=.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡」15.(1)因式分解:a2(x﹣y)+9b2(y﹣x);(2)解不等式组:;(3)化简:()3•()2÷()4;(4)化简:﹣+.16.解分式方程:(1)﹣=0;(2)+=﹣.17.先化简再求值:(1﹣)÷,某中a=+1.18.如图,在边长为1个单位长度的小正方形组成的10×10的网格中,已知点O,A,B,C均为网格线的交点.(1)将△ABC向右平移4个单位,再向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(点A1,B1,C1分别为A,B,C的对应点)(2)以点O为旋转中心将△A1B1C1逆时针旋转90°得到△A2B2C2,请画出△A2B2C2;并写出在旋转过程中点A1到A2所经过的路径长为.(点A2,B2,C2分别为A1,B1,C1的对应点)19.如图,四边形ACFD是平行四边形,B,E,C,F在一条直线上,已知BE=CF.(1)求证:四边形ABED是平行四边形;(2)若∠ABC=60°,且AC⊥BF,AB=6,BF=5,求AD的长.20.如图1,在菱形ABCD中,∠ABC=60°,对角线AC,BD相交点O,一动点Q从点C 出发,以每秒1个单位的速度沿CA向终点A匀速运动.在点Q运动过程中,设△QBD 的面积为S,点Q运动时间为t,如图2是S与t的函数图象(1)求AB与m;(2)若四边形ABQD的面积为,求t的值;(3)取BC的中点P,是否存在以P、Q、C为顶点的三角形是直角三角形,若存在,求出t的值;若不存在请说明理由.一、填空题(本大题共5小题,每小题4分,共20分,答案写在答题卡上)21.若m=2n﹣3,则m2﹣4mn+4n2﹣6的值为.。
2020-2021学年四川省成都外国语学校八年级(下)期中数学试卷

2020-2021学年四川省成都外国语学校八年级(下)期中数学试卷一.选择题(本大共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有项符合题目求,簪案泳在答甩卡上.)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)在式子,,,,+,中,分式的个数是()A.5B.4C.3D.23.(3分)下列各项变形式,是因式分解的是()A.5﹣m2=(5+m)(5﹣m)B.x+1=x(1+)C.(a﹣1)(a﹣2)=a2﹣3a+2D.a2+4a+4=(a+2)24.(3分)下列说法错误的是()A.若a+3>b+3,则a>b B.若,则a>bC.若a>b,则ac>bc D.若a>b,则a+3>b+25.(3分)已知等腰三角形的两边长分别为2和5,则该等腰三角形的周长为()A.7B.9C.9或12D.126.(3分)将分式中x、y的值都扩大到原来的3倍,则扩大后分式的值()A.扩大到原来的3倍B.扩大到原来的9倍C.不变D.缩小到原来的7.(3分)如图,在Rt△ABC和Rt△ABD中,∠ACB=∠ADB=90°,AB=10,M是AB的中点,连接MC,MD,CD,若CD=6,则△MCD的面积为()A.12B.12.5C.15D.248.(3分)如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF=4,则下列结论中错误的是()A.BE=4B.∠F=30°C.AB∥DE D.DF=59.(3分)小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15﹣x)≥1800B.90x+210(15﹣x)≤1800C.210x+90(15﹣x)≥1.8D.90x+210(15﹣x)≤1.810.(3分)如图,函数y=kx+b经过点A(﹣3,2),则关于x的不等式k(x+1)+b<2的解集为()A.x>﹣4B.x<﹣4C.x>﹣3D.x<0二、填空愿(本大共4个小题,每小题4分,共16分,把答案填写在答题卡上)11.(4分)分解因式4x2﹣100=.12.(4分)若分式的值为0,则x=.13.(4分)a,b,c是△ABC的三边,若(a2+b2)(a﹣b)=c2(a﹣b),则△ABC的形状是三角形.14.(4分)如图,△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B、D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是.三、解答题(本大题共6个小题,共54分。
四川成都2020-2021学年下学期人教版八年级数学期中综合测评基础卷(含解析)

2020-2021学年下学期(人教)八年级数学期中综合测评基础卷(考试时间120分钟,满分120分)第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分在每个小题给出的四个选项中,只有一项符合题目要求,将正确答案的字母代号填入下表相应题号的空格内)题号 1 2 34 5 6 7 8 9 10得分1.若二次根式2x -5 有意义,则x 的取值范围是 ( )A.x≥25B.x≤25C.x≥52D. x>522.以下列各组数据为边长,能构成直角三角形的是 ( )A.5,12,13B.1,2,7C. 3 ,2,5D.4,5,6,3.在□ABCD 中,AB =3cm,BC =4cm,则□ABCD 的周长是 ( )A. 5 cmB.7cmC. 12 cmD.14 cm4.下列计算正确的是 ( )A. 2 + 3 = 5B.2 3 ×3 3 =6 3C.8 ÷ 2 =2D.18 -8 =105.如图,在一个高为5m,长为13m 的楼梯表面铺地毯,则地毯的长度至少为( )A.13mB.17mC.18mD.25m6.已知△ABC(如图①),按图②和③所示的尺规作图痕迹,判定四边形ABCD 是平行四边形的依据是( )A.两组对边分别平行的四边形是平行四边形B.对角线互相平分的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.两组对边分别相等的四边形是平行四边形7.我国汉代的数学家赵爽在注解一部数学著作时,创作了一幅“弦图”,叫做“赵爽弦图”,并用数形结合的方法,给出了勾股定理的详细证明.这部中国古代数学著作是( )A.《周髀算经》B.《九章算术》C.《孙子算经》D.《海岛算经》8.若(x-5)2 +x=5,则x的取值不可能是( )A.3B.4C.5D.69.如图,在矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠BAC=40°,则∠E的度数是( )A.65°B.60°C.50°D.40°10.如图所示,四边形OABC是正方形,边长为,点A,C分别在x轴、y轴的正半轴上,点D在线段OA上,且点D的坐标为(2,0),点P是OB上一动点则PA+PD的最小值为( )A.4B.6C.10D.210第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.把200 化为最简二次根式:________________。
2020-2021成都四川国际学校初二数学下期中一模试卷含答案

2020-2021成都四川国际学校初二数学下期中一模试卷含答案一、选择题1.下列二次根式中,最简二次根式是( )A.10B.12C.12D.82.已知函数()()()()22113{513x xyx x--≤=-->,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.33.如图,一个梯子AB斜靠在一竖直的墙AO上,测得4AO=米.若梯子的顶端沿墙下滑1米,这时梯子的底端也恰好外移1米,则梯子AB的长度为()A.5米B.6米C.3米D.7米4.下列说法正确的有几个()①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A.1个B.2个C.3个D.4个5.如图,在菱形ABCD中,BE⊥CD于E,AD=5,DE=1,则AE=()A.4B.5C.34D.416.如图,四边形ABCD是轴对称图形,且直线AC是否对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中结论正确的序号是()A.①②③B.①②③④C.②③④D.①③④7.如图,已知圆柱底面的周长为4dm,圆柱的高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A .42dmB .22dmC .25dmD .45dm8.若x < 0,则2x x x-的结果是( ) A .0 B .-2 C .0或-2 D .29.如图,要测量被池塘隔开的A ,B 两点的距离,小明在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,并分别找出它们的中点D ,E ,连接DE ,现测得DE =45米,那么AB 等于( )A .90米B .88米C .86米D .84米10.如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx +b >ax 的解集是( )A .x >1B .x <1C .x >2D .x <211.下列运算正确的是( )A 235+=B 362=C 235=gD 1333= 12.3x -有意义,则x 的取值范围是( ) A .3x ≠ B .3x > C .3x ≥ D .3x ≤二、填空题13.如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,则△AFC 的面积S 为_____.14.如图,△ABC 中,∠ACB =90°,CD 是斜边上的高,AC =4,BC =3,则CD =______.15.在矩形ABCD 中,对角线AC 、BD 交于点O ,AB =1,∠AOB =60°,则AD =________.16.使式子123x x -+-有意义的x 的取值范围是_____. 17.如图,连接四边形ABCD 各边中点,得到四边形EFGH ,对角线AC ,BD 满足________,才能使四边形EFGH 是矩形.18.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC =2∠CAD ,则∠BAE =__________度.19.果字成熟后从树上落到地面,它落下的高度与经过的时间有如下的关系: 时间t (秒)0.5 0.6 0.7 0.8 0.9 1 落下的高度h (米) 50.25⨯ 50.36⨯ 50.49⨯ 50.64⨯ 50.81⨯ 51⨯ 如果果子经过2秒落到地上,那么此果子开始落下时离地面的高度大约是__________米.20.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于点E ,F ,连接PB ,PD .若AE =2,PF =8.则图中阴影部分的面积为___.三、解答题21.如图,正方形网格的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,若C 在格点上,且满足13,32AC BC ==.(1)在图中画出符合条件的ABC V ;(2)若BD AC ⊥于点D ,则BD 的长为 . 22.我国汉代数学家赵爽为了证明勾股定理,创造了一幅“弦图”后人称其为“赵爽弦图”(如图1).图2是弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,若S 1+S 2+S 3=10,求S 2的值.以下是求S 2的值的解题过程,请你根据图形补充完整.解:设每个直角三角形的面积为SS 1﹣S 2= (用含S 的代数式表示)①S 2﹣S 3= (用含S 的代数式表示)②由①,②得,S 1+S 3= 因为S 1+S 2+S 3=10,所以2S 2+S 2=10.所以S 2=103.23.如图,在44⨯的方格子中,ABC ∆的三个顶点都在格点上,(1)在图1中画出线段CD ,使CD CB ⊥,其中D 是格点,(2)在图2中画出平行四边形ABEC ,其中E 是格点.24.在抗击新冠状病毒战斗中,有152箱公共卫生防护用品要运到A 、B 两城镇,若用大小货车共15辆,则恰好能一次性运完这批防护用品,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其中用大货车运往A 、B 两城镇的运费分别为每辆800元和900元,用小货车运往A 、B 两城镇的运费分别为每辆400元和600元.(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A 城镇,其余货车前往B 城镇,设前往A 城镇的大货车为x 辆,前往A 、B 两城镇总费用为y 元,试求出y 与x 的函数解析式.若运往A 城镇的防护用品不能少于100箱,请你写出符合要求的最少费用.25.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,在图中画出分割线,拼出如图②所示的新正方形.请你参考.上述做法,解决如下问题:(1)现有10个边长为1的正方形,排列形式如图③,请把它们分割后拼接成一个新的正方形,在图③中画出分割线,并在图④的正方形网格中用实线画出拼接成的新正方形;(图中每个小正方形的边长均为1)(2)如图⑤,现有由8个相同小正方形组成的十字形纸板,请在图中画出分割线,拼出一个新正方形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.【详解】A10是最简二次根式,本选项正确.B12=2312C 1222=12A8=228不是最简二次根式,本选项错误.故选A.【点睛】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.2.D解析:D【解析】【分析】【详解】解:如图:利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k 成立的x 值恰好有三个. 故选:D.3.A解析:A【解析】【分析】设BO xm =,利用勾股定理依据AB 和CD 的长相等列方程,进而求出x 的值,即可求出AB 的长度.【详解】解:设BO xm =,依题意,得1AC =,1BD =,4AO =.在Rt AOB V 中,根据勾股定理得222224AB AO OB x =+=+,在Rt COD V 中,根据勾股定理22222(41)(1)CD CO OD x =+=-++,22224(41)(1)x x ∴+=-++,解得3x =,22435AB ∴=+=,答:梯子AB 的长为5m .故选:A .【点睛】本题考查了勾股定理在实际生活中的应用,本题中找到AB CD =利用勾股定理列方程是解题的关键.4.C解析:C【解析】【分析】根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.【详解】(1)对角线互相平分的四边形是平行四边形,说法正确;(2)对角线互相垂直的四边形是菱形,说法错误;(3)对角线互相垂直且相等的平行四边形是正方形,说法正确;(4)对角线相等的平行四边形是矩形,说法正确.正确的个数有3个,故选C.【点睛】此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.5.C解析:C【解析】【分析】根据菱形的性质得出CD=AD=5,进而得出CE=4,利用勾股定理得出BE,进而利用勾股定理得出AE即可.【详解】∵菱形ABCD,∴CD=AD=5,CD∥AB,∴CE=CD﹣DE=5﹣1=4,∵BE⊥CD,∴∠CEB=90°,∴∠EBA=90°,在Rt△CBE中,BE3==,在Rt△AEB中,AE==故选C.【点睛】此题考查菱形的性质,关键是根据菱形的性质得出CD=AD.6.B解析:B【解析】【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.【详解】解:如图,因为l是四边形ABCD的对称轴,AB∥CD,则AD=AB,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵AB BC AD DC BD BD=⎧⎪=⎨⎪=⎩,∴△ABD≌△CDB(SSS),正确.故正确的结论是:①②③④.故选B.【点睛】此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线,对应角相等,对应边相等.7.A解析:A【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度,Q圆柱底面的周长为4dm,圆柱高为2dm,2AB dm \=,2BC BC dm =?,22222448AC \=+=+=,AC \=,∴这圈金属丝的周长最小为2AC =.故选:A .【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.8.D解析:D【解析】∵x < 0x x =-,∴x x=()22x x x x x x x x ---===. 故选D.9.A解析:A【解析】【分析】根据中位线定理可得:AB =2DE =90米.【详解】解:∵D 是AC 的中点,E 是BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AB . ∵DE =45米,∴AB =2DE =90米.故选A .【点睛】 本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.10.D解析:D【解析】分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.详解:根据函数图像可得:当x >2时,kx+b <ax ,故选C .点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.11.D解析:D【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A、原式+=,故错误;B2C、原式,故C错误;=,正确;D3故选:D.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型.12.B解析:B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,x-3>0,解得x>3.故选:B.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.二、填空题13.2【解析】【分析】【详解】解:如图连接FB∵四边形EFGB为正方形∴∠FBA=∠BAC=45°∴FB∥AC∴△ABC与△AFC是同底等高的三角形∴S=2故答案为:2解析:2【解析】【分析】【详解】解:如图,连接FB∵四边形EFGB 为正方形∴∠FBA=∠BAC=45°,∴FB ∥AC∴△ABC 与△AFC 是同底等高的三角形2224ABC IEABCD IEABCD S S S =⋅=⨯=V Q∴S=2故答案为:2.14.4【解析】【分析】在Rt 中由勾股定理可求得AB 的长进而可根据三角形面积的不同表示方法求出CD 的长【详解】解:Rt 中AC=4mBC=3mAB=m∵∴m=24m 故答案为24m 【点睛】本题考查勾股定理掌握解析:4【解析】【分析】在Rt ABC V 中,由勾股定理可求得AB 的长,进而可根据三角形面积的不同表示方法求出CD 的长.【详解】解:Rt ABC V 中,AC=4m ,BC=3m 225AC BC +=m ∵1122ABC S AC BC AB CD =⋅=⋅V ∴125AC BC CD AB ⋅==m=2.4m 故答案为2.4 m【点睛】本题考查勾股定理,掌握勾股定理的公式结合利用面积法是解题关键.15.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AC=2OABD=2BOAC=BD∴OB=OA∵∴是等边三角形故答案为【点睛】本题考查矩形的对角线相等 3【解析】【分析】【详解】解:∵四边形ABCD 是矩形,∴AC=2OA ,BD=2BO ,AC=BD ,∴OB=OA ,∵60∠=o ,AOB ∴OAB V 是等边三角形,1OB AB ∴==22BD OB == 223AD BD AB =-=故答案为3.【点睛】本题考查矩形的对角线相等.16.x≥2且x≠3【解析】【分析】根据二次根式的性质和分式的意义被开方数大于或等于0分母不等于0列不等式组求解【详解】由题意得 解得x≥2且x≠3故答案为x≥2且x≠3【点睛】本题主要考查自变量的取值范解析:x≥2且x≠3【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,列不等式组求解.【详解】由题意,得20{30x x -≥-≠ , 解得x≥2且x≠3.故答案为x≥2且x≠3.【点睛】本题主要考查自变量的取值范围.用到的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.17.AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形然后根据矩形的性质得出AC⊥BD【详解】解:∵GHE 分别是BCCDAD 的中点∴HG∥BDEH∥AC∴∠EHG=∠1∠1=解析:AC ⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形,然后根据矩形的性质得出AC ⊥BD .【详解】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.【点睛】本题主要综合考查了三角形中位线定理及矩形的判定定理,属于中等难度题型.解答这个问题的关键就是要明确矩形的性质以及中位线的性质.18.5°【解析】【分析】【详解】四边形ABCD是矩形AC=BDOA=OCOB=ODOA=OB═OC∠OAD=∠ODA∠OAB=∠OBA∠AOE=∠OAD+∠ODA=2∠OA D∠EAC=2∠CAD∠EAO解析:5°【解析】【分析】【详解】Q四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,Q∠EAC=2∠CAD,∴∠EAO=∠AOE,Q AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.19.20【解析】【分析】分析表格中数据得到物体自由下落的高度随着时间的增大而增大与的关系为:把代入再进行计算即可【详解】解:由表格得用时间表示高度的关系式为:当时所以果子开始落下时离地面的高度大约是20 解析:20【解析】【分析】分析表格中数据,得到物体自由下落的高度h 随着时间t 的增大而增大,h 与t 的关系为:25h t =,把2t =代入25h t =,再进行计算即可.【详解】解:由表格得,用时间()t s 表示高度()h m 的关系式为:25h t =,当2t =时,2525420h =⨯=⨯=.所以果子开始落下时离地面的高度大约是20米.故答案为:20.【点睛】本题考查了根据图表找规律,并应用规律解决问题,要求有较强的分析数据和描述数据的能力.能够正确找到h 和t 的关系是解题的关键.20.16【解析】【分析】作PM⊥AD 于M 交BC 于N 则有四边形AEPM 四边形DFPM 四边形CFPN 四边形BEPN 都是矩形可得S△PEB=S△PFD=8则可得出S 阴【详解】作PM⊥AD 于M 交BC 于N 则有四边解析:16【解析】【分析】作PM ⊥AD 于M ,交BC 于N ,则有四边形AEPM 、四边形DFPM 、四边形CFPN 、四边形BEPN 都是矩形,可得S △PEB =S △PFD =8,则可得出S 阴.【详解】作PM ⊥AD 于M ,交BC 于N ,则有四边形AEPM 、四边形DFPM 、四边形CFPN 、四边形BEPN 都是矩形, ∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PBE =S △PBN ,S △PFD =S △PDM ,S △PFC =S △PCN ,∴S △DFP =S △PBE =12×2×8=8, ∴S 阴=8+8=16.故答案是:16.【点睛】考查矩形的性质、三角形的面积等知识,解题的关键是证明S △PEB =S △PFD . 三、解答题21.(1)见解析; (2)51313 【解析】【分析】(1)结合网格图利用勾股定理确定点C 的位置即可得解;(2)根据三角形的面积列出关于BD 方程,求解即可得到答案.【详解】解:(1)如图:∵小正方形的边长均为1∴3AE =,2CE =;3BF CF ==∴2213AC AE CE =+=;2232BC BF CF =+=∴ABC V 即为所求.(2)如图:∵由网格图可知5AB =,3CH =,AC =BC =22ABC AB CH AC BD S ⋅⋅==V532⨯=∴BD =【点睛】本题考查了勾股定理在网格图中的的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.22.4S ;4S ;2S 2.【解析】【分析】设每个直角三角形的面积为S ,根据图形的特征得出S 1-S 2=4S ,S 2-S 3=4S ,两者相减得到S 1+S 3=2S 2,再代入S 1+S 2+S 3=10即可求解.【详解】解:设每个直角三角形的面积为S ,S 1﹣S 2=4S (用含S 的代数式表示)①S 2﹣S 3=4S (用含S 的代数式表示)②由①,②得,S 1+S 3=2S 2,因为S 1+S 2+S 3=10,所以2S 2+S 2=10.所以S 2=103. 故答案为:4S ;4S ;2S 2.【点睛】此题主要考查了勾股定理的证明,图形面积关系,根据已知得出S 1+S 3=2S 2,再利用S 1+S 2+S 3=10求出是解决问题的关键.23.(1)见解析;(2)见解析.【解析】【分析】(1)过点C 作CD CB ⊥,且点D 是格点即可.(2)作一个△BEC 与△BAC 全等即可得出图形.【详解】(1)解:如图,线段CD 就是所求作的图形.(2)解:如图,ABEC Y 就是所求作的图形【点睛】本题考查作图-应用与设计,平行四边形的判定等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.24.(1) 大货车用8辆,小货车用7辆;(2) y 与x 的函数解析式为y=100x+9400;当运往A 城镇的防护用品不能少于100箱,最低费用为9900元.【解析】【分析】(1)设大货车用x 辆,小货车用y 辆,然后根据题意列出二元一次方程组并求解即可; (2)设前往A 城镇的大货车为x 辆,则前往B 城镇的大货车为(8-x )辆,前往A 城镇的小货车为(10-x )辆,前往B 城镇的小货车为[7-(10-x )]辆,然后根据题意即可确定y 与x 的函数关系式;再结合已知条件确定x 的取值范围,求出总费用的最小值即可.【详解】解:(1)设大货车用x 辆,小货车用y 辆,根据题意得:15128152x y x y +=⎧⎨+=⎩解得:87x y =⎧⎨=⎩答:大货车用8辆,小货车用7辆;(2)设前往A城镇的大货车为x辆,则前往B城镇的大货车为(8-x)辆,前往A城镇的小货车为(10-x)辆,前往B城镇的小货车为[7-(10-x)]辆,根据题意得:y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+9400由运往A城镇的防护用品不能少于100箱,则12x+ 8 (10-x)≥100,解得x≥5且x为整数;当x=5时,费用最低,则:100×5+9400=9900元.答:y与x的函数解析式为y=100x+9400;当运往A城镇的防护用品不能少于100箱,最低费用为9900元.【点睛】本题考查了二元一次方程组和一次函数的应用,弄清题意列出二元一次方程组和一次函数解析式是解答本题的关键.25.(1)见解析;(2)见解析【解析】【分析】(1)根据面积为10的正方形的边长为10,可得三个并列的小正方形的对角线的长为10;(2)根据面积为8的正方形的边长为8,可得三个并列的小正方形的对角线的长为8.【详解】(1)如图所示即为所求.(2)如图所示即为所求.【点睛】本题主要考查了图形的设计,正确理解小正方形的面积的和等于拼成的正方形的面积是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省成都市都江堰外国语实验学校2020-2021学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.两个不等式的解在数轴上表示如图,则这两个不等式组成的不等式组的解是( )A .x <1或x >﹣3B .﹣3<x <1C .﹣3<x ≤1D .﹣3≤x <12.不等式组153x x -<⎧⎨≤⎩的解集为( )A .x <3B .x ≤3C .x <6D .x ≤63.若分式211x x --的值为零,则x 的值是( )A .±1B .1C .﹣1D .04.下列因式分解正确的是( ) A .x 2﹣4=(x+4)(x ﹣4) B .x 2+2x+1=x (x+2)+1 C .3mx ﹣6my=3m (x ﹣6y ) D .2x+4=2(x+2)5.如果不等式1ax >的解集是1x a<,则( ) A .0a < B .0a ≤C .0a >D .0a ≥6有意义,则字母x 的取值范围是( ) A .x ≥1B .x ≠2C .x ≥1且x ≠2D .x ≥﹣17.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( ) A .a=2,b=3 B .a=-2,b=-3 C .a=-2,b=3D .a=2,b=-38.如图,直线y =kx +b 交坐标轴于A (﹣5,0),B (0,7)两点,则不等式kx +b >0的解集是( )A .x <﹣5B .x >﹣5C .x >7D .x <﹣79.把多项式m 2(a ﹣2)﹣m (a ﹣2)因式分解,结果正确的是( ) A .(a ﹣2)(m 2﹣m ) B .m (a ﹣2)(m +1) C .m (a ﹣2)(m ﹣1)D .m (2﹣a )(m +1)10.某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶元,则可列出方程为( ) A .420420200.5x x -=- B .420420200.5x x -=-C .4204200.520x x -=- D .4204200.520x x-=-二、填空题11.分解因式:ab ﹣b =_____. 12.计算:3311m m m +++=______. 13.已知113x y -=,则分式x y xy-的值为_____. 14.如图,已知一次函数y=kx+b 的图象与正比例函数y=mx 的图象相交于点P (﹣3,2),则关于x 的不等式mx ﹣b≥kx 的解集为_____.15.如果490m n +=,2310m n -=,那么()()2223m n m n +--=______. 16.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 17.关于x 的不等式组2551132x a x x x +>⎧⎪--⎨≤-⎪⎩有且只有四个整数解,则a 的取值范围是_____.18.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__. 19.某运行程序如图所示,规定:从“输入一个值x 到结果是否95>”为一次程序操作,如果程序操作进行了二次才停止,那么x 的取值范围是________________.三、解答题 20.分解因式: (1)x 3﹣x ; (2)2a 2﹣4a +2; (3)m 4﹣2m 2+1. 21.解方程:21122x x x =+--. 22.解不等式组:()111233121x x x x +-⎧-≤⎪⎨⎪-<+⎩23.先化简,再求值:221(1)11x x x +÷--,其中x =4. 24.已知:如图一次函数y 1=﹣x ﹣2与y 2=x ﹣4的图象相交于点A . (1)求点A 的坐标;(2)若一次函数y 1=﹣x ﹣2与y 2=x ﹣4的图象与x 轴分别相交于点B 、C ,求△ABC 的面积.(3)结合图象,直接写出y 1≥y 2时x 的取值范围.25.设A =223()121a aa a a a -÷-+++. (1)化简A ;(2)当a =3时,记此时A 的值为f (3);当a =4时,记此时A 的值为f (4)……解关于x 的方程:22x -=f (4)+f (5)+…+f (15). 26.已知:关于x ,y 的方程组52,25 4.x y a x y a +=-⎧⎨-=+⎩的解满足0x y >>.(1)求a 的取值范围; (2)化简8232a a +--.27.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=_______________;(2)因式分解:(a+b)(a+b-4)+4;(3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.28.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)按照(2)中两种汽车进价不变,如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?参考答案1.C【分析】根据不等式组的解集在数轴上的表示方法即可得出结论.【详解】∵﹣3处是空心原点,且折线向右,1处是实心原点且折线向左,∴这两个不等式组成的不等式组的解是:﹣3<x≤1.故选:C.【点睛】本题主要考查了不等式组解集在数轴上的表示,熟练掌握不等式解集在数轴上的表示方法是解题的关键.2.B【分析】求出第一个不等式的解集,根据口诀“同大取大、同小取小、大小小大中间找、大大小小无解了”确定不等式组的解集.【详解】解:解不等式x﹣1<5,得:x<6,又x≤3,∴x≤3,故选:B.【点睛】本题考查解一元一次不等式组,掌握不等式组取解集的方法“同大取大、同小取小、大小小大中间找、大大小小无解了”是解题的关键.3.C【分析】先根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【详解】解:∵分式211xx--的值为零,∴21010xx⎧-=⎨-≠⎩,解得x=﹣1.故选:C.【点睛】本题主要考查了分式值为零的知识点,准确计算是解题的关键.4.D【解析】试题分析:A、原式利用平方差公式分解得到结果,即可做出判断;B、原式利用完全平方公式分解得到结果,即可做出判断;C、原式提取公因式得到结果,即可做出判断;D、原式提取公因式得到结果,即可做出判断.解:A、原式=(x+2)(x﹣2),错误;B、原式=(x+1)2,错误;C、原式=3m(x﹣2y),错误;D、原式=2(x+2),正确,故选D点评:此题考查了因式分解﹣运用公式法与提公因式法,熟练掌握因式分解的方法是解本题的关键.5.A【分析】根据不等式的性质解答,由于不等号的方向发生了改变,所以可判定a为负数.【详解】解:不等式ax>1两边同除以a时,若a>0,解集为x>1a;若a<0,则解集为x<1 a .故选A.【点睛】本题需注意,在不等式两边都除以一个负数时,应只改变不等号的方向,余下运算不受影响,该怎么算还怎么算.6.D【分析】直接利用二次根式和分式有意义的条件进而分析得出答案.【详解】有意义,∴x+1≥0且x+2≠0,解得:x≥﹣1.故选:D.【点睛】本题考查二次根式和分式有意义的条件,掌握二次根式和分式有意义的条件是解题的关键.7.B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.8.B【分析】kx+b>0可看作是函数y=kx+b的函数值大于0,然后观察图象在x轴上方,对应的自变量的取值范围即可得答案.【详解】根据题意,kx+b>0,即函数y=kx+b的函数值大于0,图象在x轴上方,对应的自变量的取值范围为x>﹣5,故不等式kx+b >0的解集是:x >﹣5, 故选B . 【点睛】本题考查了一次函数与一元一次不等式:对于一次函数y =kx+b ,当y >0时对应的自变量的取值范围为不等式kx+b >0的解集. 9.C 【分析】直接提取公因式a (a ﹣2),进而分解因式即可. 【详解】解:m 2(a ﹣2)﹣m (a ﹣2) =m (a ﹣2)(m ﹣1). 故选:C . 【点睛】本题考查了提公因式法分解因式.正确找出公因式是解题的关键. 10.B 【解析】设原价每瓶x 元,根据某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,可列方程. 解:设原价每瓶x 元,4204200.5x x--=20.故选B . 11.b (a ﹣1) 【分析】原式提取b 即可得到结果. 【详解】解:原式=b (a ﹣1), 故答案为:b (a ﹣1). 【点睛】本题考查提公因式法分解因式,掌握分解因式的方法是解题的关键.【解析】试题分析:利用同分母分式的加法法则计算即可,即原式=333(1)11m mm m++=++=3.考点:分式的加减法.13.﹣3【分析】根据已知条件先把1x-1y化成y xxy-,再代值计算即可得出答案.【详解】解:∵1x-1y=yxy-xxy=y xxy-=3,∴x yxy-=-y xxy-=-3;故答案为:-3.【点睛】本题考查了分式的加减.熟练掌握分式加减运算法则是解题的关键.14.x≥﹣3【分析】根据图象得出P点横坐标为﹣3,观察函数图象得在P点右侧,y=mx的函数在y=kx+b的函数图象上方,由此得到不等式mx﹣b≥kx的解集为x≥﹣3.【详解】由图象可知:P点横坐标为﹣3,当x≥﹣3时,y=mx的函数在y=kx+b的函数图象上方,即mx﹣b≥kx,所以关于x的不等式mx﹣b≥kx的解集是x≥﹣3.故答案为:x≥﹣3【点睛】本题主要考查对一次函数与一元一次不等式的理解和掌握,能根据图象得出当x≥﹣3时mx﹣b≥kx是解此题的关键.15.-900先对原式运用平方差公式进行因式分解,然后再整体代入求值即可. 【详解】原式=()()()()[23][23](4)(23)m n m n m n m n m n m n ++-+--=-+- ∵490m n +=,2310m n -= ∴原式=9010900-⨯=- 【点睛】本题主要考查了应用平方差公式进行因式分解和整体代入法,能够正确的进行因式分解是解题的关键.16.5a <且3a ≠ 【分析】直接解分式方程,进而利用分式方程的解是正数得出a 的取值范围,进而结合分式方程有意义的条件分析得出答案. 【详解】去分母得:122a x -+=-, 解得:5x a =-,50a ->,解得:5a <,当52x a =-=时,3a =不合题意, 故5a <且3a ≠. 故答案为5a <且3a ≠. 【点睛】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键. 17.6<a ≤9 【分析】分别求出每一个不等式的解集,根据不等式组的整数解个数可得答案. 【详解】解不等式2x +a >5x ,得:x <3a,。