1.3 光的受激辐射 激光原理及应用 电子课件

合集下载

激光原理与应用讲教学课件

激光原理与应用讲教学课件
规定使用场所
激光设备应在指定的、安全的场所使用,并确保该场所没有其他人 员或物体受到激光的潜在危害。
规定操作流程
使用激光设备前,必须阅读并理解操作手册,并按照手册中的步骤 进行操作。任何违反操作流程的行为都可能导致严重的后果。
定期检查和维护
激光设备应定期进行检查和维护,以确保其处于良好的工作状态,并 消除任何潜在的安全隐患。
亮度高
激光的能量密度很大,亮 度高,可以在很短的时间 内集中很大的能量
激光的分 类
按工作物质分类 气体激光器、液体激光器、固体激光 器、化学激光器和自由电子激光器等
按输出波长分类
远红外激光器、近红外激光器、可见 激光器、紫外激光器、X射线激光器 和超短激光器等
材料加工
01
02
利用激光的高能量密度,实现金属和非金属材料的切割、 焊接、打孔等。
应用:汽车制造、航空航天、电子制造。
03
04
激光快速成型
利用激光制造三维物体,具有速度快、精度高、成本低 等优点。
05
06
应用:产品原型制造、医疗器械制造。
04 激光技术的前沿 与展望
高功率激光技 术
总结词
高功率激光技术是目前激光领域的前沿技术之一,是推动激光技术进步的重要力 量。
激光原理与应用教学课件
contents
目录
• 激光原理概述 • 激光原理的基本概念 • 激光器件及应用 • 激光技术的前沿与展望 • 激光安全与防护
01 激光原理概述
激光的产生
激光是受激辐射光放大的简称,是原子或分子中的电子在吸收能量后,从低能级跃 迁到高能级,再从高能级回落到低能级时,释放的能量以光子的形式放
详细描述
光纤激光器利用光纤作为增益介质,具有体积小、散热效果好、易于维护等优点。同时,光纤激光器的光束质量 也优于传统固体激光器,能够实现更远距离的传输和更好的聚焦效果。目前,光纤激光器已经被广泛应用于工业、 医疗、军事等领域。

光的受激辐射 激光原理及应用 [电子教案]电子

光的受激辐射  激光原理及应用 [电子教案]电子

光的受激辐射激光原理及应用第一章:激光概述1.1 激光的定义激光的中文全称:Light Amplification Stimulated Emission of Radiation 激光的特点:相干性好、平行度好、亮度高、单色性好1.2 激光的产生原理受激辐射:外来的光子与一个束缚电子发生能量交换,使电子从较低能级跃迁到较高能级,成为激发态电子。

激发态电子回到较低能级时,会释放出一个与外来光子频率、相位、偏振方向相同的光子,这就是受激辐射。

激光的放大过程:受激辐射产生的光子与入射光子具有相同的频率和相位,导致更多的束缚电子发生受激辐射,从而实现光的放大。

1.3 激光的应用领域科研领域:光谱分析、激光干涉、激光雷达等。

工业领域:激光切割、激光焊接、激光打标等。

医疗领域:激光手术、激光治疗、激光美容等。

生活领域:激光打印、激光投影、激光视盘等。

第二章:激光器的基本原理2.1 激光器的组成激光介质:产生激光的物质,如半导体、气体、固体等。

泵浦源:提供能量,使激光介质中的电子发生跃迁。

光学谐振腔:限制激光的传播方向,增强激光的放大效果。

输出耦合器:将激光输出到外部。

2.2 激光的产生过程泵浦源激发激光介质,使电子从基态跃迁到激发态。

激发态电子回到基态时,发生受激辐射,产生激光。

激光在光学谐振腔内多次反射,实现光的放大。

输出耦合器将激光输出到外部。

2.3 激光器的类型及特点气体激光器:采用气体作为激光介质,如二氧化碳激光器、氦氖激光器等。

固体激光器:采用固体材料作为激光介质,如钕激光器、钇铝石榴石激光器等。

半导体激光器:采用半导体材料作为激光介质,如激光二极管等。

光纤激光器:采用光纤作为激光介质,具有高亮度、低阈值等优点。

第三章:激光的性质与应用3.1 激光的相干性3.2 激光的平行度3.3 激光的亮度亮度高的特点:可用于激光投影、激光显示等。

3.4 激光的单色性3.5 激光的应用实例激光切割:用于金属和非金属材料的切割加工。

激光原理及应用PPT课件

激光原理及应用PPT课件

激光治疗
通过激光照射病变组织,达到治 疗目的,如激光治疗近视、祛斑
等。
激光手术
利用激光进行微创手术,具有出 血少、恢复快、精度高等优点, 如激光心脏手术、激光眼科手术
等。
激光诊断
利用激光光谱技术对人体组织进 行检测和分析,为疾病诊断提供
依据。
军事国防领域应用
激光雷达
利用激光雷达进行目标探测、识别和跟踪,具有高分辨率、抗干 扰能力强等特点。
微型化与集成化
发展微型激光器,实现与其他光电器件的集成,推动光电子集成技 术的发展。
新型激光技术
研究新型激光技术,如光纤激光器、化学激光器等,拓展激光器的 应用领域。
高功率、高效率、高稳定性挑战
高功率激光器
提高激光器的输出功率,满足高能激光武器、激光聚变等领域的 需求。
高效率激光器
优化激光器的能量转换效率,降低能耗,提高激光器的实用性。
02
03
工作原理
通过激励固体增益介质 (如晶体、玻璃等)中的 粒子,实现粒子数反转并 产生激光。
特点
结构紧凑、效率高、光束 质量好。
应用领域
工业加工、医疗、科研等。
气体激光器
工作原理
利用气体放电激励气体分子或原子, 使其产生能级跃迁并辐射出激光。
特点
应用领域
激光切割、焊接、打孔等工业应用。
输出功率大、光束质量好、效率高。
激光原理及应用PPT课 件
contents
目录
• 激光原理基本概念 • 激光技术发展历程及现状 • 激光器类型及其特点分析 • 激光在各领域应用案例分析 • 激光安全问题及防护措施探讨 • 未来发展趋势预测与挑战分析
激光原理基本概念

《激光原理与技术》课件 (3)

《激光原理与技术》课件 (3)

现在求P—P+dP中的光子态数 P h , dP h d
Px
c
c
dVP 4πP2dP
P
Nl
4πP 2dP
δV p
4π (h
/ c)2 (hd
h3 /V
/ c)
4π 2
c3
V
d
M

c3
2
V
d
2

c3
2
V
d
n
V
d
o Py
dP Pz
nv
8π 2
c3
单位体积单位频率间隔的光子态数—光子谱密度
结论: 光波模 等价 光子态
即:属于一个模式的光子处于相同的量子状态
一个光波模对应一个光子态
1.1 相干性的光子描述(光波模式与光子态)
3. 光子简并度 n
n
光子总数 光子态数
一个光子态中平均光子数
=同态光子数
=同模光子数
=同相格光子数
在给定的体积内,一般存在大量光波模式。因而每个模式的光波能 量很小,或者说同态的光子数很很少,或者说光子简并度很小。
y,
z)和动量(
P
—Px,
Py,
Pz)
以(x, y, z, Px, Py, Pz)构成描述粒子运动状态的相宇空间。
经典(牛顿)粒子的状态 与相宇中的一个点对应
而光子的状态遵从测不准关系,即
x
x

Px Px
ΔxΔPx h
ΔyΔPy h ΔxΔyΔzΔPxΔPyΔPz h3
ΔzΔPz
h
x
x
h3
对于单电子原子,组态与状态是一致的;而对于多电 子原子则完全不同, 状态的推求可以采用角动量耦合。

《光的受激辐射》课件

《光的受激辐射》课件

PART 02
光的受激辐射原理
光的粒子性
光的粒子性描述
光的粒子性与能量
光是由粒子组成的,这些粒子被称为 光子。
每个光子携带一定的能量,与其波长 成反比。
光的粒子性实验证明
通过光电效应实验,爱因斯坦解释了 光的粒子性,并因此获得了诺贝尔物 理学奖。
原子能级结构
原子能级的概念
原子中的电子在不同的能级上运动,这些能级由 不同的能量值表示。
原子能级的稳定性
在不受外界影响的情况下,原子能级是稳定的。
能级的跃迁
当原子受到外界能量的影响时,电子可以从一个 能级跃迁到另一个能级。
受激辐射的过程
受激辐射的描述
当高能级上的原子受到某种外界光子的影响时,它会释放出一个 与外界光子完全相同的光子。
受激辐射的实验证明
通过实验,人们观察到了受激辐射现象,并进一步发展出了激光技 术。
03
响。
受激辐射的重要性
激光技术应用
受激辐射产生的相干光为激光提 供了源源不断的能量,广泛应用 于工业、医疗、通信等领域。
通信技术革新
光纤通信利用激光的单色性好、 方向性强等特点,实现了高速、 大容量的信息传输。
医学领域突破
激光在医学领域的应用如激光治 疗、激光手术等,为疾病的诊断 和治疗提供了新的手段。
受激辐射的特点
释放的光子与原光子频率相同,方向 相同,相位相同,传播方向相反。
ห้องสมุดไป่ตู้
受激辐射的发现
01
1917年,爱因斯坦提出受激辐射理论,解释了为什么某些物质 在特定条件下能够自发地产生光。
02
1960年,梅曼发明了第一台红宝石激光器,实现了受激辐射产
生的光放大,标志着激光技术的诞生。

1.3光的受激辐射

1.3光的受激辐射

停止外部光源照射后, 从示波器上可观察到: ① 荧光强度曲线遵从指数律,即证实了自发发射光功率按指数 律衰减 A21 t
q (t ) q 0 e
② 测出荧光寿命, 则可(按 =1/A21)求出。
(i) Anm——从En 跃迁到Em的自发辐射几率
E3 E2 E1
E 2 E1 h
E2 E1

N2 h N1

(b) 受激辐射系数B21: 设外来光场单色能量密度ρv (入射光子满 足hv =E2 - E1),处于能级E2上的原子数密度为n2,在从t 到t+dt的 时间间隔内,有 -dn2个原子由于受辐射作用,而由E2跃迁到E1, 则有 -dn2=B21ρv n2dt (1-30)
E2 E1
受激发射是产生激光的最重要机理
外来光子
受激辐射光子
③受激发射的粒子系统是相干光源(相同→相干):
受激辐射是在外界辐射场的控制下的发光过程,因而各原 子的受激发射的相位不再是无规则分布的,而应有和外界辐射 场相同的相位。量子电动力学可证明:受激辐射光子与入射光 子属于同一光子态。
受激辐射与自发辐射的重要区别——相干性
6、瑞利-金斯公式——1900年瑞利--金斯利用经典电动力学和统 计力学(将固体当作谐振子且能量按自由度均分原则及电磁辐射 理论)得到一个公式,此公式在短波区域明显与实验不符,而理 论上却找不出错误——“紫外灾难” ,像乌云遮住了物理学睛朗的 天空。
( v , T )( 10
6 5 4 3 2 1 0 1 2 3
,即
t = 0 时 n2 = n20
t= t 时刻, E2上粒子数为n2(t)即 t = t 时 n2=n2(t) ∵ E2上粒子数减少的唯一去向是E1 ∴ dn2(t) = -dn2= -A21n2(t)dt (粒子只有两个能级)

光的受激辐射 激光原理及应用 [电子教案]电子

光的受激辐射  激光原理及应用 [电子教案]电子

光的受激辐射——激光原理及应用第一章:激光概述1.1 激光的定义1.2 激光的特点1.3 激光的发展历程第二章:光的受激辐射2.1 受激辐射的概念2.2 激光的产生原理2.3 激光的放大原理第三章:激光器的工作原理3.1 激光器的类型3.2 气体激光器3.3 固体激光器3.4 半导体激光器第四章:激光的应用领域4.1 激光在工业中的应用4.2 激光在医疗领域的应用4.3 激光在科研领域的应用4.4 激光在信息技术领域的应用第五章:激光技术的发展趋势5.1 激光技术的创新点5.2 我国激光技术的发展现状5.3 激光技术的发展前景第六章:激光在通信技术中的应用6.1 激光通信的基本原理6.2 激光通信的优势与挑战6.3 光纤通信技术的发展6.4 卫星激光通信的应用前景第七章:激光在材料加工中的应用7.1 激光切割与焊接7.2 激光打标与雕刻7.3 激光烧蚀与表面处理7.4 激光加工技术的创新与发展第八章:激光在生物医学领域的应用8.1 激光手术与治疗8.2 激光诊断与成像8.3 激光生物传感器与检测技术8.4 激光在基因工程与药物研发中的应用第九章:激光在科研与探索中的应用9.1 激光光谱分析与计量9.2 激光加速与粒子物理研究9.3 激光在天文观测中的应用9.4 激光在地球与环境科学研究中的作用第十章:未来激光技术的发展趋势与挑战10.1 激光技术在新能源领域的应用前景10.2 激光技术在智能制造中的应用与挑战10.3 激光技术在国防科技中的应用与发展10.4 激光技术在太空探索与星际通信中的潜在价值重点和难点解析1. 激光的定义与特点:理解激光的特定波长、相干性、平行性、亮度等特点,以及激光与普通光线的区别。

2. 激光的产生原理:掌握激光产生的基本过程,包括受激辐射、增益介质、光学谐振腔的作用。

3. 激光器的工作原理:了解不同类型激光器(气体、固体、半导体)的结构和工作机制,特别是半导体激光器的广泛应用。

《激光原理》1.3光的受激辐射(新)

《激光原理》1.3光的受激辐射(新)

可见: 高能级E2上粒子数随时间t按指数律衰减。
( e )自发发射光功率q(t) (即光强与时间)t的关系:
∵ 参予自发发射的每个粒子发射一个光子hv

q(t) h
dn2 dt
h
A21n2 (t) h
A n e A21 t 21 20
q e A21 t 0
其中 q0= h v A21n20 是 t =0 时的自发发射光功率
∴ dn2 A21n2dt 或
A21
1 n2
dn2 dt
(1-25)
关于数字下标的说明(下同):
①单下标----能级的量 [如n2为E2上粒子数(密度)] ②双下标----过程的量, 先初态后末态(如A21表示从E2跃迁 到E1的自发发射系数)
A21
1 n2
dn2 dt
从式(1-25)可知
(c) A21的物理意义:
可见: W21是单位时间内粒子因受激发射由E2跃迁到E1 的几率;且与外电磁场ρv有关。
注意: 当B21 一定时,外来光的单色能量密度ρv愈大,受 激辐射几率W21 就愈大。
(3).受激吸收:——原处于低能级E1的粒子,受到能量恰为 hv=E2-E1的光子照射而吸收该光子的能量,
跃迁到高能级E2
(a)受激吸收系数B12: 设E1的粒子数(密度)为n1,单色辐射能量密 度ρv的光入射(入射光子满足hv=E2-E1)时,在单位体积、时间 间隔dt内吸收光子而由E1跃迁到E2的粒子数为
一 经典辐射理论
经典的辐射理论引用偶极子的概念,反映了光的发射和吸 收过程的规律。
偶极子强迫振动时释放能量 —— 受激发射现象 偶极子强迫振动时吸收能量 —— 受激吸收现象 偶极子阻尼振动时释放能量 —— 自发发射现象
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 如果 g1 g2 ,则有B12B21
在折射率为的介质中, ③式应改写为:
A2 1
B2 1
8 3hν3
c3






第一章 上一页 回首页 下一页 回末页 回目录
第 §1.3 光的受激辐射
一 章
1.3.4 自发辐射光功率与受激辐射光功率
辐 1. 某时刻自发辐射的光功率体密度 q自 (t)hνn2(t)A21
与 激 光
式中k为波尔兹曼常数。
8ch3ν3
1

e kT1
产 生
➢总辐射能量密度 : 0 νdν



第一章 上一页 回首页 下一页 回末页 回目录
第 §1.3 光的受激辐射 一 章 1.3.2 光和物质的作用
➢自发辐射

光与物质的相互作用有三种不同的基本过程:➢受激辐射
射 理
1. 自发辐射
1

e kT1
,则有:
q激(t) q自(t)
8ch3ν3
ν
1

ekT1
生 的
2. 以温度T=3000K的热辐射光源,发射的波长为500nm例:
条 件
q激(ekT 1
1 20000
第一章 上一页 回首页 下一页 回末页 回目录
第 §1.3 光的受激辐射
一 章
1.3.1 黑体热辐射
4. 辐射能量密度公式

射 ➢单色辐射能量密度 ν :辐射场中单位体积内,频率在 ν 附近的单位
理 频率间隔中的辐射能量 论
ν
d
dVdv
概 ➢在量子假设的基础上,由处理大量光子的量子统计理论得到真空中 ν
要 与温度T及频率 ν的关系,即为普朗克黑体辐射的单色辐射能量密度公式

d2nB12n1dt
光 式中B12称为爱因斯坦受激吸收系数

生 的 条 件
则(3)W同12理(即令受W激12吸B收12几率,)则的有物:理W意12义为B1:2单位n时d1dn2间t 内,在外来单色能量密度 的
光照下,由E1能级跃迁到E2能级的粒子数密度占E1能级上总粒子数密度的百分比。
第一章 上一页 回首页 下一页 回末页 回目录
第 §1.3 光的受激辐射
一 章
1.3.3 自发辐射、受激辐射和受激吸收之间的关系
辐 射
1. 在光和原子相互作用达到动平衡的条件下,有如下关系:
A 2n 1 2 d B t21 ν n 2 d B t12 ν n 1 d t


自发辐射光子数 受激辐射光子数 受激吸收光子数
论 概
由波尔兹曼分布定律可知:
q2(1 t)n2(t)A 2h 1ν
第一章 上一页 回首页 下一页 回末页 回目录
第 §1.3 光的受激辐射
一 章
1.3.2 光和物质的作用
2. 受激辐射
辐 射 理
(1) 受激辐射:高能级E2上的原子当受到外
来能量hE2E1的光照射时向低能级E1
跃迁,同时发射一个与外来光子完全相同的
论 光子,如图(1-8)所示。

与 ➢自发辐射的平均寿命:原子数密度由起始值降至
激 它的1/e的时间
1 A21
光 产 生 的
➢设高能级En跃迁到Em的跃迁几率为Anm,则激发态 En的自发辐射平均寿命为:
1 Anm
m
条 ➢已知A21,可求得单位体积内发出的光功率。若一个光子的能量为 hν ,某时 件 刻激发态的原子数密度为n2(t),则该时刻自发辐射的光功率密度(W/m3)为:
于E2能级总粒子数密度的百分比。

激 (5) 注意:自发辐射跃迁几率就是自发辐射系数本身,而受激辐射的跃迁几率
光 决定于受激辐射系数与外来光单色能量密度的乘积。





第一章 上一页 回首页 下一页 回末页 回目录
第 §1.3 光的受激辐射
一 章
1.3.2 光和物质的作用
辐 射 理 论
3. 受激吸收
➢受激跃迁
论 ➢自发辐射: 高能级的原子自发地从高能级E2向低能级E1跃迁,同时放出能

量为 hE2E1的光子。
要 ➢自发辐射的特点:各个原子所发的光向空间各个方向传播,是非相干光。
与 图(1-6)表示自发辐射的过程。

光 产
➢对于大量原子统计平均来说,从E2经自发辐射跃 迁到E1具有一定的跃迁速率。
第 §1.3 光的受激辐射
一 章
1.3.2 光和物质的作用
➢上式可改写为:

A21
dn2 n2dt
射 理
A21的物理意义为:单位时间内,发生自发辐射的粒子数密度占处于E2 能级总粒子数密度的百分比。即每一个处于E2能级的粒子在单位时间内 发生的自发跃迁几率。

概 ➢上方程的解为:n2(t)n20eA2t1, 式中n20为t=0时处于能级E2的原子数密度。
(量1)处于h低 能E 级2E1E 的1)原的子刺受激到作外用来,光完子全(吸能
收光子的能量而跃迁到高能级E2的过程。 如图(1-9)所示。

图(1-9)光的受激吸收过程
要 与
(2) 同理从E1经受激吸收跃迁到E2具有一定的跃迁速率,在此假设外来光的光 场单色能量密度为 ,且低能级E1的粒子数密度为n1,则有:
式中的参数意义同自发辐射。B21称为爱因斯坦受激辐射系数,简称受激辐射系数。
第一章 上一页 回首页 下一页 回末页 回目录
第 §1.3 光的受激辐射 一
章 1.3.2 光和物质的作用
辐 射 理
(4) 令 W21B21 ,则有:W21B21nd2dn2t
论 概 要
则色能W量21(密即度受为激辐 射的的光跃照迁下几,率E)2的能物级理上意发义生为受:激单辐位射时的间粒内子,数在密外度来占单处

同理,受激辐射的光功率体密度 q激 (t)hνn2(t)B 21ν

受激辐射光功率体密度与自发辐射光功率体密度之比为:
论 概
q q 激 自 ( (tt)) hh νν n n 2(2t()tB )A 221ν 1B A 221ν 18ch 3ν3 ν
要 与 激 光 产
对于平衡热辐射光源
8ch3ν3
第 §1.3 光的受激辐射

章 将上式与第三节中由普朗克理论所得的黑体单色辐射能量密度公式比
辐 较可得: 射
A 21 B 21
8 h ν 3 c3


g 1 B12 g 2 B 21

论 ③式和④式就是爱因斯坦系数间的基本关系,虽然是借助空腔热平衡这一 概 过程得出的,但它们普遍适用。
要 与 激

图(1-8)光的受激辐射过程
要 (2)受激辐射的特点:
与 激
➢只有 hE2E1当时,才能发生受激辐射
光 ➢受激辐射的光子与外来光子的特性一样, 如频率、位相、偏振和传播方向

生 的 条 件
(3) 同理从E2经受激辐射跃迁到E1具有一定的跃迁速率,在此假设外来光的光
场单色能量密度为
,则有:
d2nB2n 12dt
n2
g2
E2E1
e kT

e kT

要 与 激 光
n1 g1
将②代入①得:(B21νA21)gg12ekhνTB12ν
由此可算得热平衡空腔的单色辐射能量密度 ν 为:
产 生 的
ν
A21 B21
1
B12g1

ekT
1
B21g2
8ch3ν3
1

e kT1


第一章 上一页 回首页 下一页 回末页 回目录
第 §1.3 光的受激辐射
一 章
1.3.1 黑体热辐射

1. 绝对黑体又称黑体:某一物体能够完全吸收任何波长的电磁辐射。自 然界中绝对黑体是不存在的

理 2. 空腔辐射体是一个比较理想的绝对黑体
论 概 3. 平衡的黑体热辐射:辐射过程中始终保持温度T不变









第一章 上一页 回首页 下一页 回末页 回目录

d2nA2n 12dt
图(1-6)自发辐射
的 式中“-”表示E2能级的粒子数密度减少;n2为某时刻高能级E2上的原子 条 数密度(即单位体积中的原子数);dn2表示在dt时间间隔内由E2自发跃迁 件 到E1的原子数。A21称为爱因斯坦自发辐射系数,简称自发辐射系数。
第一章 上一页 回首页 下一页 回末页 回目录
相关文档
最新文档