飞思卡尔智能车设计报告

合集下载

飞思卡尔智能汽车设计技术报告

飞思卡尔智能汽车设计技术报告

第九届“飞思卡尔”杯全国大学生智能汽车竞赛技术报告学校:武汉科技大学队伍名称:首安二队参赛队员:韦天肖杨吴光星带队**:**0敏I关于技术报告和研究论文使用授权的说明本人完全了解第九届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。

参赛队员签名:带队教师签名:日期:II目录第一章引言 (1)1.1 概述 (1)1.2 内容分布 (1)第二章系统总体设计 (2)2.1 设计概述 (3)2.2 控制芯片的选择 (3)2.3 线性 CCD 检测的基本原理 (3)2.3 系统结构 (5)第三章机械系统设计 (7)3.1 底盘加固 (7)3.2 轮胎处理 (7)3.3 四轮定位 (8)3.4 差速器的调整 (12)3.5 舵机的安装 (13)3.6 保护杆的安装 (15)3.7 CCD的安装 (16)3.8 编码器的安装 (17)3.9 检测起跑线光电管及加速度计陀螺仪的安装 (18)第四章硬件系统设计 (19)4.1 最小系统版 (20)4.2 电源模块 (21)4.3 CCD模块 (22)4.4 驱动桥模块 (23)4.5 车身姿态检测模块 (24)4.7 测速模块 (24)4.8 OLED液晶屏及按键、拨码 (25)第5章程序设计 (27)III5.1 阈值计算 (27)5.2 赛道判别 (28)5.3 舵机控制 (28)5.4 电机控制 (29)5.5 PID 介绍 (30)第六章相关工具介绍 (32)6.1 软件开发平台 (32)6.2 蓝牙模块及超级示波器 (35)第七章车模主要技术参数说明 (37)第八章总结 (38)IV第一章引言1.1 概述全国大学生“飞思卡尔杯”智能汽车竞赛,以“立足培养、重在参与、鼓励探索,追求卓越”为宗旨,培养大学生的综合知识运用能力、基本工程实践能力和创新意识,激发大学生从事科学研究与探索的兴趣和潜能,倡导理论联系实际、求真务实的学风和团队协作的人文精神。

飞思卡尔智能车大赛杭州电子科技大学杭电二队智能车技术报告

飞思卡尔智能车大赛杭州电子科技大学杭电二队智能车技术报告

本设计采用单片机(MC9S12DG128)作为智能小车的检测和控制核心。

路径识别采用CMOS 摄像头,车速检测采用红外对管和编码盘,由MOS管组成H桥来控制驱动电机正反转的快速切换,利用PWM技术控制小车的运动速度及运动方向。

基于这些完备而可靠的硬件设计,还设计了一套PID优化算法,编写了全闭环运动控制程序,经反复测试,取得了较好的效果。

第一章引言.1 智能车系统研究内容智能车系统要求以MC9S12DG128为核心,能够自主识别路线,在专门设计的跑道上自动识别道路行驶,以最快的速度跑完全程。

其主要研究内容包括以下几个部分:电源、路径识别、直流电动机驱动及运动控制等。

1.1.1 电源根据智能车系统各部件正常工作的需要,对配发的标准车模用7.2V 1800mAh Ni-cd电池进行电压调节。

其中,单片机系统、车速传感器电路需要5V电压,摄像头的12V工作电压由DC-DC升压回路提供,伺服电机工作电压范围4.8V到6V,直流电机经过H桥路由7.2V 1800mAh Ni-cd蓄电池直接供电。

1.1.2 路径识别路径识别模块是智能车系统的关键模块之一,路径识别方案的好坏,直接关系到最终性能的优劣。

在高速度和预先判断算法的前提下,摄像头可能是寻找路径规迹的最好选择。

因为MC9S12DG128的运算处理和AD采样速度有限,因此确定合理的采样次数和合理的处理摄像头的数据是十分重要的。

舍弃非关键数据进行数据简化和制定高效率的路径规划也是一个难题。

1.1.3 直流电动机驱动直流电机的控制一般由单片机产生的PWM信号配以H桥路来完成。

为了得到更大的驱动电流和较好的刹车效果,选用低内阻的MOS管和适当的反向驱动也是必需的。

MOS管我们选取了IRF4905和IRFZ48N,在MOS管子的驱动方面我们直接使用IR公司的IR4427双道驱动芯片。

具体的H桥电路见图1.1 。

1.2 智能车制作情况整个智能车控制系统分为4部分电路板,分别为路径识别模块,单片机模块,直流电机驱动模块和速度检测模块,还有串口通讯及调试接口。

飞思卡尔智能车光电组技术报告

飞思卡尔智能车光电组技术报告

飞思卡尔智能车光电组技术报告报告目录目录1第一章方案设计11、1系统总体方案的选定11、2系统总体方案的设计11、3 小结1第二章智能汽车机械结构调整与优化22、1智能汽车车体机械建模22、2 智能汽车传感器的安装32、2、1速度传感器的安装32、2、2 线形CCD的安装42、2、3车模倾角传感器52、3重心高度调整52、3、1 电路板的安装52、3、2 电池安放52、4 其他机械结构的调整52、5 小结6第三章智能汽车硬件电路设计73、1主控板设计73、1、1电源管理模块73、1、2 电机驱动模块83、1、3 接口模块143、2智能汽车传感器153、2、1 线性CCD传感器153、2、2 陀螺仪153、2、3 加速度传感器163、2、3 编码器173、3 键盘,数码管183、4液晶屏203、5 小结20第四章智能汽车控制软件设计214、1线性CCD传感器路径精确识别技术214、1、1新型传感器路径识别状态分析224、1、2 线性CCD传感器路径识别算法234、2弯道的处理244、2、1弯道策略分析244、3 对速度的闭环控制244、4障碍的处理264、5小结26第五章开发工具、制作、安装、调试过程275、1 开发工具275、2 调试过程27第六章模型车主要参数296、1 智能汽车外形参数296、2 智能汽车技术参数29结论30参考文献32第一章方案设计本章主要介绍智能汽车系统总体方案的选定和总体设计思路,在后面的章节中将整个系统分为机械结构、控制模块、控制算法等三部分对智能汽车控制系统进行深入的介绍和分析。

1、1系统总体方案的选定本届智能汽车大赛光电组比赛对传感器有着严格的规定,用到了线性ccd,但是由于需要镜头成像,所以会带来成像失真,静电干扰严重等问题。

由于平衡车的特殊性,车身在循迹前进的过程中,必须保持车身的平衡。

根据最基本保持车身平衡的基本原理,我们需要知道车身当前的角度和角速度。

因此在保持车身平衡方面,我们确定以加速度计作为角度传感器,陀螺仪作为角速度传感器。

飞思卡尔技术报告

飞思卡尔技术报告

K60模块分配K60的简介,我们本次使用了以下模块。

1. FTM模块:K60中集成3个FTM模块,而今年我们选用两个B车进行追踪循迹。

B车模使用单电机、单舵机,另外需要一个编码器。

所以对3个FTM模块进行如下配置:FTM0用以产生300Hz PWM信号控制舵机,FMT1用以产生18.5KHz PWM信号控制电机,FTM2用以采集编码器数据。

2. 定时器模块:K60中有多个定时器模块,我们使用了其中2个。

其一用以产生5ms 中断,处理相关控制程序。

另一个用以超声波模块的计时。

3. SPI模块:我们使用了K60的一个SPI模块,用以和无线射频模块NRF24L01P通信。

4.外部中断:我们使用了三个外部中断。

第一个是PORTA的下降沿中断,用以响应干簧管检测到磁铁。

第二个是PORTD的跳变沿中断,用以响应超声波模块的输出信号。

最后一个是PORTE的下降沿中断,用以响应NRF24L01P模块的相关操作。

数据采集算法传感器是智能车的眼睛,它们给智能车循迹和追踪提供了必不可少的信息。

因此,在智能车软件设计中必须保证数据采集算法的稳定性,同时兼顾其快速性。

本车比赛,我们的智能车主要采集以下传感器的数据:电感传感器电路板、编码器、超声波、干簧管。

下面主要详述超声波模块、电感传感器电路板的数据采集。

1 .超声波模块数据采集我们使用的超声波模块的DO引脚输出50Hz的矩形波信号,通过高电平的时间向单片机传递数据。

本超声波传感器的高电平时间为声波单程传输的时间,通过这个时间可计算出两车之间的距离。

我们使用外部中断和计时器结合的方式测量高电平时间。

首先配置PORTD11为跳变沿中断。

中断被触发时,如果PORTD11为高电平则开始计时,如果PORTD11为低电平则停止计时并记录时间间隔。

2. 电感传感器电路板的数据采集电感传感器电路板通过输出电压的大小反应响应位置和方向的磁场强度。

本次比赛中,我们使用了10个电感分布在6个不同位置,因此每个周期都要采集10路ADC数据,每路ADC数据采集32次进行平均滤波。

飞思卡尔智能车设计报告 精品

飞思卡尔智能车设计报告 精品

飞思卡尔智能车设计报告1.摘要“飞思卡尔”杯全国大学生智能汽车竞赛是由教育部高等自动化专业教学指导分委员会主办的一项以智能汽车为研究对象的创意性科技竞赛,是面向全国大学生的一种具有探索性工程实践活动,是教育部倡导的大学生科技竞赛之一。

该竞赛以“立足培养,重在参与,鼓励探索,追求卓越”为指导思想,旨在促进高等学校素质教育,培养大学生的综合知识运用能力、基本工程实践能力和创新意识,激发大学生从事科学研究与探索的兴趣和潜能,倡导理论联系实际、求真务实的学风和团队协作的人文精神,为优秀人才的脱颖而出创造条件。

该竞赛以汽车电子为背景,涵盖自动控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科的科技创意性比赛。

本文介绍了飞思卡尔电磁组智能车系统。

本智能车系统是以飞思卡尔32 位单片机K60为核心,用电感检测赛道导线激发的电磁信号, AD 采样获得当前传感器在赛道上的位置信息,通过控制舵机来改变车的转向,用增量式PID进行电机控制,用编码器来检测小车的速度,共同完成智能车的控制。

2.关键字电磁、k60、AD、PID、电机、舵机3.系统整体功能模块系统整体功能结构图4.电源模块设计电源是一个系统正常工作的基础,电源模块为系统其他各个模块提供所需要的能源保证,因此电源模块的设计至关重要。

模型车系统中接受供电的部分包括:传感器模块、单片机模块、电机驱动模块、伺服电机模块等。

设计中,除了需要考虑电压范围和电流容量等基本参数外,还要在电源转换效率、噪声、干扰和电路简单等方面进行优化。

可靠的电源方案是整个硬件电路稳定可靠运行的基础。

全部硬件电路的电源由7.2V,2A/h的可充电镍镉电池提供。

由于电路中的不同电路模块所需要的工作电流容量各不相同,因此电源模块应该包含多个稳压电路,将充电电池电压转换成各个模块所需要的电压。

电源模块由若干相互独立的稳压电源电路组成。

在本系统中,除了电机驱动模块的电源是直接取自电池外,其余各模块的工作电压都需要经电源管理芯片来实现。

基于飞思卡尔单片机的智能小车设计

基于飞思卡尔单片机的智能小车设计

安徽建筑工业学院毕业设计(论文)专业:通信工程班级:08通信2班学生姓名:谢春林学号:课题:基于飞思卡尔单片机的智能小车设计与应用主控制板硬件设计指导教师:夏巍2012 年 6 月1日摘要本文的主要内容是利用飞思卡尔公司的32位单片机Kinetis10,设计能在特定跑道上循迹行驶的智能小车。

智能车系统以Kinetis10为核心,用它来进行信号采集、数据传输与运算等动作,并产生PWM波控制舵机和电机。

整个系统由单片机模块、路径识别模块、速度检测模块、舵机模块、直流电机驱动模块、电源模块等组成。

智能小车的硬件设计包括:双向控制的电机驱动,可同时对多模块供电的电源系统,3.3V PWM波形驱动舵机电路,与上位机通信的RS232通信模块等。

关键字:智能小车,Kinetis10,电源系统,双向控制。

AbstractThe main content of this paper is to use the 32-bit SCM freescale company Kinetis10, in particular the runway design can trace the car driving on intelligence. Intelligent car system to Kinetis10 as the core, and use it to signal acquisition, data transmission and computing such action and create PWM wave to control the steering gear and motor. The whole system of microcomputer module, path recognition module, speed detection module, steering gear module, dc motor driver module, power supply module.Intelligent car of hardware design including: two-way control motor drive, but at the same time for more power supply module of the power supply system, 3.3 V PWM waves of steering gear drive circuit, and the upper machine RS232 communication module of communication, etc.Key word: Intelligent vehicles, Kinetis10, Power system, Two-way control.目录1 绪论 (1)1.1选题意义 (1)1.2 国内外概况 (1)1.2.1国外概况 (1)1.2.2 国内概况 (2)1.3智能车的发展前景 (3)2 系统设计与方案论证 (3)2.1 系统设计要求 (3)2.2 系统设计方案 (3)2.2.1 主控芯片的选定 (4)2.2.2 传感器模块 (4)2.2.3 测速传感器模块 (5)2.2.4 转向舵机模块 (5)2.2.5电机驱动模块 (5)3 主控芯片简介 (6)3.1 Kinetis K10简介 (6)3.2 所用模块简介 (6)3.2.1 PWM 模块 (7)3.2.2 PIT模块 (7)3.2.3 I/O模块 (7)3.2.4 SCI模块 (7)4 智能车机械设计与安装 (7)4.1 舵机的安装 (8)4.2 前轮倾角的调整 (8)4.3 后轮差动轮的调整 (9)4.4 速度检测模块安装 (9)4.5 传感器的安装 (9)5 主板电路设计 (9)5.1 主控芯片电路 (9)5.2 外围电路 (11)5.2.1 电源管理模块 (11)5.2.3 速度检测电路 (15)5.2.4 舵机驱动电路 (16)5.2.5拨码开关电路 (17)5.2.5 RS232通信模块 (17)6 软件设计 (18)6.1 开发工具 (18)6.2 软件流程图 (18)7 总结 (20)8 致谢 (21)参考文献 (22)附录: (23)基于飞思卡尔单片机的智能小车设计————主控制电路设计电子与信息工程学院通信工程 2008级2班谢春林指导教师夏巍1 绪论1.1选题意义智能车辆( intelligent vehicles, IV)是智能交通系统( in2telligent transportation systems, ITS)的重要构成部分,其研究的主要目的在于降低日趋严重的交通事故发生率,提高现有道路交通的效率,在某种程度上缓解能源消耗和环境污染等问题。

第四届飞思卡尔杯智能车大赛技术报告 北京工商大学

第四届飞思卡尔杯智能车大赛技术报告 北京工商大学

摘要随着数字图像处理技术的发展,面阵CCD摄像头在自动控制领域得到了越来越广泛的应用。

本文在对CCD图像处理技术和单片机嵌入式应用进行深入研究的基础上,借鉴国内外先进技术,研制出了具有自动循迹,转弯,加减速功能的智能小车。

本文介绍了基于面阵CCD图像处理技术以及MC9S12DG128微控制器嵌入式技术的智能小车的设计原理及研制过程。

论述了智能小车自动控制系统的实现方法,着重讨论了智能小车的硬件设计和以Codewarrior C交叉编译器为开发工具的软件设计。

在智能小车的研制过程中,利用CCD摄像头采集到的图像存在杂点和误差,这对单片机的控制影响较大,因此需要运用图像处理技术对数字图像进行处理,以达到对黑线正确识别的目的。

关键词:智能小车; CCD; MC9S12DG128微控制器;图像处理AbstractWith the development of treatment technology of the digital picture , plane array CCD camera has got more and more extensive application on the automatic controlled field.This text is on the basis of the thing that use and further investigate to CCD image processing technology and single-chip computer embeddedly, learns from domestic and international advanced technology, develop and follow the mark automatically, turn, add the intelligent car which moderates the function. The introduction to this text is on the basis of plane array CCD image processing technology and the design principle of the intellectual car of MC9S12DG128 microcontroller embedded technology and research course. Havedescribed the implementation method of the automatic control system of intellectual car , have discussed emphatically the hardware of the intellectual car is designed and as the software design of the developing instrument with Code-warrior C compiling device alternately.In the course of research of the intelligent car , utilize the picture that CCD camera gathers to noise and error, this makes a great influence on control of the single-chip computer, so need to use the image processing technology to deal with the digital picture , in order to achieve the correct purpose that discerns to the black line.Keywords:Intelligent car ; CCD ; MC9S12DG128microcontroller ;Image processing目录1.1背景简介 (1)1.2本课题研究的目的及意义 (2)1.3国内外相关技术的发展现状 (3)1.3.1国外智能小车的发展状况 (3)1.3.2国内智能小车的发展状况 (4)1.4系统设计要求 (5)1.5智能小车的设计思路 (5)1.6本文主要研究内容 (6)1.7本文的篇章结构 (7)2.1路径识别方案设计论证 (7)2.1.1 方案一:基于光电传感器阵列的路径识别方案 (7)2.1.2 方案二:基于线阵CCD图像传感器的路径识别方案 (8)2.1.3 方案三:基于面阵CCD图像传感器的路径识别方案 (8)2.1.4 所选方案 (8)2.2面阵CCD图像传感器简介 (8)2.3面阵CCD图像传感器的工作原理 (9)2.4面阵CCD图像传感器的选择 (10)2.5图像处理方法 (10)2.5.1 图像处理技术基础 (11)2.5.2 图像的灰度变换 (11)2.5.3 图像的平滑处理 (11)2.5.4 图像边缘检测 (12)2.6本章小结 (13)3.1机械方面设计及改进 (13)3.1.1 车模基本参数 (13)3.1.2 CCD摄像头的设计安装 (14)3.1.3 底盘参数设计改进 (14)3.1.4 齿轮传动机构调整 (15)3.1.5 后轮差速机构调整 (15)3.1.6驱动电机介绍 (16)3.1.7 舵机介绍 (17)3.2智能小车电路设计 (19)3.2.1 所选用单片机介绍 (19)3.2.2 硬件电路系统组成 (22)3.2.3 供电电路 (23)3.2.4 时钟电路 (24)3.2.5看门狗电路 (25)3.2.6 电源稳压电路 (25)3.2.7 驱动电机/舵机电路 (26)3.2.8 CCD摄像头数据采集分离电路 (27)3.2.9 A/D采集电路设计 (28)3.3本章小结 (29)4.1软件设计环境 (30)4.2软件整体设计方案 (30)4.3程序评测及流程 (31)4.4程序模块介绍 (34)4.4.1 初始化 (34)4.4.2 摄像头图像数据采集以及处理 (35)4.4.3 速度采集以及速度控制 (42)4.5黑线提取算法 (42)4.6本章小结 (42)5.1软件开发平台C ODEWARRIOR IDE (43)5.1.1 Codewarrior IDE 功能介绍 (43)5.1.2 Codewarrior IDE 基本使用方法 (44)5.2本章小结 (48)第1章绪论1.1背景简介车辆与我们的社会生活息息相关,然而当今车辆的智能化发展还不是很迅速,特别是在安全性,智能化,车与路之间交互信息等方面。

飞思卡尔智能车大赛合肥工业大学一队技术报告

飞思卡尔智能车大赛合肥工业大学一队技术报告

本队在小车制作过程中,先对比赛内容,要求与规则进行了详细分析,然后按照要求制订了几种设计方案,并对几种方案进行比较敲定最后方案。

根据方案完成小车的总体设计和详细设计(包括底层硬件设计和总体软件设计),在完成了车模组装和改造后,完成了各个模块的硬件电路设计与安装,并进行了控制算法的设计和软件实现,最后进行了整车的调试和优化。

第一章引言1.1 智能车制作概述本队在小车制作过程中,先对比赛内容,要求与规则进行了详细分析,然后按照要求制订了几种设计方案,并对几种方案进行比较敲定最后方案。

根据方案完成小车的总体设计和详细设计(包括底层硬件设计和总体软件设计),在完成了车模组装和改造后,完成了各个模块的硬件电路设计与安装,并进行了控制算法的设计和软件实现,最后进行了整车的调试和优化。

1.2 参考文献综述方案设计过程中参考了一些相关文献,如参考文献所列。

例如文献1与2 单片机嵌入式系统在线开发方法。

文献3与4是计算机控制技术,参考了其中PID控制策略。

文献5到8是介绍了微处理器MC9S12DG128芯片。

文献9到11介绍了CCD图像传感器的应用和一些数据处理方法,等等。

1.3 技术报告内容与结构本文的主要内容框架如下:第一章:引言。

大概介绍了智能车的制作过程,参考文献说明和内容框架。

第二章:设计方案概述。

介绍了各种方案,以及选择该方案的原因。

第三章:模型车机械调整。

介绍了小车机械结构的调整和传感器的安装步骤。

第四章:硬件电路设计。

这部分是小车的硬件实现,主要给出了小车的总体结构与各个模块的硬件电路设计。

第五章:控制算法实现。

本章详细介绍了各个方案采用的算法。

第六章:调试及模型车技术参数。

介绍了调试使用的工具与具体调试过程,最后给出了整车的技术参数。

第七章:总结。

对整个模型车制作过程的总结,指出试验中发现的问题和进一步改进的方向。

第二章设计方案概述2.1 总体设计由于赛道整体布局未知,因此先保证小车在各种不同环境下能够稳定运行,再进行速度的提升。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

飞思卡尔智能车设计报告目录1.摘要 (3)2.关键字 (3)3.系统整体功能模块 (3)4.电源模块设计 (4)5.驱动电路设计 (4)6.干簧管设计 (5)7.传感器模块设计 (6)8.传感器布局 (6)9.软件设计 (7)9.1控制算法 (7)9.2软件系统实现(流程图) (10)10.总结 (11)11.参考文献 (12)1.摘要“飞思卡尔”杯全国大学生智能汽车竞赛是由教育部高等自动化专业教学指导分委员会主办的一项以智能汽车为研究对象的创意性科技竞赛,是面向全国大学生的一种具有探索性工程实践活动,是教育部倡导的大学生科技竞赛之一。

该竞赛以“立足培养,重在参与,鼓励探索,追求卓越”为指导思想,旨在促进高等学校素质教育,培养大学生的综合知识运用能力、基本工程实践能力和创新意识,激发大学生从事科学研究与探索的兴趣和潜能,倡导理论联系实际、求真务实的学风和团队协作的人文精神,为优秀人才的脱颖而出创造条件。

该竞赛以汽车电子为背景,涵盖自动控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科的科技创意性比赛。

本文介绍了飞思卡尔电磁组智能车系统。

本智能车系统是以飞思卡尔32 位单片机K60为核心,用电感检测赛道导线激发的电磁信号, AD 采样获得当前传感器在赛道上的位置信息,通过控制舵机来改变车的转向,用增量式PID进行电机控制,用编码器来检测小车的速度,共同完成智能车的控制。

2.关键字电磁、k60、AD、PID、电机、舵机3.系统整体功能模块系统整体功能结构图4.电源模块设计电源是一个系统正常工作的基础,电源模块为系统其他各个模块提供所需要的能源保证,因此电源模块的设计至关重要。

模型车系统中接受供电的部分包括:传感器模块、单片机模块、电机驱动模块、伺服电机模块等。

设计中,除了需要考虑电压范围和电流容量等基本参数外,还要在电源转换效率、噪声、干扰和电路简单等方面进行优化。

可靠的电源方案是整个硬件电路稳定可靠运行的基础。

全部硬件电路的电源由7.2V,2A/h的可充电镍镉电池提供。

由于电路中的不同电路模块所需要的工作电流容量各不相同,因此电源模块应该包含多个稳压电路,将充电电池电压转换成各个模块所需要的电压。

电源模块由若干相互独立的稳压电源电路组成。

在本系统中,除了电机驱动模块的电源是直接取自电池外,其余各模块的工作电压都需要经电源管理芯片来实现。

由于智能车使用7.2V镍镉电池供电,在小车行进过程中电池电压会有所下降,故使用低压差电源管理芯片LM2940。

LM2940是一款低压稳压芯片,能提供5V的固定电压输出。

LM2940低压差稳压芯片克服了早期稳压芯片的缺点。

与其它的稳压芯片一样,LM2940需要外接一个输出电容来保持输出的稳定性。

出于稳定性考虑,需要在稳压输出端和地之间接一个47uF低等效电阻的电容器。

舵机的工作电压是6伏,采用的是LM7806。

K60单片机和5110液晶显示器需要3.3伏供电,采用的是LM1117。

5.驱动电路设计驱动电路采用英飞凌的BTS7960,通态电阻只有16mΩ,驱动电流可达43A,具有过压、过流、过温保护功能,输入PWM频率可达到25KHz,电源电压5.5V--27.5V。

BTS7960是半桥驱动,实际使用中要求电机可以正反转,故使用两片接成全桥驱动。

如图下图所示。

驱动电路原理图6.干簧管设计由于电磁组的起始线是直径为7.5 - 15mm,高度为1-3mm ,表面磁场强度为3000-5000Gs的永磁铁,就可以用霍尔元件或干簧管来检测。

但是使用霍尔元件需要提供电源,而且霍尔元件是有磁场方向限制的,而且赛道上的磁铁方向的摆放方向是随机的,这就给检测带来了很大的麻烦。

而干簧管没有这种限制,使用方便,结果可靠。

最终确定使用干簧管检测起始线。

为防止漏检起跑线,在小车每边并联两个干簧管,增加检测范围,即共用4个干簧管对起跑线进行检测。

干簧管是一种磁敏的特殊开关。

它通常由两个或三个既导磁又导电材料做成的簧片触点,被封装在充有惰性气体(如氮、氦等)或真空的玻璃管里,玻璃管内管内平行封装的簧片端部重叠,并留有一定间隙或相互接触以构成开关的常开或常闭接点。

当通过一定强度的磁场时,干簧管就会吸合,其实它就像一个开关一样,开和关取决于是否经过磁场。

利用此特点,通过上拉接到单片机的中断口,使单片机快速响应起跑线信号。

起跑线检测模块电路如下图所示:起跑线检测模块电路图7.传感器模块设计电磁传感器检测路面信息的原理是由电感和电容并联产生相应的特定频率谐振,其频率的设定为跑到信息频率的附近,再由谐振感应跑到上由变化的电流产生的变化的磁场,从而产生相应的交流电压,再将相应的交流的电压进行放大、整流和滤波从而变化成相应的电压。

采用电磁感应线圈的方案测量赛道上100mA左右20KHz交流电所产生的磁场。

线圈感应到的信号是很微弱的,要放大电路放大。

再将放大后的交流信号通过检波得到直流信号。

经过我们不断查资料,尝试最终我们选用的是基于R-R运放LMV358的电磁放大检波电路,如下图所示:8.传感器布局由于磁场分布的特殊性,在载流直导线周围产生的磁场如下图1所示,今年电磁组车身长度不再有限制,所以合理的利用规则拓展小车的前瞻是形势所趋,传感器的布局对车速的影响也相当重要。

中间一字型,两边扇形的布局,在跑弯道时稍微好一些,但直道上和单边圆弧上还是一字型排布比较好,盲区比较少,出于整体考虑,采用一字型传感器布局,能最大限度的利用前瞻。

如下图2所示:图1 载流直导线周围产生的磁场图图2一字型传感器布局图9.软件设计如果说前面的硬件是智能车的躯体的话,那软件就是智能车的灵魂,一部智能车性能的好坏,很大一部分取决于它的软件的算法控制。

为此,在仔细研究上届前辈的一些优秀的思想基础之上,结合平时的调试过程加入了自己的创新。

本智能车采用电感线圈作为寻线传感器,数据采集的处理就成了整个软件的核心内容。

在智能车的速度控制方面,使用了增量式PID控制算法,配合使用理论计算和实际参数补偿,使在寻线中智能车尽量达到稳定快速。

9.1控制算法智能车电机的控制至关重要,我们采用的控制算法是PID控制。

PID 控制是工业过程控制中历史最悠久,生命力最强的控制方式。

这主要是因为这种控制方式具有直观、实现简单和鲁棒性能好等一系列的优点。

PID控制主要有三部分组成,比例、积分、微分。

比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

偏差一旦产生,调节器立即产生控制作用使被控量朝着减小偏差的方向变化,控制作用的强弱取决于KP。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

为了消除稳态误差,引入积分控制。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积 分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

为了预测预测误差变化的趋势,引入微分的控制器,这样就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

PID 控制框图如下图所示:对应的误差传递函数为:U (s )/E(s)=Kp(1+1/Ti+Td)式中,Kp 为比例增益;Ti 为积分时间常数;Td 为微分时间常数;U(s)为控制量;E(s) 为被控量与设定值R(s)的偏差。

时域表达式为 0i 1d ()()()()d d te t u t K e t e t t T T t ⎡⎤=++⎢⎥⎣⎦⎰(式一)在单片机中,我们仅能对数字信号处理,即数字PID 控制。

将上式离散化,得错误!未找到引用源。

(式二)A.位置式PID 算法直接利用上述离散化公式计算,框图如右图所示。

由于积分项(Pi )是将所有采集值偏差相加,在一段时间后会很浪费单片机资源。

对其稍加改进,得到增量型PID 算法。

B.增量式PID 算法根据式二得第k-1个采样周期的控制量为错误!未找到引用源。

(式三)式二减式三得错误!未找到引用源。

(式四)由此,第k个采样时刻实际控制量为错误!未找到引用源。

,为方便书写,写为错误!未找到引用源。

(式五)其中,错误!未找到引用源。

由上可知,利用三个历史数据,递推使用,即可完成PID控制量。

框图如下图所示:9.2软件系统实现(流程图)软件运行需要配置单片机各个模块寄存器数值,使单片机各个模块正常工作。

初始化中包括:I/O口配置、PWM模块配置、A/D模块配置、PT0定时中断配置、脉冲捕捉模块配置。

当初始化完毕后,进入跑车程序:对传感器输入信号进行采样,当完成一次采样后将采样值映射成车相对于跑道的位置,根据当前与过去位置决定舵机转角和电机速度,通过改变PWM模块内部寄存器数值可以得到不同占空比的方波信号,实现电机的调节。

软件整体流程如下图所示:整体程序框架流程图10.总结通过参加本届飞思卡尔智能车比赛,我们成功的设计制造了一辆以电磁信号为导向的智能车系统。

在这个过程中我们学到的很多,不仅仅是对硬件系统的设计、软件系统的调试和应用、以及相关机械结构的学习,我们学习更是一种心态,一种遇到问题如以平和的心去寻找问题的所在,并想办法解决的思路。

而且在这一过程中,也体会到以一个团队为单位去做一件事情与一个人做一件事情的不同之处。

一.存在的不足1、整车重量较大,在材料选择上还不够好。

2、机械结构仍不够完美,一些部位还存在明显缺陷,需要在今后的制作中去完善。

3、控制策略不够精细,控制比较粗糙,对赛道适应能力有待提高。

二.今后的改进措施1、机械对车的性能影响是非常大的,没有好的机械及硬件功底,再好的算法也不能是小车跑得很好,所以在硬件上还有很大的提升空间。

2、算法不过完善,对于复杂的赛道适应能力较差,因此在算法和控制策略上还需要下功夫。

3、布线能力还比较差,车的线路比较凌乱,出现问题查找比较繁琐,以后应更好的布置走线。

11.参考文献[1] 卓晴,黄开胜,邵贝贝.学做智能车:挑战“飞思卡尔”杯[M].北京:北京航空航天大学出版社,2007.3-5.[2] 林凌.微型感应线圈车辆传感器[J].天津大学精密仪器与光电子学院.2006[3] 李仕伯,马旭,卓晴.基于磁场检测的寻线小车传感器布局研究[J],电子产品世界,2009-12-10.[4] 张昊飏,马旭,卓晴.基于电磁场检测的寻线智能车设计[J].电子产品世界,2009-11-10.[5] 邵贝贝.单片机嵌入式应用的在线开发方法.清华大学出版社.2004。

相关文档
最新文档