BP神经网络原理及应用

合集下载

BP神经网络及其应用

BP神经网络及其应用

BP神经网络及其应用摘要:人工神经网络是最近发展起来的十分热门的交叉学科,有着非常广泛的应用前景。

文着重研究了bp神经网络结构、算法原理、介绍了bp网络改进算法,最后将改进的bp算法应用与变压器故障诊断。

关键词: bp神经网络;应用;故障诊断1、神经元模型人工神经网络(artificial neural networks,ann)是对人脑神经系统的近似模拟。

神经网络由许多人工神经元互连组成,能接受并处理信息,网络的信息处理由神经元之间的连接权值来实现。

1943年,mcdulloh和pitts根据生物神经元的结构和功能,建立了人工神经元模型如图1,一个基本的神经元i,它有n个输入,每个输入都通过一个适当的权值w与神经元相连。

是神经元的输入, 是神经元i的阀值; ,分别是神经元i对的权值;是神经元的输出;圆形代表内部求和函数,它将输入求和得到神经元的静输入。

f( )是神经元的激励函数,它决定神经元受到输入时的输出。

激励函数f( )有多种形式,如sigmoid函数、阶跃函数和线性函数等。

2、bp神经网络基本思想将bp网络理论学习算法转化为实际的学习过程,其原理如下:如图4-2所示,令i = { a1,..., an}为输入层故障诊断向量,o={ c1,...,cj}为输出层故障诊断向量,h={b1,,...,bp}为隐含层神经元数,v=vn×p与w=wp×q,为各层之间连接权值,k=(1,2,..., m)为给定的样本数。

先给li层单元与lh层单元之间、lh层单元与lo层单元之间的连接权以及lh层单元阀值θi、lo层单元阀值γi赋[-ε,+ε]区间的随机值份(ε≦1)。

对每个模式对(a k,tk)(k=1,2,...,m)的学习步骤如下:(1)将输入模式ak送到li层,li层单元的激活值ah通过连接权矩阵v送到lh层,产生lh层新的净输入netbi,进而产生lh层单元的输出值bi式中h=1,2,...,n;i=1,2,...,q。

bp网络原理

bp网络原理

bp网络原理BP网络,即反向传播神经网络(Backpropagation Neural Network),是一种基于梯度下降算法的前馈神经网络。

它是一种常用的人工神经网络模型,被广泛应用于模式识别、预测和分类等任务中。

BP网络的基本原理是建立一个多层的神经网络结构,包括输入层、隐藏层和输出层。

每个神经元都与下一层的所有神经元连接,并通过权重连接进行信息传递。

输入信号从输入层经过权重连接传递到隐藏层,再经过隐藏层的激活函数作用后传递到输出层。

BP网络的训练过程主要分为前向传播和反向传播两个阶段。

在前向传播阶段,输入样本经过网络的各层神经元,得到输出结果。

每个神经元将输入信号与权重相乘并累加,然后经过激活函数进行非线性转换,得到该神经元的输出。

在反向传播阶段,通过计算输出层和期望输出之间的误差,按照梯度下降的方法不断调整每个神经元的权重,以最小化误差。

误差通过链式法则从输出层回传到隐藏层和输入层,根据权重的梯度进行更新。

反复迭代上述的前向传播和反向传播过程,直到网络的输出误差满足要求或训练次数达到指定值为止。

BP网络具有较好的非线性拟合能力和学习能力。

它的优点在于能够通过训练样本自动调整权重,从而对输入样本进行分类和预测。

然而,BP网络也存在一些问题,如容易陷入局部最小值、训练速度慢等。

为了克服BP网络的局限性,研究者们提出了一些改进方法,如改进的激活函数、正则化技术、自适应学习率等。

这些方法在提高网络性能和加速训练过程方面起到了积极的作用。

总结起来,BP网络是一种基于梯度下降算法的前馈神经网络,通过前向传播和反向传播的方式不断调整神经元的权重,以实现输入样本的分类和预测。

虽然存在一些问题,但通过改进方法可以提高其性能和训练速度。

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用BP神经网络(Back Propagation Neural Network)是一种基于梯度下降算法的人工神经网络模型,具有较广泛的应用。

它具有模拟人类神经系统的记忆能力和学习能力,可以用来解决函数逼近、分类和模式识别等问题。

本文将介绍BP神经网络的原理及其在MATLAB中的应用。

BP神经网络的原理基于神经元间的权值和偏置进行计算。

一个标准的BP神经网络通常包含三层:输入层、隐藏层和输出层。

输入层负责接收输入信息,其节点数与输入维度相同;隐藏层用于提取输入信息的特征,其节点数可以根据具体问题进行设定;输出层负责输出最终的结果,其节点数根据问题的要求决定。

BP神经网络的训练过程可以分为前向传播和反向传播两个阶段。

前向传播过程中,输入信息逐层传递至输出层,通过对神经元的激活函数进行计算,得到神经网络的输出值。

反向传播过程中,通过最小化损失函数的梯度下降算法,不断调整神经元间的权值和偏置,以减小网络输出与实际输出之间的误差,达到训练网络的目的。

在MATLAB中,可以使用Neural Network Toolbox工具箱来实现BP神经网络。

以下是BP神经网络在MATLAB中的应用示例:首先,需导入BP神经网络所需的样本数据。

可以使用MATLAB中的load函数读取数据文件,并将其分为训练集和测试集:```data = load('dataset.mat');inputs = data(:, 1:end-1);targets = data(:, end);[trainInd, valInd, testInd] = dividerand(size(inputs, 1), 0.6, 0.2, 0.2);trainInputs = inputs(trainInd, :);trainTargets = targets(trainInd, :);valInputs = inputs(valInd, :);valTargets = targets(valInd, :);testInputs = inputs(testInd, :);testTargets = targets(testInd, :);```接下来,可以使用MATLAB的feedforwardnet函数构建BP神经网络模型,并进行网络训练和测试:```hiddenLayerSize = 10;net = feedforwardnet(hiddenLayerSize);net = train(net, trainInputs', trainTargets');outputs = net(testInputs');```最后,可以使用MATLAB提供的performance函数计算网络的性能指标,如均方误差、相关系数等:```performance = perform(net, testTargets', outputs);```通过逐步调整网络模型的参数和拓扑结构,如隐藏层节点数、学习率等,可以进一步优化BP神经网络的性能。

bp人工神经网络的原理及其应用

bp人工神经网络的原理及其应用

廷塑签凰.B P人工神经网络的原理及其应用焦志钦(华南理工大学,广东广州510000)f}商鞫人工神经网络是计算智能和机器学习研究中最活跃的分交之一。

本文对神经网络中的BP算法的原理做了详尽的阐述,并用M a da b 程序对其进行了应用。

表明它具有强大的拟合功能。

房;建闭B P算法;M adab1人工神经网络的发展人工神经网络是一个由多个简单神经元相互关联构成的能够实现某种特定功能的并行分布式处理器。

单个神经元由杈值、偏置值、净输^和传输函数组成。

多输入单神经元模型如图1—1所示。

岛见:●仇图1—1多输入单神经元模型其中P为输入值,w.为连接权值,b为偏置值,f似o√为传输函数。

神经元值n=w p+b,输出值为a=f M。

人工神经网络的第一个应用是感知机网络和联想学习规则。

不幸的是,后来研究表明基本的感知机网络只能解决有限的几类问题。

单层感知机只能解决线性分类问题。

不能解决异或问题,也不能解决非线性问题,因此就有单层感知机发展为多层感知机。

多层神经网络中—个重要的方法是B P算法。

BP网络属于多层前向网络,如图1—2所示:卫咒鼍旬k图卜2卵网络模型2B P算法B P网络计算方法如式(2—1)所示,为简化,将神经元的阈值8视为连接权值来处理,并令xo=go=ho=一1,故式(5-1)可以改写为式(2—2)。

92‘i互%蕾一8少j=I,2,…,,17也=,f∑峭一日.J j卢7,22,…,n2(2,1)^=,f2郴一日。

Jj卢7,,…,(2—1)心y,--f凭峭叫i j=1,2,…,n29=7i互w刚∥j=1,2,..’,几7^-f嚷郴一日小』=7,2,…,n2(2—2)M=f f三峭一日,Jj j=l,2,…,n2,=,B P算法是一种有导师的学习算法,这种算法通常是应用最速下降法。

图2—1描述了B P网络的一部分,其中包括工作信号(实线)和误差信号(虚线)两部分。

2002。

10。

1。

0。

’。

年。

bp神经网络的原理

bp神经网络的原理

bp神经网络的原理BP神经网络(也称为反向传播神经网络)是一种基于多层前馈网络的强大机器学习模型。

它可以用于分类、回归和其他许多任务。

BP神经网络的原理基于反向传播算法,通过反向传播误差来调整神经网络的权重和偏差,从而使网络能够学习和适应输入数据。

BP神经网络的基本结构包括输入层、隐藏层和输出层。

每个层都由神经元组成,每个神经元都与上一层的所有神经元连接,并具有一个权重值。

神经元的输入是上一层的输出,通过加权和和激活函数后得到输出。

通过网络中的连接和权重,每层的输出被传递到下一层,最终得到输出层的结果。

BP神经网络的训练包括两个关键步骤:前向传播和反向传播。

前向传播是指通过网络将输入数据从输入层传递到输出层,计算网络的输出结果。

反向传播是基于网络输出结果与真实标签的误差,从输出层向输入层逆向传播误差,并根据误差调整权重和偏差。

在反向传播过程中,通过计算每个神经元的误差梯度,我们可以使用梯度下降算法更新网络中的权重和偏差。

误差梯度是指误差对权重和偏差的偏导数,衡量了误差对于权重和偏差的影响程度。

利用误差梯度,我们可以将误差从输出层反向传播到隐藏层和输入层,同时更新每层的权重和偏差,从而不断优化网络的性能。

通过多次迭代训练,BP神经网络可以逐渐减少误差,并提高对输入数据的泛化能力。

然而,BP神经网络也存在一些问题,如容易陷入局部最优解、过拟合等。

为了克服这些问题,可以采用一些技巧,如正则化、随机初始权重、早停等方法。

总结而言,BP神经网络的原理是通过前向传播和反向传播算法来训练网络,实现对输入数据的学习和预测。

通过调整权重和偏差,网络可以逐渐减少误差,提高准确性。

BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例BP(Back Propagation)人工神经网络是一种常见的人工神经网络模型,其基本原理是模拟人脑神经元之间的连接和信息传递过程,通过学习和调整权重,来实现输入和输出之间的映射关系。

BP神经网络模型基本上由三层神经元组成:输入层、隐藏层和输出层。

每个神经元都与下一层的所有神经元连接,并通过带有权重的连接传递信息。

BP神经网络的训练基于误差的反向传播,即首先通过前向传播计算输出值,然后通过计算输出误差来更新连接权重,最后通过反向传播调整隐藏层和输入层的权重。

具体来说,BP神经网络的训练过程包括以下步骤:1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。

2.前向传播:将输入向量喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到输出值。

3.计算输出误差:将期望输出值与实际输出值进行比较,计算得到输出误差。

4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。

5.更新权重:根据反向传播得到的误差梯度,使用梯度下降法或其他优化算法更新连接权重。

6.重复步骤2-5直到达到停止条件,如达到最大迭代次数或误差小于一些阈值。

BP神经网络的训练过程是一个迭代的过程,通过不断调整连接权重,逐渐减小输出误差,使网络能够更好地拟合输入与输出之间的映射关系。

下面以一个简单的实例来说明BP神经网络的应用:假设我们要建立一个三层BP神经网络来预测房价,输入为房屋面积和房间数,输出为价格。

我们训练集中包含一些房屋信息和对应的价格。

1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。

2.前向传播:将输入的房屋面积和房间数喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到价格的预测值。

3.计算输出误差:将预测的价格与实际价格进行比较,计算得到输出误差。

4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。

BP神经网络模型应用实例

BP神经网络模型应用实例

BP神经网络模型第1节基本原理简介近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注.目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。

在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。

多层感知机神经网络的研究始于50年代,但一直进展不大。

直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,如图34-1所示。

BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。

对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。

节点的作用的激励函数通常选取S 型函数,如Qx e x f /11)(-+=式中Q 为调整激励函数形式的Sigmoid 参数。

该算法的学习过程由正向传播和反向传播组成。

在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。

每一层神经元的状态只影响下一层神经输入层 中间层 输出层 图34-1 BP 神经网络模型元的状态。

如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。

社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。

BP神经网络实验报告

BP神经网络实验报告

BP神经网络实验报告一、引言BP神经网络是一种常见的人工神经网络模型,其基本原理是通过将输入数据通过多层神经元进行加权计算并经过非线性激活函数的作用,输出结果达到预测或分类的目标。

本实验旨在探究BP神经网络的基本原理和应用,以及对其进行实验验证。

二、实验方法1.数据集准备本次实验选取了一个包含1000个样本的分类数据集,每个样本有12个特征。

将数据集进行标准化处理,以提高神经网络的收敛速度和精度。

2.神经网络的搭建3.参数的初始化对神经网络的权重和偏置进行初始化,常用的初始化方法有随机初始化和Xavier初始化。

本实验采用Xavier初始化方法。

4.前向传播将标准化后的数据输入到神经网络中,在神经网络的每一层进行加权计算和激活函数的作用,传递给下一层进行计算。

5.反向传播根据预测结果与实际结果的差异,通过计算损失函数对神经网络的权重和偏置进行调整。

使用梯度下降算法对参数进行优化,减小损失函数的值。

6.模型评估与验证将训练好的模型应用于测试集,计算准确率、精确率、召回率和F1-score等指标进行模型评估。

三、实验结果与分析将数据集按照7:3的比例划分为训练集和测试集,分别进行模型训练和验证。

经过10次训练迭代后,模型在测试集上的准确率稳定在90%以上,证明了BP神经网络在本实验中的有效性和鲁棒性。

通过调整隐藏层结点个数和迭代次数进行模型性能优化实验,可以发现隐藏层结点个数对模型性能的影响较大。

随着隐藏层结点个数的增加,模型在训练集上的拟合效果逐渐提升,但过多的结点数会导致模型的复杂度过高,容易出现过拟合现象。

因此,选择合适的隐藏层结点个数是模型性能优化的关键。

此外,迭代次数对模型性能也有影响。

随着迭代次数的增加,模型在训练集上的拟合效果逐渐提高,但过多的迭代次数也会导致模型过度拟合。

因此,需要选择合适的迭代次数,使模型在训练集上有好的拟合效果的同时,避免过度拟合。

四、实验总结本实验通过搭建BP神经网络模型,对分类数据集进行预测和分类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BP神经网络原理及应用1 人工神经网络简介1.1生物神经元模型神经系统的基本构造是神经元(神经细胞),它是处理人体各部分之间相互信息传递的基本单元。

据神经生物学家研究的结果表明,人的大脑一般有1011个神经元。

每个神经元都由一个细胞体,一个连接其他神经元的轴突1010和一些向外伸出的其它较短分支——树突组成。

轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。

其末端的许多神经末梢使得兴奋可以同时送给多个神经元。

树突的功能是接受来自其它神经元的兴奋。

神经元细胞体将接受到的所有信号进行简单地处理后由轴突输出。

神经元的树突与另外的神经元的神经末梢相连的部分称为突触。

1.2人工神经元模型神经网络是由许多相互连接的处理单元组成。

这些处理单元通常线性排列成组,称为层。

每一个处理单元有许多输入量,而对每一个输入量都相应有一个相关联的权重。

处理单元将输入量经过加权求和,并通过传递函数的作用得到输出量,再传给下一层的神经元。

目前人们提出的神经元模型已有很多,其中提出最早且影响最大的是1943年心理学家McCulloch和数学家Pitts在分析总结神经元基本特性的基础上首先提出的M-P 模型,它是大多数神经网络模型的基础。

)()(1∑=-=ni j i ji j x w f t Y θ (1.1)式(1.1)中,j 为神经元单元的偏置(阈值),ji w 为连接权系数(对于激发状态,ji w 取正值,对于抑制状态,ji w 取负值),n 为输入信号数目,j Y 为神经元输出,t 为时间,f()为输出变换函数,有时叫做激发或激励函数,往往采用0和1二值函数或S形函数。

1.3人工神经网络的基本特性人工神经网络由神经元模型构成;这种由许多神经元组成的信息处理网络具有并行分布结构。

每个神经元具有单一输出,并且能够与其它神经元连接;存在许多(多重)输出连接方法,每种连接方法对应一个连接权系数。

严格地说,人工神经网络是一种具有下列特性的有向图:(1)对于每个节点存在一个状态变量xi ;(2)从节点i 至节点j ,存在一个连接权系数wji ; (3)对于每个节点,存在一个阈值j ;(4)对于每个节点,定义一个变换函数(,,),j i ji j f x w i j θ≠,对于最一般的情况,此函数取()j ji i j if w x θ-∑形式。

1.4 人工神经网络的主要学习算法神经网络主要通过两种学习算法进行训练,即指导式(有师)学习算法和非指导式(无师)学习算法。

此外,还存在第三种学习算法,即强化学习算法;可把它看做有师学习的一种特例。

(1)有师学习 有师学习算法能够根据期望的和实际的网络输出(对应于给定输入)间的差来调整神经元间连接的强度或权。

因此,有师学习需要有个老师或导师来提供期望或目标输出信号。

有师学习算法的例子包括 规则、广义规则或反向传播算法以及LVQ 算法等。

(2)无师学习 无师学习算法不需要知道期望输出。

在训练过程中,只要向神经网络提供输入模式,神经网络就能够自动地适应连接权,以便按相似特征把输入模式分组聚集。

无师学习算法的例子包括Kohonen 算法和Carpenter-Grossberg 自适应共振理论(ART )等。

(3)强化学习 如前所述,强化学习是有师学习的特例。

它不需要老师给出目标输出。

强化学习算法采用一个“评论员”来评价与给定输入相对应的神。

2 BP 神经网络原理 2.1 基本BP 算法公式推导基本BP 算法包括两个方面:信号的前向传播和误差的反向传播。

即计算实际输出时按从输入到输出的方向进行,而权值和阈值的修正从输出到输入的方向进行。

图2-1 BP 网络结构Fig.2-1 Structure of BP network图中:jx 表示输入层第j 个节点的输入,j =1,…,M ;ijw 表示隐含层第i 个节点到输入层第j 个节点之间的权值;iθ表示隐含层第i 个节点的阈值;()x φ表示隐含层的激励函数;kiw 表示输出层第k 个节点到隐含层第i 个节点之间的权值,i =1,…,q ;ka 表示输出层第k 个节点的阈值,k =1,…,L ; ()x ψ表示输出层的激励函数;ko 表示输出层第k 个节点的输出。

(1)信号的前向传播过程 隐含层第i 个节点的输入net i :1Mi ij j ij net w x θ==+∑ (3-1)隐含层第i 个节点的输出y i :1()()Mi i ij j i j y net w x φφθ===+∑ (3-2)输出层第k 个节点的输入net k :111()qqMk ki i k ki ij j i ki i j net w y a w w x a φθ====+=++∑∑∑ (3-3)输出层第k 个节点的输出o k :111()()()qq M k k ki i k ki ij j i k i i j o net w y a w w x a ψψψφθ===⎛⎫==+=++ ⎪⎝⎭∑∑∑ (3-4)(2)误差的反向传播过程误差的反向传播,即首先由输出层开始逐层计算各层神经元的输出误差,然后根据误差梯度下降法来调节各层的权值和阈值,使修改后的网络的最终输出能接近期望值。

对于每一个样本p 的二次型误差准则函数为E p :211()2Lp k k k E T o ==-∑ (3-5)系统对P 个训练样本的总误差准则函数为:2111()2P Lp p k k p k E T o ===-∑∑ (3-6)根据误差梯度下降法依次修正输出层权值的修正量Δw ki ,输出层阈值的修正量Δa k ,隐含层权值的修正量Δw ij ,隐含层阈值的修正量iθ∆。

kiki w E w ∂∂-=∆η;k k E a a η∂∆=-∂;ij ij E w w η∂∆=-∂;i i Eθηθ∂∆=-∂ (3-7) 输出层权值调整公式:kikk k k ki k k ki ki w net net o o E w net net E w E w ∂∂∂∂∂∂-=∂∂∂∂-=∂∂-=∆ηηη(3-8)输出层阈值调整公式:k k kk k k k k k k net o net E E E a a net a o net a ηηη∂∂∂∂∂∂∆=-=-=-∂∂∂∂∂∂ (3-9)隐含层权值调整公式:i i iij ij i ij i i ijnet y net E E E w w net w y net w ηηη∂∂∂∂∂∂∆=-=-=-∂∂∂∂∂∂ (3-10)隐含层阈值调整公式:i i ii i i i i i i net y net E E E net y net θηηηθθθ∂∂∂∂∂∂∆=-=-=-∂∂∂∂∂∂ (3-11)又因为:11()P Lp p k k p k k ET o o ==∂=--∂∑∑ (3-12)ikiky w net =∂∂,1k k net a ∂=∂,i j ij net x w ∂=∂,1ii net θ∂=∂ (3-13)11()'()P Lp p k k k ki p k i ET o net w y ψ==∂=--⋅⋅∂∑∑ (3-14))(i iinet net y φ'=∂∂ (3-15)'()kk ko net net ψ∂=∂ (3-16)所以最后得到以下公式:()11()'PLp p ki k k k ip k w T o net y ηψ==∆=-⋅⋅∑∑ (3-17)()11()'PL p p k k k k p k a T o net ηψ==∆=-⋅∑∑ (3-18)()11()'()PLp p ij k k k ki i jp k w T o net w net x ηψφ=='∆=-⋅⋅⋅⋅∑∑ (3-19)()11()'()PLp p i k k k ki i p k T o net w net θηψφ=='∆=-⋅⋅⋅∑∑ (3-20)图2-2 BP算法程序流程图Fig.2-2 The flowchart of the BP algorithm program2.2 基本BP算法的缺陷BP算法因其简单、易行、计算量小、并行性强等优点,目前是神经网络训练采用最多也是最成熟的训练算法之一。

其算法的实质是求解误差函数的最小值问题,由于它采用非线性规划中的最速下降方法,按误差函数的负梯度方向修改权值,因而通常存在以下问题:(1)学习效率低,收敛速度慢(2)易陷入局部极小状态2.3 BP 算法的改进2.3.1附加动量法附加动量法使网络在修正其权值时,不仅考虑误差在梯度上的作用,而且考虑在误差曲面上变化趋势的影响。

在没有附加动量的作用下,网络可能陷入浅的局部极小值,利用附加动量的作用有可能滑过这些极小值。

该方法是在反向传播法的基础上在每一个权值(或阈值)的变化上加上一项正比于前次权值(或阈值)变化量的值,并根据反向传播法来产生新的权值(或阈值)变化。

带有附加动量因子的权值和阈值调节公式为:)()1()1(k w mc p mc k w ij j i ij ∆+-=+∆ηδ)()1()1(k b mc mc k b i i i ∆+-=+∆ηδ其中k 为训练次数,mc 为动量因子,一般取0.95左右。

附加动量法的实质是将最后一次权值(或阈值)变化的影响,通过一个动量因子来传递。

当动量因子取值为零时,权值(或阈值)的变化仅是根据梯度下降法产生;当动量因子取值为1时,新的权值(或阈值)变化则是设置为最后一次权值(或阈值)的变化,而依梯度法产生的变化部分则被忽略掉了。

以此方式,当增加了动量项后,促使权值的调节向着误差曲面底部的平均方向变化,当网络权值进入误差曲面底部的平坦区时, δi 将变得很小,于是)()1(k w k w ij ij ∆=+∆,从而防止了0=∆ij w 的出现,有助于使网络从误差曲面的局部极小值中跳出。

根据附加动量法的设计原则,当修正的权值在误差中导致太大的增长结果时,新的权值应被取消而不被采用,并使动量作用停止下来,以使网络不进入较大误差曲面;当新的误差变化率对其旧值超过一个事先设定的最大误差变化率时,也得取消所计算的权值变化。

其最大误差变化率可以是任何大于或等于1的值。

典型的取值取1.04。

所以,在进行附加动量法的训练程序设计时,必须加进条件判断以正确使用其权值修正公式。

训练程序设计中采用动量法的判断条件为:⎪⎩⎪⎨⎧=mc mc 95.00其它)1()(04.1*)1()(-<->k E k E k E k E , E (k )为第k 步误差平方和。

2.3.2自适应学习速率对于一个特定的问题,要选择适当的学习速率不是一件容易的事情。

相关文档
最新文档