(word完整版)基础随机变量及其分布知识点,推荐文档

合集下载

随机变量及其分布知识点整理 推荐

随机变量及其分布知识点整理  推荐

随机变量及其分布知识点整理以及高考训练一、离散型随机变量的分布列一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ⋅⋅⋅⋅⋅⋅,X 取每一个值(1,2,,)i x i n =⋅⋅⋅的概率()i i P X x p ==,则称以下表格Xx 1 x 2 … x i … x n Pp 1 p 2 … p i … p n为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =⋅⋅⋅≥ (2)121n p p p ++⋅⋅⋅+= 两点分布如果随机变量X 的分布列为 X1P 1-p p则称X 服从两点分布。

二、条件概率一般地,设A,B 为两个事件,且()0P A >,称()(|)()P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+三、相互独立事件设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。

()()()A B P AB P A P B ⇔=即、相互独立一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =.注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生;(2)相互独立事件:指在不同试验下的两个事件互不影响. 四、n 次独立重复试验一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验.在n 次独立重复试验中,记i A 是“第i 次试验的结果”,显然,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅ “相同条件下”等价于各次试验的结果不会受其他试验的影响 注: 独立重复试验模型满足以下三方面特征第一:每次试验是在同样条件下进行;第二:各次试验中的事件是相互独立的;第三:每次试验都只有两种结果,即事件要么发生,要么不发生. n 次独立重复试验的公式:n A X A p n A k 一般地,在次独立重复试验中,设事件发生的次数为,在每次试验中事件发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率为()(1),0,1,2,...,.(1)k k n k k k n kn n P X k C p p C p q k n q p --==-===-其中,而称p 为成功概率.五、二项分布一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则()(1)0,1,2,,k kn k n P X k C p p k n -==-=⋅⋅⋅,X 01… k … nP00nn C p q111n n C p q -…k k n kn C p q - …n n n C p q此时称随机变量X 服从二项分布,记作~(,)X B n p ,并称p 为成功概率. 六、离散随机变量的均值(数学期望)一般地,随机变量X 的概率分布列为 Xx 1 x 2 … x i … x n Pp 1 p 2 … p i … p n则称1122()i i n n E X x p x p x p x p =+++++为X 的数学期望或均值,简称为期望.它反映了离散型随机变量取值的平均水平. 七、离散型随机变量取值的方差和标准差 一般地,若离散型随机变量x 的概率分布列为 Xx 1 x 2 … x i … x n Pp 1 p 2 … p i … p n2221122(())(())(())..n n DX x E X p x E X p x E X p X DX X =-+-+⋅⋅⋅+-则称为随机变量的方差并称为随机变量的标准差例题练习11年山东数学高考红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立. (Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.12年山东数学高考先在甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.13年山东数学高考甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率是23.假设每局比赛结果互相独立.(1)分别求甲队以3:0,3:1,3:2胜利的概率(2)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分,求乙队得分x的分布列及数学期望.13年天津数学高考一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.13年北京数学高考下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气重度污染的概率(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望。

第七章随机变量及其分布列章末总结-高二数学教材配套教学课件(人教A版2019选择性必修第三册)

第七章随机变量及其分布列章末总结-高二数学教材配套教学课件(人教A版2019选择性必修第三册)
P(B|A)= ()
=
=
2
.
3
=

4
,
15
典例分析
(2)因为有放回地依次取出3个球,每次取出之前暗箱的情况没有变化,所以每
次取球互不影响,
6
3
所以第 1 次取出的是白球,第 3 次取到黑球的概率为10 = 5.
4
2
2
(3)依题意,每次取到白球的概率为10 = 5,且每次互不影响,故ξ~B 3, 5 ,
例1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.
解: 设“第1次抽到理科题”为事件 A ,“第2次抽到理科题”为事件 B ,则“第1次和第2次都抽
这时称 X 服从二项分布,记为 X~B(n,p).
当 X~B(n,p)时,E(X)=np,D(X)=np(1-p).
知识梳理
要点四 超几何分布
(1) 若随机变量 X 服从超几何分布,则满足如下条件:
①该试验是不放回地抽取 n 次;
②随机变量 X 表示抽取到的次品件数(或类似事件),反之亦然.
(2)一般地,设有 N 件产品,其中次品的件数分别为 M,(M≤N),从中任取 n(n≤N)
<
>
/m
<
>
/m
<
典例分析
(2)因为 n(AB) =
>
m
<
A23
= 6 ,所以 P(AB) =
>
/m
<
>
m

随机变量及其分布

随机变量及其分布


p(xi)P{Xxi}, i1, 2,
(21)
则称{p(xi) i1 2 }为X的概率分布 有时也将p(xi)记为pi 用
下列表格形式来表示 并称之为X 的概率分布表
4
概率分布的性质
任何一个离散型随机变量的概率分布{p(xi)}必然满足下 列性质
1 p(xi)0 i1 2
(22)
((22))ii pp((xxi)i)11
事件的概率与密度函数的关系
(1)连续型随机变量X落于区间(a b]上的概率为
b
P{a X b} F(b) F(a)a f (x)dx
(2)连续型随机变量X落于点x上的概率为
P{Xx}0
(212)
(213)
19
例28 设X是在[a b]上等可能投点的位置 其分布函数为
0, F (x) bx1,aa ,
x
x
F(x) 0 F() lim F(x)1
若函数Fx)满足上述三
x
条性质 则它一定是某个随
(3)右连续性 F(x0)F(x) 机变量X的分布函数
10
三、分布函数
定义24(分布函数) 设X是一随机变量 则称函数
F(x)P{Xx} x( )
(29)
为随机变量X的分布函数 记作X ~F(x)
分布函数的性质 随机变量的分布函数必然满足下列性质
0 x1, x1.
14
四、离散型随机变量的分布函数
离散型随机变量的分布函数F(x)的共同特征是 F(x)是一 个阶梯形的函数 它在X的可能取值点处发生跳跃跳跃高度 等于相应点处的概率 而在两个相邻跳跃点之间分布函数值 保持不变
反过来 如果一个随机变量X的分布函数F(x)是阶梯型函 数 则X一定是一个离散型随机变量 其概率分布可由分布函 数F(x)惟一确定 F(x)的跳跃点全体构成X的所有可能取值 每 一跳跃点处的跳跃高度则是X在相应点处的概率

随机变量及其分布知识点

随机变量及其分布知识点

随机变量及其分布知识点
随机变量是概率论的重要概念,它是指一个随机试验中的某个数值特征。

随机变量可分为离散型和连续型两种类型。

离散型随机变量只能取有限的几个或无限个可数值,例如掷骰子所得点数就是一个离散型随机变量。

离散型随机变量的概率分布可以用概率质量函数来描述,它指定了每个可能取值的概率。

连续型随机变量可以取任意实数值,例如一个人的身高就是一个连续型随机变量。

连续型随机变量的概率分布可以用概率密度函数来描述,它指定了每个可能取值的概率密度。

常见的离散型随机变量包括伯努利分布、二项分布、泊松分布等,常见的连续型随机变量包括均匀分布、正态分布、指数分布等。

这些分布函数具有特定的形式和性质,可以用于描述和分析各种随机现象的概率分布。

随机变量及其分布是概率论和数理统计的基础知识,它们在实际应用中具有广泛的应用,例如金融、统计学、物理学、工程学等领域。

对于学习和掌握这些知识点,需要熟悉概率论的基本概念、运算法则和常用的分布函数,同时还需要具备一定的数学基础和逻辑思维能力。

- 1 -。

高中数学随机变量分布列知识点.doc

高中数学随机变量分布列知识点.doc

第二章随机变量及其分布内容提要:一、随机变量的定义设是一个随机试验,其样本空间为,若对每一个样本点,都有唯一确定的实数与之对应,则称上的实值函数是一个随机变量(简记为)。

二、分布函数的概念和性质1.分布函数的定义设是随机变量,称定义在上的实值函数为随机变量的分布函数。

2.分布函数的性质(1) ,(2)单调不减性:,(3)(4)右连续性:。

注:上述4个性质是函数是某一随机变量的分布函数的充要条件。

在不同的教科书上,分布函数的定义可能有所不同,例如,其性质也会有所不同。

(5)注:该性质是分布函数对随机变量的统计规律的描述。

三、离散型随机变量1.离散型随机变量的定义若随机变量的全部可能的取值至多有可列个,则称随机变量是离散型随机变量。

2.离散型随机变量的分布律(1)定义:离散型随机变量的全部可能的取值以及取每个值时的概率值,称为离散型随机变量的分布律,表示为或用表格表示:x1 x2 … x n…p k P1 p2… p n…或记为~(2)性质:,注:该性质是是某一离散型随机变量的分布律的充要条件。

其中。

注:常用分布律描述离散型随机变量的统计规律。

3.离散型随机变量的分布函数=,它是右连续的阶梯状函数。

4.常见的离散型分布(1)两点分布(0—1分布):其分布律为即0 1p 1–p p(2)二项分布(ⅰ)二项分布的来源—重伯努利试验:设是一个随机试验,只有两个可能的结果及,,将独立重复地进行次,则称这一串重复的独立试验为重伯努利试验。

(ⅱ)二项分布的定义设表示在重伯努利试验中事件发生的次数,则随机变量的分布律为,,称随机变量服从参数为的二项分布,记作。

注:即为两点分布。

(3)泊松分布:若随机变量的分布律为,,则称随机变量服从参数为的泊松分布,记作(或。

高中数学系列2—3练习题(2.1)一、选择题:1、如果X 是一个离散型随机变量,则假命题是( ) A. X 取每一个可能值的概率都是非负数; B. X 取所有可能值的概率之和为1;C. X 取某几个值的概率等于分别取其中每个值的概率之和;D. X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和2①某寻呼台一小时内收到的寻呼次数X ;②在(0,1)区间内随机的取一个数X ;③某超市一天中的顾客量X 其中的X 是离散型随机变量的是( ) A .①; B .②; C .③; D .①③3、设离散型随机变量ξ的概率分布如下,则a 的值为( )X1 2 3 4P16 1316aA .12B .16C .13D .144、设随机变量X 的分布列为()()1,2,3,,,kP X k k n λ===⋯⋯,则λ的值为( )A .1; B .12; C .13; D .145、已知随机变量X 的分布列为:()12k p X k ==, ,3,2,1=k ,则()24p X <≤=( ) A.163 B. 41 C. 161 D. 165 6、设随机变量X 等可能取1、2、3...n 值,如果(4)0.4p X ≤=,则n 值为( )A. 4B. 6C. 10D. 无法确定7、投掷两枚骰子,所得点数之和记为X ,那么4X =表示的随机实验结果是( ) A. 一枚是3点,一枚是1点 B. 两枚都是2点C. 两枚都是4点D. 一枚是3点,一枚是1点或两枚都是2点 8、设随机变量X 的分布列为()()21,2,3,,,kP X k k n λ==⋅=⋯⋯,则λ的值为( )A .1;B .12; C .13; D .14二、填空题:9 、下列表中能成为随机变量X 的分布列的是 (把全部正确的答案序号填上)X-1 0 1 p 0.3 0.4 0.4X 1 2 3 p 0.4 0.7 -0.1 X 5 0 -5 p 0.3 0.6 0.1 ()1,2,3,4,5,P X k k k===④⑤()12,1,2,3,,21k n P X k k n -===-10、已知2Y X =为离散型随机变量,Y 的取值为1,2,3,,10,则X 的取值为11、一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数X 可能取值为 三、解答题:12、某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?13、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数X 的分布列.分析:欲写出ξ的分布列,要先求出ξ的所有取值,以及ξ取每一值时的概率.14、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是n 21(n =1,2,3,…).记X 为原物体在分裂终止后所生成的子块数目,求(10)P X ≤.高中数学系列2—3练习题(2.1)参考答案一、选择题:1、D2、D3、C4、B5、A6、C7、D8、C 二、填空题:9、 ③④ 10、13579,1,,2,,3,,4,,52222211、 3,4,5三、解答题:12、解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2 (2)由38=2ξ+2,得ξ=18,5×(18-15)=15. 所以,出租车在途中因故停车累计最多15分钟.13、解:设黄球的个数为n ,由题意知绿球个数为2n ,红球个数为4n ,盒中的总数为7n .∴ 44(1)77n P X n ===,1(0)77n P X n ===,22(1)77n P X n =-==. X 10 -1 P74 71 7214、解:依题意,原物体在分裂终止后所生成的数目X 的分布列为X 24 8 16 ...n 2... P21 41 81 161 ... n21 ...∴ (10)(2)(4)(8)P X P X P X P X ≤==+=+==8842=++.。

《概率论公式大全》Word文档

《概率论公式大全》Word文档

概率论公式1.随机事件及其概率吸收律:AAB A A A A =⋃=∅⋃Ω=Ω⋃)( AB A A A A A =⋃⋂∅=∅⋂=Ω⋂)( )(AB A B A B A -==-反演律:B A B A =⋃ B A AB ⋃=n i i n i i A A 11=== ni in i i A A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=-加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃)()()(B P A P B A P +≤⋃)()1()()()()(2111111n n n n k j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率()=A B P)()(A P AB P乘法公式 ())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P全概率公式 ∑==n i i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k = ∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量(1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B若P ( A ) = pn k p p C k X P k n k k n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np 有 ,2,1,0!)1(lim ==---∞→k k e p p C kk n n k n kn n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k e k X P kλλ6.连续型随机变量(1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ ⎩⎨⎧≥-<=-0,10,0)(x e x x F x λ(3) 正态分布 N (m , s 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=x t t e x F d 21)(222)(σμσπ*N (0,1) — 标准正态分布 +∞<<∞-=-x e x x 2221)(πϕ +∞<<∞-=Φ⎰∞--x t e x xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xy dvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( ⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8.连续型二维随机变量(1) 区域G 上的均匀分布,U ( G ) ⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x A y x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎦⎤⎢⎢⎣⎡-+------y x e y x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9.二维随机变量的 条件分布 0)()()(),(>=x f x y f x f y x f X X Y X 0)()()(>=y f y x f y f Y Y X Y ⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()( ⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()( )(y x f Y X )(),(y f y x f Y = )()()(y f x f x y f Y X X Y =)(x y f X Y )(),(x f y x f X = )()()(x f y f y x f X Y Y X =10.随机变量的数字特征数学期望 ∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩)(k X EX 的 k 阶绝对原点矩)|(|k X EX 的 k 阶中心矩)))(((k X E X E -X 的 方差)()))(((2X D X E X E =-X ,Y 的 k + l 阶混合原点矩)(l k Y X EX ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫ ⎝⎛--)()())())(((X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -= ())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY =ρ(注:素材和资料部分来自网络,供参考。

随机变量及其分布知识点总结资料讲解.doc

圆梦教育中心 随机变量及其分布知识点整理一、离散型随机 量的分布列一 般 地 , 离 散 型 随 机 量 X 可 能 取 的x 1 , x 2 , , x i ,, x n , X 取 每 一 个 x i (i1,2, , n) 的 概 率P( Xx i ) p i , 称以下表格Xx 1 x 2 ⋯ x i ⋯ x n Pp 1p 2⋯p i⋯p n随机 量 X 的概率分布列, 称X 的分布列 .离散型随机 量的分布列具有下述两个性 :( 1) P i ≥ 0, i1,2, , n ( 2) p 1 p 2 p n 11.两点分布如果随机 量X 的分布列X1P 1-p p称 X 服从两点分布,并称p=P(X=1) 成功概率 .2.超几何分布 一般地,在含有M 件次品的 N 件 品中,任取 n 件,其中恰有 X 件次品, 事件X k 生的概率 :P( X k ) C M k C N n k M , k 0,1,2,3,..., mC nN 随机 量 X 的概率分布列如下:X1 ⋯ mPC M 0 C N n 0MC M 1 C N n 1M⋯C M m C N n m MC N nC N nC N n其中 mmin M , n , 且nN , M N , n, M , N N * 。

注:超几何分布的模型是不放回抽 二、条件概率一般地, A,B 两个事件 , 且 P( A)0 ,称P(B | A)P( AB )在事件 A 生的条件下 , 事件 B 生的条件概率 .P( A)0≤ P(B | A) ≤ 1如果 B 和 C 互斥,那么 P[( B U C ) | A] P( B | A) P(C | A)三、 相互独立事件A ,B 两个事件, 如果事件 A 是否 生 事件 B 生的概率没有影响( 即 P( AB) P( A)P( B) ), 称事件 A 与事件B 相互独立。

即 A 、 B 相互独立P( AB) P( A) P(B)一般地,如果事件A ,A , ⋯,A n 两两相互独立,那么n 个事件同 生的概率,等于每个事件 生的概率的 ,12即 P( A 1A 2... A n ) P( A 1 ) P( A 2 )...P( A n ) .注: (1) 互斥事件:指同一次试验中的两个事件不可能同时发生;(2)相互独立事件:指在不同试验下的两个事件互不影响.四、 n 次独立重复试验一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验.在 n 次独立重复试验中,记A i是“第i次试验的结果” ,显然, P( A1 A2A n ) P( A1 )P( A2 )P( A n )“相同条件下”等价于各次试验的结果不会受其他试验的影响注: 独立重复试验模型满足以下三方面特征第一:每次试验是在同样条件下进行;第二:各次试验中的事件是相互独立的;第三:每次试验都只有两种结果,即事件要么发生,要么不发生.n次独立重复试验的公式:一般地,在 n次独立重复中,事件 A生的次数 X,在每次中事件 A生的概率 p,那么在 n次独立重复中,事件 A 恰好生 k次的概率P( X k ) C n k p k (1 p)n k C n k p k q n k , k 0,1,2,..., n.(其中 q 1 p) ,而称p为成功概率.五、二项分布一般地,在n 次独立重复试验中,用X 表示事件 A 发生的次数,设每次试验中事件 A 发生的概率为p,则P( X k ) C n k p k (1 p)n k, k 0,1,2, ,nX01⋯k⋯nP C n0 p0q n C n1 p1q n 1⋯C n k p k q n k⋯C n n p n q0此时称随机变量X 服从二项分布,记作X ~ B(n, p) ,并称p为成功概率.六、离散随机变量的均值(数学期望)一般地,随机变量X 的概率分布列为X x1 x2 ⋯x i ⋯x nP p1 p2 ⋯p i ⋯p n则称 E( X ) x1 p1 x2 p2x i p i x n p n为X 的数学期望或均值,简称为期望 . 它反映了离散型随机变量取值的平均水平 .1.若Y aX b ,其中a,b常数,则Y 也是变量Y ax1 b ax2 b ⋯ax i b ⋯ax n bP p1 p2⋯p ⋯pi n则 EY aE( X ) b ,即 E(aX b) aE ( X ) b 2.一般地,如果随机变量X 服从两点分布,那么E( X )=1 p 0 (1 p)p 3.若X ~ B(n, p),则E( X ) np七、离散型随机变量取值的方差和标准差一般地 , 若离散型随机变量x 的概率分布列为X x1 x2 ⋯x i ⋯x nP p1 p2 ⋯p i ⋯p n则称 DX ( x1 E (X )) 2 p1 ( x2 E( X )) 2 p2 (x n E ( X 并称DX 为随机变量 X的标准差 .1.若 X 服从两点分布,则 D ( X ) p(1 p)2.若X ~ B(n, p),则D ( X )np(1 p)3.D ( aX b)a2 D ( X )即若 X 服从两点分布,则E( X )p。

(完整版)基础随机变量及其分布知识点

随机变量及其分布一、离散型随机变量的分布列一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ⋅⋅⋅⋅⋅⋅,X 取每一个值(1,2,,)i x i n =⋅⋅⋅的概率()i i P X x p ==,则称以下表格为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =⋅⋅⋅≥ (2)121n p p p ++⋅⋅⋅+=常见的两种分布: 1.两点分布如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为:(),0,1,2,3,...,k n k MN M n NC C P X k k m C--===则随机变量X 的概率分布列如下:{}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。

注:超几何分布的模型是不放回抽样二、条件概率一般地,设A,B 为两个事件,且()0P A >,称()(|)()P AB P B A P A =为在事件A发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤三、相互独立事件设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。

()()()A B P AB P A P B ⇔=即、相互独立一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =. 注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生;(2) 相互独立事件:指在不同试验下的两个事件互不影响.四、n 次独立重复试验一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验. 在n次独立重复试验中,记iA 是“第i 次试验的结果”,显然,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅“相同条件下”等价于各次试验的结果不会受其他试验的影响 注: 独立重复试验模型满足以下三方面特征第一:每次试验是在同样条件下进行; 第二:各次试验中的事件是相互独立的;第三:每次试验都只有两种结果,即事件要么发生,要么不发生.五、二项分布一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则()(1)0,1,2,,k kn k n P X k C p p k n -==-=⋅⋅⋅,此时称随机变量X 服从二项分布,记作~(,)X B n p ,并称p 为成功概率.六、离散随机变量的均值(数学期望) 一般地,随机变量X 的概率分布列为则称1122()i i n n E X x p x p x p x p =+++++为X 的数学期望或均值,简称为期望.它反映了离散型随机变量取值的平均水平.1.若Y aX b =+,其中a ,b 为常数,则Y 也是变量则()EY aE X b =+,即()()E aX b aE X b +=+2.一般地,如果随机变量X 服从两点分布,那么()=10(1)E X p p p ⨯+⨯-=即若X 服从两点分布,则()E X p = 3.若~(,)X B n p ,则()E X np =七、离散型随机变量取值的方差和标准差 一般地,若离散型随机变量x 的概率分布列为 2221122(())(())(())..n n DX x E X p x E X p x E X p X X =-+-+⋅⋅⋅+-则称为随机变量的方差的标准差1.若X 服从两点分布,则()(1)D X p p =- 2.若~(,)X B n p ,则()(1)D X np p =- 3.2()()D aX b a D X +=八、正态分布1.正态分布一般记为N(μ,σ2).μ为正态分布的均值;σ是正态分布的标准差2.结合正态曲线,归纳其以下性质:(1)曲线在x轴的上方,与x轴不相交.(2)曲线关于直线x=μ对称.(3)当x=μ时,曲线位于最高点.(4)当x<μ时,曲线上升(增函数);当x>μ时,曲线下降(减函数).并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近.(5)μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,总体分布越分散;σ越小,曲线越“高”,总体分布越集中;3.3σ原则:对于正态总体),(2σμN 取值的概率:练习:1.正态分布有两个参数μ与σ,( )相应的正态曲线的形状越扁平。

高中数学知识点总结:随机变量及其分布

高中数学知识点总结:随机变量及其分布随机变量及其分布1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。

2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列4、分布列性质① p i ≥0, i =1,2, … ; ② p 1 + p 2 +…+p n = 1.5、二点分布:如果随机变量X 的分布列为:其中0<p<1,q=1-p ,则称离散型随机变量X 服从参数p 的二点分布6、超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,其中{}min ,m M n =,且*,,,,n N M N n M N N ∈≤≤7、条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率8、公式: .0)(,)()()|(>=A P A P AB P A B P9、相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

)()()(B P A P B A P ⋅=⋅10、n 次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验11、二项分布: 设在n 次独立重复试验中某个事件A 发生的次数,A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q=1-p ,那么在n 次独立重复试验中)(k P =ξk n k k n q p C -=(其中 k=0,1, ……,n ,q=1-p )于是可得随机变量ξ的概率分布如下:这样的随机变量ξ服从二项分布,记作ξ~B(n ,p) ,其中n ,p 为参数12、数学期望:一般地,若离散型随机变量ξ的概率分布为则称 E ξ=x1p1+x2p2+…+xnpn +… 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。

随机变量及其分布知识点总结

随机变量及其分布知识点总结随机变量是数学中的一个基本概念,描述了一个随机事件的可能结果。

在概率论和统计学中,随机变量的分布是研究随机变量性质的重要工具。

本文将总结随机变量及其分布的相关知识,包括随机变量的定义、表示、分布、期望、方差等。

一、随机变量的定义随机变量是一种描述随机事件可能的变量,通常用符号 $X$ 表示。

随机变量的取值可以是离散的或连续的。

离散的随机变量只取有限或可数个取值,而连续的随机变量则取无限个取值。

二、随机变量的表示随机变量的表示通常用概率密度函数 $f_X(x)$ 或概率质量函数$g_X(x)$ 表示。

概率密度函数是描述随机变量取值分布的函数,通常用$f_X(x)$ 表示。

概率质量函数是描述随机变量离散程度的函数,通常用$g_X(x)$ 表示。

三、随机变量的分布随机变量的分布描述了随机变量取值的概率分布。

离散分布描述了随机变量只取有限或可数个取值的概率分布,连续分布描述了随机变量取无限个取值的概率分布。

1. 离散分布离散分布通常用 $P(X=x)$ 表示,其中 $x$ 是随机变量的取值。

离散分布的概率质量函数通常用 $g_X(x)$ 表示。

例如,正态分布的概率质量函数为:$$g_X(x) = frac{sqrt{2pi}}{x!}e^{-frac{(x-1)^2}{2}}$$2. 连续分布连续分布通常用 $P(X leq x)$ 表示,其中 $x$ 是随机变量的取值。

连续分布的概率质量函数通常用 $f_X(x)$ 表示。

例如,均匀分布的概率质量函数为: $$f_X(x) = begin{cases}1, & x in [0,1],0, & x in [1,2],end{cases}$$四、期望和方差随机变量的期望是随机变量的取值的总和。

离散分布的期望通常用$E(X)$ 表示,连续分布的期望通常用 $E[X]$ 表示。

期望的概率质量函数通常用$f_X(x)$ 表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机变量及其分布
一、离散型随机变量的分布列
一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ⋅⋅⋅⋅⋅⋅,X 取每一个值(1,2,,)i x i n =⋅⋅⋅的概率()i i P X x p ==,则称以下表格
为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =⋅⋅⋅≥ (2)121n p p p ++⋅⋅⋅+=
常见的两种分布: 1.两点分布
如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布
一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为:
(),0,1,2,3,...,k n k M
N M n N
C C P X k k m C
--==
=
则随机变量X 的概率分布列如下:
{}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。

注:超几何分布的模型是不放回抽样
二、条件概率
一般地,设A,B 为两个事件,且()0P A >,称()
(|)()P AB P B A P A =为在事件A
发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤
三、相互独立事件
设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即
()()()P AB P A P B =),则称事件A 与事件B 相互独立。

()()()A B P AB P A P B ⇔=即、相互独立
一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =. 注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生;
(2) 相互独立事件:指在不同试验下的两个事件互不影响.
四、n 次独立重复试验
一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验. 在
n
次独立重复试验中,记
i
A 是“第i 次试验的结果”,显然,
1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅
“相同条件下”等价于各次试验的结果不会受其他试验的影响 注: 独立重复试验模型满足以下三方面特征
第一:每次试验是在同样条件下进行; 第二:各次试验中的事件是相互独立的;
第三:每次试验都只有两种结果,即事件要么发生,要么不发生.
五、二项分布
一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则
()(1)0,1,2,,k k
n k n P X k C p p k n -==-=⋅⋅⋅,
此时称随机变量X 服从二项分布,记作~(,)X B n p ,并称p 为成功概率.
六、离散随机变量的均值(数学期望) 一般地,随机变量X 的概率分布列为
则称1122()i i n n E X x p x p x p x p =+++++
为X 的数学期望或均值,简称为期望.它反映了离散型随机变量取值的平均水平.
1.若Y aX b =+,其中a ,b 为常数,则Y 也是变量
则()EY aE X b =+,即()()E aX b aE X b +=+
2.一般地,如果随机变量X 服从两点分布,那么
()=10(1)E X p p p ⨯+⨯-=
即若X 服从两点分布,则()E X p = 3.若~(,)X B n p ,则()E X np =
七、离散型随机变量取值的方差和标准差 一般地,
若离散型随机变量x 的概率分布列为 2221122(())(())(())..
n n DX x E X p x E X p x E X p X X =-+-+⋅⋅⋅+-则称为随机变量的方差的标准差
1.若X 服从两点分布,则()(1)D X p p =- 2.若~(,)X B n p ,则()(1)D X np p =- 3.2()()D aX b a D X +=
八、正态分布
1.正态分布一般记为N(μ,σ2).
μ为正态分布的均值;
σ是正态分布的标准差
2.结合正态曲线,归纳其以下性质:
(1)曲线在x轴的上方,与x轴不相交.
(2)曲线关于直线x=μ对称.
(3)当x=μ时,曲线位于最高点.
(4)当x<μ时,曲线上升(增函数);当x>μ时,曲
线下降(减函数).并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近.
(5)μ一定时,曲线的形状由σ确定.
σ越大,曲线越“矮胖”,总体分布越分散;
σ越小,曲线越“高”,总体分布越集中;
3.3σ原则:
对于正态总体),(2σμN 取值的概率:
练习:
1.正态分布有两个参数μ与σ,( )相应的正态曲线的形状越扁平。

A .μ越大
B .μ越小
C .σ越大
D .σ越小
2.在一次英语考试中,考试的成绩服从正态分布)36,100(,那么考试成绩在区间(]112,88内的概率是
A .0.6826
B .0.3174
C .0.9544
D .0.9974
3.若x ~N (0,1), 求P (x >2). P (x <-1).。

相关文档
最新文档