细胞生物学简答题整理
细胞生物学简答题

1.简述减数分裂前期I细胞核的变化。
前期I分为细线期、偶线期、粗线期、双线期和终变期5个亚期。
①细线期:染色体呈细线状,凝集于核的一侧。
②偶线期:同源染色体开始配对,SC开始形成,并且合成剩余0.3%的DNA。
在光镜下可以看到两条结合在一起的染色体,称为二价体(bivalent)。
每一对同源染色体都经过复制,含四个染色单体,所以又称为四分体(tetrad)③粗线期:染色体变短,结合紧密,这一时期同源染色体的非姊妹染色单体之间发生交换的时期。
④双线期:配对的同源染色体相互排斥,开始分离,交叉端化,部分位点还在相连。
部分动物的卵母细胞停留在这一时期,形成灯刷染色体。
⑤终变期:交叉几乎完全端化,核膜破裂,核仁解体。
是染色体计数的最佳时期。
2.生物膜的基本结构特征是什么?膜的不对称性和流动性P70目前对生物膜结构的认识归纳如下:具有极性头部和非极性尾部的磷脂分子在水相中具有自发形成封闭的膜系统的性质,以疏水性尾部相对,极性头部朝向水相的磷脂双分子层是组成生物膜的基本结构成分,尚未发现在生物膜结构中起组织作用的蛋白。
蛋白分子以不同的方式镶嵌在脂双层分子中或结合在其表面,蛋白的类型,蛋白分布的不对称性及其与脂分子的协同作用赋予生物膜具有各自的特性与功能。
生物膜可看成是蛋白质在双层脂分子中的二维溶液,具有流动性,然而膜蛋白与膜脂之间,膜蛋白与膜蛋白之间及其与膜二侧其它生物大分子的复杂的相互作用,在不同程度上限制了膜蛋白和膜脂的流动性。
3.简述细胞有丝分裂的过程。
根据分裂细胞形态和结构的变化,可将连续的有丝分裂过程人为地划分为前期、前中期、中期、后期、末期及胞质分裂6个时期。
1.前期:染色质凝集、分裂极确定、核仁缩小并解体。
2.前中期:核膜崩裂,纺锤体形成,染色体向赤道面运动。
3.中期:染色体达到最大的凝集,排列在赤道板上,小的在侧,大的在外侧。
4.后期:由于两条染色单体在主缢痕处分开,打断了中期纺锤丝力量的平衡,染色单体开始向两极移动。
细胞生物学简答题

第一、二、三章经典细胞学说1所有生命体都是由细胞构成的2细胞是生物体结构和功能的基本单位3细胞是生命的基本单位4细胞来源于已经存在的细胞蛋白质的四级结构:1以肽键为主键,或有少量二硫键为副键的多肽链。
一级结构决定蛋白质的三维构象,从而影响蛋白质在细胞中的作用。
2在一级结构基础上,氨基酸残基之间借氢键在对应点链接,是蛋白质结构发生折曲。
分为三种类型:α螺旋,β折叠,三股螺旋。
3在二级结构的基础上再行折叠。
蛋白质有的区域为α螺旋或β折叠,其他区域则随机卷曲。
参与维系三级结构的有氢键、酯键、离子键和疏水键。
4由多个亚基借助化学键的作用形成更为复杂的空间结构。
*一二三级结构都是单条多肽链空间结构的变化。
只有一条多肽链的蛋白质必须在三维结构水平上才表现出生物活性;由两条或多条肽链构成的蛋白质必须构成四级结构,才具有活性。
原核细胞与真核细胞的主要区别原核细胞真核细胞细胞大小较小,1-10μm 较大,10-100μm细胞壁肽聚糖纤维素细胞核无核膜,核仁有遗传物质一条没有与组蛋白结合的裸露环装DNA 若干与组蛋白结合的DNA核糖体70S(50+30) 80S(60+40)膜性细胞器间体线粒体等复杂的细胞器细胞骨架无有转录与翻译均在细胞质转录在细胞核,翻译在细胞质细胞分裂无丝分裂有丝分裂,减数分裂第五章、细胞膜及其表面细胞膜细胞内膜:除细胞膜和线粒体膜外,细胞内有许多膜性细胞器(如…),称为细胞内膜,它们共同构成细胞的内膜系统生物膜:细胞内膜+细胞膜+线粒体膜单位膜:“两暗一明”的膜相结构细胞膜的作用1限定细胞范围,维持细胞形状。
2作为屏障,防止胞内物质外漏。
具有高度选择性(半透膜),控制细胞内外物质交换,维持细胞内环境。
3接受外界信息,进行信息交流,使细胞能对周围环境的变化产生应答。
4对细胞的新陈代谢、生长繁殖、分化癌变等生命活动密切相关。
5在进化上,膜的出现是细胞形成的重要阶段。
膜的分子结构模型单位膜模型:1认为所有的生物膜都具有“两暗一明”结构,其厚度大致是7.5nm。
细胞生物学简答题

1、简述细胞质基质的功能主要有三点:1、为各种细胞器维持其正常结构提供所需要的离子环境;2、为各类细胞器完成其活动供给所必须的一切底物3、同时也是进行某些生化活动,如糖酵解、磷酸戊糖反应等的场所。
2、简述信号假说的内容信号假说的内容主要有四点:1、信号密码被翻译为信号肽,翻译暂时中止;2、信号肽识别颗粒识别信号肽;3、信号肽被SRP通过与内质网膜整合的停靠蛋白引导到内质网膜上;4、蛋白质在粗面内质网膜上继续合成,信号肽进入内质网腔后被信号肽酶切断。
3、粗面内质网的功能粗面内质网的功能主要有:1、帮助运输蛋白在内质网腔中合成;2、N-连接的糖蛋白的糖基化是在粗面内质网内进行的;3、参与蛋白质的分选与运转;4、合成膜质并进行组装。
4、滑面内质网的功能滑面内质网的功能主要有:1、除合成膜质外还合成脂肪、胆固醇、甾类激素等脂类;2、参与糖原的合成与分解;3、肝的解毒作用主要由肝细胞内的滑面内质网来完成。
5、内质网结构的特征及分类内质网结构的特征为网管状、泡状、扁囊状的封闭的网膜体系。
可分为两类:(1)滑面内质网,多为网管和小泡组成;(2)粗面内质网,多为扁囊组成。
7、详细描述信号假说的过程答:信号假说的内容:外输蛋白的5’端信号密码被翻译为18-30个氨基酸的信号肽,信号肽识别颗粒(SRP)识别信号肽并与之结合形成SRP-核糖体复合体,翻译暂时中止;SRP还可与内质网膜整合的停靠蛋白相识别。
于是引导SRP-核糖体复合体到内质网膜上;SRP离开复合体,蛋白质在粗面内质网膜上继续合成,信号肽进入内质网腔后被信号肽酶切断,最终完整的多肽链被合成出来。
8、比较粗面内质网和滑面内质网的形态结构与功能答:二者相同之处:均属于内质网膜系统,都是由封闭的膜与管腔构成,并且管腔相通。
二者不同之处:粗面内质网膜表面粗糙,含有核糖体;滑面内质网膜光滑,不含核糖体。
在功能方面:粗面内质网主要合成运输蛋白、N-连接的糖蛋白、膜质等;滑面内质网主要合成包括膜质以外的脂肪、胆固醇和甾类激素等脂类及糖原等,另外其也参与分解糖原。
细胞生物学简答题

细胞生物学简答题1、细胞的跨膜物质运输有哪些方式?2、为什么说线粒体的行为类似于细菌?3、简述减数分裂前期I细胞核的变化。
4、细胞同步化培哪些类型?5、细胞与细胞之间的连接有哪些方式?6、为什么说线粒体的行为类似于细菌?7、生物膜的基本结构特征是什么?8、简述细胞有丝分裂的过程。
9、细胞与细胞之间的连接有哪些方式?10、原癌基因激活的机制有哪些?11、什么是TDR双阻断法?有什么优缺点?12、简述cAMP途径中的Gs调节模型13、什么是电镜负染技术?14、什么是蛋白质感染因子(prion)?15、主动运输的能量来源有哪些途径?请举例说明。
16、什么是细胞周期,可分为哪4个阶段)?17、细胞内蛋白质的分选运输途径主要有那些?18、那些蛋白质需要在内质网上合成?19、简述JAK-STAT信号途径20、细胞骨架由哪三类成分组成,各有什么主要功能?21、让M期的细胞与间期的细胞融合,诱导间期细胞产生PCC,请描述各时期PCC的形态及形成原因。
22、根据光镜与电镜的特点,观察下列结构采用那种显微镜最好?如果用光镜(暗视野、相差、免疫荧显微镜)那种最有效?为什么?23、细胞是生命活动的基本单位,而病毒是非细胞形态的生命体,如何理解二者之间的关系?24、为什么说支原体是最小、最简单的细胞?25、原核细胞与真核细胞差别是后者有细胞器,细胞器结构的出现有什么优点?(至少2点)26、简述动物细胞与植物细胞之间的主要区别。
27、简述动物细胞、植物细胞、原生动物应付低渗膨胀的主要方式?28、简述单克隆抗体的主要技术路线。
29、简述钠钾泵的工作原理及其生物学意义。
30、受体的主要类型。
31、细胞的信号传递是高度复杂的可调控过程,请简述其基本特征。
32、简述胞饮作用和吞噬作用的主要区别。
33、细胞通过分泌化学信号进行通讯主要有哪几种方式?34、简要说明G蛋白偶联受体介导的信号通路的主要特点。
35、信号肽假说的主要内容。
36、简述含信号肽的蛋白在细胞质合成后到内质网的主要过程。
细胞生物学简答题及答案

1,.什么是核孔复合体?有什么功能?主要由蛋白质构成,镶嵌在核孔上的一种复杂的结构。
通过核孔复合体的主动运输。
亲核蛋白与核定位信号。
亲核蛋白入核转运的步骤。
转录产物RNA的输出。
2.染色质的定义?染色质的基本组成单位?是指间期细胞核内的DNA、组蛋白、非组蛋白、及少量RNA组成的线性复合体结构,是间期细胞遗传物质存在的形式。
基本组成单位:核小体。
3.活性染色质组蛋白特异的修饰?组蛋白的修饰改变染色质的结构,直接或间接影响转录的活性。
组蛋白赖氨酸残疾乙酰基化影响转录。
组蛋白的甲基化。
组蛋白的H1的磷酸化。
不同组蛋白修饰之间的关系。
4.多线染色体和灯刷染色体发现的最初来源?5.何谓多聚染色体?其生物学意义?细胞内各种多台的合成,不论其分子量大小或是mRNA长短如何,单位时间内合成的多肽分子数目都大体相等。
以多聚核糖体的形式进行多肽合成,对mRNA的利用及对其浓度的调控更为经济有效。
6.蛋白质合成的过程?起始:50S亚基和氨酰tRNA与结合在mRNA上的30S亚基结合。
延伸:核糖体沿mRNA移动并通过转肽反应使肽链延伸。
终止:多肽链从tRNA上释放,核糖体大小亚基解聚。
7.细胞骨架的定义?具有什么功能?真核细胞的细胞质中蛋白纤维网架结构体系。
维持细胞外形。
保持细胞内部结构有序性。
过程某种细胞器。
与细胞的生命活动密切相关。
8微丝的主要功能有哪些?维持细胞形态,赋予质膜机械强度。
细胞运动。
微绒毛。
应力纤维。
参与胞质分裂。
肌肉收缩。
9.什么是微管?其组成单位是?主要功能有哪些?微管:存在于所有真核细胞中由微管蛋白转配成的长管状细胞器结构。
维持细胞形态。
维持有关细胞器的空间定位分布。
细胞内物质的运输。
鞭毛和仙茅运动。
纺锤体与染色体运动。
10.原核细胞与真核细胞基本特征的比较?11.膜脂的运动方式?沿膜平面的侧向运动。
脂分子围绕轴心的自旋运动,脂分子尾部的摆动。
双层脂分子之间的翻转运动。
伸缩运动。
12.细胞质膜的基本功能?为细胞的生命活动提供相对稳定的内环境。
细胞生物学简答题

细胞生物学简答题一1.何为细胞学说,简述其内容。
2.细胞生物学研究的三个水平二1.简单比较DNA与RNA的组成、结构及功能的异同点。
3.简单比较真核细胞与原核细胞在细胞结构上有哪些不同?4.简单真核细胞与原核细胞在基因组结构上有哪些不同?5.简述DNA分子的基本结构单位、结构模型和主要功能是什么?7.试比较mRNA、tRNA、rRNA三者的结构与功能。
三1.简单比较DNA与RNA的组成、结构及功能的异同点。
3.简单比较真核细胞与原核细胞在细胞结构上有哪些不同?4.简单真核细胞与原核细胞在基因组结构上有哪些不同?5.简述DNA分子的基本结构单位、结构模型和主要功能是什么?7.试比较mRNA、tRNA、rRNA三者的结构与功能。
四1.小分子和离子的主要跨膜运输方式有哪些?各有何特点?2.哪些运输方式属于被动运输?3.膜转运蛋白的概念、类型及各类型的特点4.门控通道的类型5.载体介导的主动运输的特点和类型6.大分子和颗粒物质的跨膜运输方式有哪些?7.胞吞作用可以分为哪三种方式?各有何特点?5.参与有被小窝和有被小泡形成的蛋白质9.有被小窝处网格蛋白包被的形成有何作用?10.细胞外被的概念及功能11.膜脂可分为哪几类,其功能是什么?12.细胞膜的化学组成和生物学特性是什么?其功能主要由哪类分子完成?五1.内膜系统出现的意义是什么?2.核糖体分哪两种,各主要合成哪些蛋白质?3.简述分子伴侣的作用。
4.简述高尔基复合体的功能。
5.简述溶酶体的功能。
6溶酶体的共同特征有哪些?7.按形成过程,溶酶体可分为哪几类,简述它们各自是如何形成的。
8.简述吞噬性溶酶体的类型及各类型的消化底物来源。
9.光面内质网的结构特点和功能是什么?10.糙面内质网的结构特点是什么,其功能有哪些?11.简述过氧化物酶体的结构、所含酶类与功能12.与分泌性蛋白的合成直接相关的细胞器有哪些?它们各起什么作用?13.蛋白质的合成和分泌是一个复杂的过程,试回答以下问题:(1)当胰岛素合成时,内膜系统的哪些细胞器直接参与其中,其各自的作用是什么?(2)胰岛素以哪种方式分泌出细胞外?(3)在胰岛素合成旺盛时,细胞核中会出现一个大而明显的深染区,而当细胞进行分裂时,这种结构又将消失,这是细胞核的哪种结构?其功能是什么?14.溶酶体是细胞内进行消化的主要细胞器,请回答下列问题:(1)溶酶体的酶是在哪里进行合成和初步加工,其进一步加工修饰及分拣是在哪种细胞器中进行?(2)溶酶体的标志性酶是哪种?(3)溶酶体具有高度异质性,但溶酶体共同的特点是什么?15.关于分泌性蛋白质的合成、分选与定向运输,科学家提出了重要的信号假说,请回答:(1)何为信号假说?(2)在信号假说中涉及到哪些分子或颗粒?(3)通过信号假说机制合成的蛋白质的最终去向有哪些?16.一种分泌性蛋白质分别在内质网和高尔基复合体进行了糖基化,试述该蛋白在两种细胞器中进行糖基化的方式及主要区别17.试述分泌性糖蛋白的合成、加工和分泌的详细过程。
细胞生物学简答题汇总

细胞生物学简答题汇总
1. 什么是细胞生物学?
细胞生物学是研究细胞结构、功能和生理过程的科学领域。
2. 什么是细胞?
细胞是生物体的基本结构和功能单位。
3. 细胞有哪些组成部分?
细胞由细胞膜、细胞质和细胞核组成。
4. 细胞核的作用是什么?
细胞核控制细胞的生理活动和遗传信息的存储与传递。
5. 细胞膜的功能是什么?
细胞膜在细胞内外之间起到物质交换和细胞保护的作用。
6. 哪些生物可以被称为“单细胞生物”?
原核生物和原生动物等单细胞生物可以被称为单细胞生物。
7. 什么是细胞分裂?
细胞分裂是细胞繁殖和生长的过程,包括有丝分裂和减数分裂两种形式。
8. 有丝分裂和减数分裂有什么区别?
有丝分裂产生两个完全一样的细胞,减数分裂则产生四个具有一半染色体数目的细胞。
9. 细胞呼吸是指什么?
细胞呼吸是细胞利用氧气和有机物质产生能量的过程。
10. 什么是细胞凋亡?
细胞凋亡是一种有序的细胞死亡过程,通常发生在细胞损伤、发育过程中或细胞寿命到期时。
以上为细胞生物学简答题汇总。
细胞生物学简答题及答案

4. 在光合作用的光反应中, 类囊体膜两侧的H+质子梯度是如何建立的?(答案)
答: 在叶绿体进行的光反应中,类囊体的膜在进行电子传递的同时,会在类囊体膜两侧建立H+质子梯度。类囊体膜两侧H+质子梯度的建立,主要有三种因素:①首先是水的光解,在释放4个电子、一分子O2的同时,释放4个H+。水的裂解是在类囊体的腔中进行的,所以水的裂解导致类囊体腔中H+浓度的增加;②Cyt b6/f复合物具有质子泵的作用,当P680将电子传递给PQ时,从基质中摄取了两个H+,形成PQH2,传递四个电子,则要从基质中摄取四个H+。当PQH2将电子传递给Cyt b6/f复合物时,两分子PQH2的四个H+全被泵入类囊体的腔,叶绿体腔中H+浓度降低的同时,类囊体腔中H+浓度进一步提高;③当电子最后传递给NADP+时,需从基质中摄取两个H+质子将NADP+还原成NADPH,这样又降低了基质中的H+质子的浓度.其结果使类囊体膜两侧建立了H+质子电化学梯度。
2. 如何理解“被动运输是减少细胞与周围环境的差别,而主动运输则是努力创造差别,维持生命的活力”?(答案)
答: 主要是从创造差异对细胞生命活动的意义方面来理解这一说法。主动运输涉及物质输入和输出细胞和细胞器,并且能够逆浓度梯度或电化学梯度。这种运输对于维持细胞和细胞器的正常功能来说起三个重要作用:① 保证了细胞或细胞器从周围环境中或表面摄取必需的营养物质,即使这些营养物质在周围环境中或表面的浓度很低;② 能够将细胞内的各种物质,如分泌物、代谢废物以及一些离子排到细胞外,即使这些物质在细胞外的浓度比细胞内的浓度高得多; ③能够维持一些无机离子在细胞内恒定和最适的浓度,特别是K+、Ca2+和H+的浓度。概括地说,主动运输主要是维持细胞内环境的稳定,以及在各种不同生理条件下细胞内环境的快速调整, 这对细胞的生命活动来说是非常重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、简述G蛋白偶联受体所介导得信号通路得异同G蛋白偶联受体所介导信号通路分为三类:①激活离子通道;②激活或抑制腺苷酸环化酶,以cAMP为第二信使;③激活磷脂酶C ,以IP3 与DAG 作为双信使激活离子通道:当受体与配体结合被激活后,通过偶联G蛋白得分子开关作用,调控跨膜离子通道得开启与关闭,进而调节靶细胞得活性。
激活或抑制腺苷酸环化酸得cAMP信号通路:细胞外信号(激素,第一信使)与相应G蛋白偶联得受体结合,导致细胞内第二信使cAMP得水平变化而引起细胞反应得信号通路。
腺苷环化酶调节胞内cAMP得水平,cAMP被环腺苷酸磷酸二酯酶降解清除。
cAMP信号通路主要就是通过活化cAMP依赖性蛋白激酶A (PKA) ,激活靶酶开启基因表达,从而表现出不同得效应. 蛋白激酶A 由2个催化亚基与2个调节亚基组成,cAM P得结合可改变调节亚基得构象,释放催化亚基产生活性。
蛋白激酶A被激活后,一方面通过对底物蛋白得磷酸化,引起细胞对胞外信号得快速反应;另一方面,其催化亚基可进入细胞核,磷酸化cAMP应答元件结合蛋白(CREB)得丝氨酸残基.磷酸化得CREB蛋白被激活,它作为基因转录得调节蛋白识别并结合到靶细胞得cA MP应答元件(CRE) 启动靶基因得转录,引起细胞缓慢得应答反应。
cAMP信号通路中得缓慢反应过程:激素→G-蛋白偶联受体→G-蛋白→腺苷酸环化酶→cAMP→ cAMP依赖得蛋白激酶A→基因调控蛋白→基因转录。
cAMP就是由腺苷酸环化酶(adenylyl cyclase,AC)催化合成得,腺苷酸环化酶为跨膜12次得糖蛋白,在Mg2+或Mn2+存在下能催化ATP生成cAMP;细胞内得环腺苷酸磷酸二酯酶(PDE)可降解cAMP生成5'-AMP,导致细胞内cAMP水平下降。
因此,细胞内cAMP得浓度受控于腺苷酸环化酶与PDE得共同作用).cAMP信号调控系统由质膜上得5种成分组成:刺激型激素受体(Rs)、抑制型激素受体(Ri)、刺激型G蛋白(Gs)、抑制型G蛋白(Gi)、腺苷酸环化酶(E).Gs与Gi得β、γ亚基相同,而α亚基不同决定了对激素对腺苷酸环化酶得作用不同。
Gs得调节作用:当细胞没有受到激素刺激时,Gs处于非活化状态,G蛋白得亚基与GDP结合,此时腺苷酸环化酶没有活性;当激素配体与Rs受体结合后,导致受体构象改变,暴露出与Gs结合得位点,配体-受体复合物与Gs结合,Gs得亚基构象改变,排斥GDP结合GTP,使G蛋白三聚体解离,暴露出得亚基与腺苷酸环化酶结合,使酶活化,催化ATP环化为cAMP。
随着GTP水解使亚基恢复原来得构象并导致与腺苷酸环化酶解离,终止腺苷酸环化酶得活化作用。
α亚基与βγ亚基重新组合,使细胞回复到静止状态。
Gi得调节作用:Gi对腺苷酸环化酶得抑制作用可通过两个途径:当Gi与GTP结合,Gi得α亚基与βγ亚基解离后,一就是通过与腺苷酸环化酶结合,直接抑制酶得活性;二就是通过βγ亚基复合物与游离得Gsα亚基结合,阻断Gs得α亚基对腺苷酸环化酶得活化。
磷脂酰肌醇双信使信号通路:胞外信号分子与细胞表面G蛋白偶联受体结合,通过G蛋白(Gq)激活质膜上得磷脂酶C-β(PLC-β),使质膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解为1,4,5-三磷酸肌醇(IP3)与二酰基甘油(DAG)两个第二信使,使细胞外信号转换为胞内信号。
IP3通过动员细胞内源钙到细胞质基质中,使胞质中游离Ca2+浓度升高;DAG激活蛋白激酶C (PKC),活化得PKC使底物蛋白磷酸引起细胞反应。
因此该途径又称为“双信使系统”。
IP3-Ca2+信号通路IP3就是一种水溶性小分子,通过与内质网膜上IP3控制得Ca2+释放通道相结合,将Ca2+释放到细胞质基质中,Ca2+可活化各种Ca2+结合蛋白引起细胞反应。
胞质中高浓度得游离Ca2+由质膜与内质网膜上得钙泵转移到细胞外或内质网中。
DAG-PKC信号通路二酰基甘油(DAG)可活化与质膜结合得蛋白激酶C(PKC)。
PKC有两个功能区,一个就是亲水得催化活性中心,另一个就是疏水得膜结合区.在未受到刺激得细胞中,PKC 主要分布在细胞溶质中,呈非活性构象。
细胞受到刺激时,PIP2水解,质膜上DAG积累,细胞溶质中Ca2+浓度升高,使细胞溶质中PKC转位到质膜内表面,在质膜上PKC受Ca2+、DAG 与磷脂酰丝氨酸(PS)共同作用而激活,磷酸化底物蛋白得Ser/Thr。
PKC可通过至少两条通路增强基因得转录:一就是PKC活化一条蛋白激酶得级联反应,导致与DNA特异序列结合得基因调控蛋白得磷酸化与激活,进而增强特殊基因得转录;二就是PKC磷酸化与基因调节蛋白结合得抑制蛋白,使细胞质中得基因调节蛋白从抑制状态下释放出来,进入细胞核,刺激特定基因转录。
2、胞质中动力蛋白、驱动蛋白在结构与功能上得异同驱动蛋白(kinesins):结构:驱动蛋白就是由两条相同得重链与两条相同得轻链构成得四聚体;有一对球形得头,与微管结合并具有水解ATP为驱动蛋白移动提供能量;有一个扇形得尾,就是货物结合部位;头部通过颈部、螺旋状得α螺旋杆部与扇形尾部相连。
功能:大多数驱动蛋白得马达结构域位于N端,驱动物质沿微管从微管(—)端向微管(+)端运行;细胞中负责GC→PM得膜泡运输;神经细胞中负责向神经轴突末梢得正向运输;部分驱动蛋白得马达结构域位于重链得C端,驱动物质从微管(+) 端向(—)端运行,如ER→GC ;每一步长度大约为8nm,正好就是一个αβ微管二聚体得长度;移动得速度与ATP 得浓度有关,速度高时,可达到每秒900nm.动力蛋白(dyneins):结构:含2条或3条重链构成得球形头部(含有马达结构域),多条轻链构成得尾部,还有一些中间链介于重链与轻链间。
动力蛋白得马达结构域位于重链得C端,轴丝动力蛋白具有3个头部马达结构域,胞质动力蛋白具有2个头部马达结构域。
与胞质动力蛋白相结合得动力蛋白激活复合体,介导胞质动力蛋白与“货物"间得结合。
功能:动力蛋白沿微管从微管(+)端向微管(—)端运行;运输小泡与膜结合细胞器向细胞中心运输(PM →GC,ER →GC);与染色体着丝点上动粒与有丝分裂纺锤体得共定位密切相关,也就是细胞分裂后期染色体分离动力得来源.两种马达蛋白都就是单方向运输物质,驱动蛋白:从(—)端向(+)端得运输,动力蛋白:从(+)端向(—)端运输;运输方式为逐步行进,驱动力就是ATP,每消耗一分子ATP行进一步。
3、试述caspase在细胞凋亡中外源途径及内源途径得异同Caspase依赖性得细胞凋亡主要通过两条途径引发:细胞表面死亡受体起始得外源途径与线粒体起始得内源途径。
细胞表面死亡受体介导得外源性细胞凋亡:死亡受体介导得细胞凋亡起始于死亡配体与受体得结合。
死亡配体主要就是肿瘤坏死因子(TNF)超家族成员;死亡受体为跨膜蛋白,TNF—R1与Fas(Apo—1,CD95)就是死亡受体家族得代表成员,其胞外具有半胱氨酸富集得重复区,胞内具有死亡结构域(death domain,DD)。
配体与受体结合,受体构象改变发生聚合,聚合得Fas受体通过胞内死亡结构域(DD)招募同样具有死亡结构域得接头蛋白FADD与Caspase-8酶原,形成死亡诱导信号复合物DISC(death inducing signalingplex)。
Caspase—8酶原在复合物中通过自身切割而被激活,进而切割执行者Caspase—3酶原,产生有活性得Caspase—3,导致细胞凋亡.Caspase—8还通过切割Bcl—2家族成员Bid将凋亡信号传递给线粒体,引发凋亡得内源途径,使凋亡信号进一步扩大。
线粒体起始得内源性细胞凋亡:当细胞受到内部或外部得死亡信号刺激时,细胞色素c从线粒体释放到胞质作为通路得起始,释放得细胞色素c与胞质中得Apaf-1(apoptosisproteaseactivating factor)结合。
Apaf—1得N端具有Caspase募集结构域(CARD),它与细胞色素c结合后发生自身聚合,并进一步通过CARD结构域招募细胞质中得Caspase-9酶原,形成大得凋亡复合体(apoptosome)。
Caspase-9酶原在凋亡复合体中发生自身切割而活化,活化得Caspase-9再进一步激活执行者Caspase-3与Caspase—7酶原,引起细胞凋亡。
线粒体外膜释放通透性得改变主要受到Bcl-2(B—cell lymphoma gene 2)家族得调控.Bcl—2家族成员可分为3个亚族:Bcl-2亚族,包括bcl-2、bcl-xl、Bcl—w等可通过抑制线粒体释放Cytc,进而抑制细胞凋亡;Bax亚族,包括Bax、Bak等通过改变线粒体膜透性促使Cyt c得释放,促进细胞凋亡;BH3亚族,包括Bad、Bid、Bik等充当细胞内凋亡信号得“感受器",促进细胞凋亡.细胞接受凋亡信号后,促凋亡因子Bax与Bak发生寡聚化,从细胞质中转移到线粒体外膜上,并与膜上得电压依赖性阴离子通道相互作用,促进cyt c释放从而引起细胞凋亡。
凋亡抑制因子Bcl-2与Bcl-xl 能与Bax/Bak形成异二聚体,通过抑制Bax与Bak得寡聚化来抑制线粒体膜通道得开启.4、溶酶体得发生初级溶酶体就是在高尔基体得反面以出芽得形式形成,形成过程如下:rER合成溶酶体蛋白→进入内质网腔进行N—连接得糖基化修饰→进入高尔基体顺面膜囊→磷酸转移酶识别溶酶体水解酶得信号斑→ 在N-乙酰葡糖胺磷酸转移酶与N—乙酰葡糖胺磷酸糖苷酶作用下溶酶体水解酶形成M6P→与反面膜囊上得M6P受体结合→通过网格蛋白包装成有被囊泡出芽→脱去网格蛋白后与晚期胞内体融合→胞内体pH降低使水解酶与M6P受体脱离并去磷酸后形成转运泡,经成熟后形成成熟得溶酶体。
溶酶体得形成可能存在多条途径。
依赖于M6P得分选途径得效率不高,部分溶酶体酶通过运输小泡直接分泌到细胞外.在细胞质膜上也存在依赖钙离子得M6P受体,同样可与胞外得溶酶体酶结合,通过受体介导得内吞作用,将酶送至前溶酶体中,M6P受体返回细胞质膜,反复使用。
还存在不依赖于M6P得分选途径(如酸性磷酸酶、分泌溶酶体得perforin与granzyme)。
5、举例说明CDK激酶在细胞周期就是如何实现调控得在细胞周期得后期逐渐合成、至周期得中间阶段突然消失得周期性存在蛋白,成为细胞周期蛋白。
细胞周期蛋白可分为3类:S期周期蛋白,M期周期蛋白,G1期周期蛋白.S期周期蛋白为cyclinA,在S期开始表达,到中期时开始消失;M期周期蛋白为cyclinB,在S期开始表达,在G2/M期到达峰值,中期到后期转换时消失。
G1期周期蛋白在脊椎动物中位cyclin C、D、E,在酵母中为Cln1、Cln2、Cln3,她们在G1期开始表达,进入S期后消失。