膜污染的四种类型及修复策略
膜分离技术存在的问题及解决方法剖析

可编辑修改精选全文完整版膜分离技术存在的问题及解决方法膜分离技术作为一种新型的高新制造技术,在食品工业中的应用发展极快,成绩卓著,日益受到各界的关注,展现了广阔前景,尤其一些新的膜分离技术具有更大的潜力和更强的生命力。
下面具体介绍膜分离技术存在的问题及解决方法,一起来看看吧。
1、膜的污染问题由于食品中大都含有蛋白质、脂肪、纤维、鞣质及胶体物质,膜在操作时极易被污染和阻塞,造成膜通量锐减。
而现有的清洗方法难以达到恢复通量的目的。
所以料液的预处理及清洗成了膜技术应用的关键,另外开发新型的不易被污染的膜材料及进行膜面改良也是控制膜污染的有效措施。
2、膜的选择问题膜分离技术在生产中的应用日益广泛,但由于影响因素众多,诸如膜材料的选择、膜分离时的压力、温度、浓度、流速等,需要对其工艺条件作更深入的研究和考察。
3、浓度极化现象由于滤膜上筛孔极小,沉积在膜面的物质易形成一层等高浓度的凝胶层,使膜的通过速度和截流性能受到很大影响,称为浓度极化现象。
应采取相应措施,如降低料液黏度,在各阶段合理的调节压力,分别采用恒速和恒压过滤;或与其他分离方法如澄清法、离心法联用等。
4、膜的性能有待提高膜材料的品种少,膜孔径分布宽,性能欠稳定,如常用的亲水性膜材料对溶质吸附少,截留分子量较小,但热稳定性差,机械强度、抗化学性、抗细菌侵蚀能力通常不高,疏水性膜材料机械强度高、耐高温、耐溶剂、耐生物降解,但膜透水速度低、抗污染能力较低。
另外,由于滤膜本身的孔径不可能完全均匀一致,滤过时部分微粒、热源从较大的滤孔滤出,从而导致初滤液不合要求。
故应用时应采用多级超滤法来提高食品质量,并应研究开发性能优良的滤膜,克服其自身的缺点。
以上就是膜分离技术存在的问题及解决方法,希望对大家有所帮助。
膜分离技术存在的问题及解决方法

膜分离技术存在的问题及解决方法膜分离技术作为一种新型的高新制造技术,在食品工业中的应用发展极快,成绩卓著,日益受到各界的关注,展现了广阔前景,尤其一些新的膜分离技术具有更大的潜力和更强的生命力。
下面具体介绍膜分离技术存在的问题及解决方法,一起来看看吧。
1、膜的污染问题由于食品中大都含有蛋白质、脂肪、纤维、鞣质及胶体物质,膜在操作时极易被污染和阻塞,造成膜通量锐减。
而现有的清洗方法难以达到恢复通量的目的。
所以料液的预处理及清洗成了膜技术应用的关键,另外开发新型的不易被污染的膜材料及进行膜面改良也是控制膜污染的有效措施。
2、膜的选择问题膜分离技术在生产中的应用日益广泛,但由于影响因素众多,诸如膜材料的选择、膜分离时的压力、温度、浓度、流速等,需要对其工艺条件作更深入的研究和考察。
3、浓度极化现象由于滤膜上筛孔极小,沉积在膜面的物质易形成一层等高浓度的凝胶层,使膜的通过速度和截流性能受到很大影响,称为浓度极化现象。
应采取相应措施,如降低料液黏度,在各阶段合理的调节压力,分别采用恒速和恒压过滤;或与其他分离方法如澄清法、离心法联用等。
4、膜的性能有待提高膜材料的品种少,膜孔径分布宽,性能欠稳定,如常用的亲水性膜材料对溶质吸附少,截留分子量较小,但热稳定性差,机械强度、抗化学性、抗细菌侵蚀能力通常不高,疏水性膜材料机械强度高、耐高温、耐溶剂、耐生物降解,但膜透水速度低、抗污染能力较低。
另外,由于滤膜本身的孔径不可能完全均匀一致,滤过时部分微粒、热源从较大的滤孔滤出,从而导致初滤液不合要求。
故应用时应采用多级超滤法来提高食品质量,并应研究开发性能优良的滤膜,克服其自身的缺点。
以上就是膜分离技术存在的问题及解决方法,希望对大家有所帮助。
造成RO膜污染的原因及解决方式

造成R O膜污染的原因及解决方式公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]1.造成RO膜污染的原因有哪些反渗透运行时,进水中含有的悬浮物质、溶解物质以及微生物繁殖等原因都会造成膜元件污染。
反渗透系统的预处理应尽可能的除去这些污染物质,尽量降低膜元件污染的可能性。
造成膜污染的原因主要有以下几种:新装置管道中含有油类物质和焊接管道时的残留物,以及灰尘且在装膜前未清洗干净;●预处理装置设计不合理;●添加化学药品的量发生错误或设备发生故障;●人为操作失误;●停止运行时未作低压冲洗或冲洗条件控制得不正确;●给水水源或水质发生变化。
●污染物的种类、发生原因及处理方法请参见下表。
反渗透膜污染的和种类、原因及处理方法2.反渗透和纳滤系统的清洗方式有哪些反渗透和纳滤系统的清洗可分物理清洗和化学清洗。
物理清洗也可叫物理冲洗,冲洗是采用低压大流量的进水冲洗膜元件,冲洗掉附着在膜表面的污染物或堆积物。
冲洗的要点:a.冲洗的流速装置运行时,颗粒污染物逐渐堆积在膜的表面。
如果冲洗时的流速和制水时的流速相等或略低,则很难把污染物从膜元件中冲出来。
因此,冲洗时要使用比正常运行时更高的流速。
通常,单支压力容器内的冲洗流速为:●8英寸膜元件:h;●4英寸膜元件:。
b.冲洗的压力正常高压运行时,污染物被压向膜表面造成污染。
所以在冲洗时,如果采用同样的高压,污染物仍会被压在膜表面上,清洗的效果不会理想。
因此在冲洗时,应尽可能的通过低压、高流速的方式,增加水平方向的剪切力,把污染物冲出膜元件。
压力通常控制在以下。
如果在以下,很难达到一定的流量时,应尽可能控制进水压力,以不出产水或少出产水为标准。
一般进水压力不能大于。
c.冲洗的频率条件允许的情况下,建议经常对系统进行冲洗。
增加冲洗的次数比进行一次化学清洗更有效果。
一般冲洗的频率推荐以一天一次为好。
根据具体的情况,用户可以自行控制冲洗的频率。
化学清洗是指在物理冲洗已经不能使反渗透膜的性能恢复时,使用化学药剂及方法来清洗。
污水处理中的膜污染与阻力建模

优化模型
02
03
模型应用
根据验证结果,对模型进行优化 和改进,以提高模型的预测精度 和适用范围。
将优化后的模型应用于实际污水 处理工程中,指导膜污染控制和 优化运行。
05
膜污染控制策略
物理清洗
清洗方式
适用范围
物理清洗通常采用水或空气进行清洗 ,通过物理作用去除附着在膜表面的 污染物。
为了减轻有机物沉积对膜的污染,可以采用生物处理方法去 除有机物,或者使用氧化剂破坏有机物,使其不易在膜表面 沉积。
微生物滋生
微生物滋生是膜污染的常见问题。在污水处理过程中,细 菌、真菌等微生物在膜表面滋生,形成生物膜,导致膜通 透性下降,过滤阻力增加。
控制微生物滋生的方法包括定期清洗膜表面、使用杀菌剂 或紫外线杀菌等。
新型膜组件设计
总结词
新型膜组件设计可以有效降低膜污染和 阻力,提高膜通量和产水质量。
VS
详细描述
传统的膜组件设计往往存在一些缺陷,如 流道设计不合理、组件结构不稳定等,这 些问题会导致污水在膜表面形成死角或滞 留区,从而加剧膜污染。因此,需要设计 新型膜组件,优化流道结构和组件排列方 式,提高污水在膜表面的流动性和均匀性 ,从而降低膜污染和阻力。
详细描述
不同材质的膜具有不同的化学和物理性质,如亲水性、抗污染性、耐腐蚀性等。此外, 膜的结构也会影响其过滤性能和抗污染性,例如对称膜和非对称膜在结构上存在差异, 导致它们在过滤性能和抗污染性方面也有所不同。因此,选择适合污水处理需求的膜材
质和结构是降低膜阻力的关键。
操作条件
要点一
总结词
操作条件如压力、流量、温度等对膜阻力有重要影响,合 理的操作条件可以有效降低膜阻力。
农用残膜污染现状及治理措施

农用残膜污染现状及治理措施摘要:通过分析农用残膜对农田环境和农作物产生的危害,针对农用残膜污染现状提出治理措施。
关键词:农用残膜;危害;污染现状;治理措施随着农业生产水平的提高,农用残膜在农业生产中的作用越来越大,促进了农民增产与增收。
但随着用量不断增大,农民的认识不够,致使农用残膜清理回收不利,土壤残留量逐年增加,给农业生态环境带来了严重的负面效应[1-4]。
因此,整治农用残膜污染刻不容缓。
1农用残膜污染的危害1.1影响土壤的物理性状,降低土壤肥力大量残留的农用地膜在土壤中很难被自然分解,影响土壤中的水、肥、气、热活动,给土壤环境带来严重污染,不利于农业的生态平衡。
其表现在:一是破坏土壤的通透性和团粒结构的形成,使土壤上下隔离,形成断层,造成土壤板结,降低了土壤的吸水、保水能力,导致有水下不去、有浆上不来,使土壤的物理性能得不到充分发挥。
二是地膜的残留会使土壤胶体吸附能力降低,有些速效性养分易流失。
三是残留农膜抑制土壤微生物的活动,使迟效性养分转化率降低,影响施入土壤有机肥养分的分解和释放,降低肥效。
1.2影响作物生长发育,造成减产地膜残留在土壤中,使种子不能很好地发芽,即使发芽,根系也因无法穿透地膜而扎不下去,达不到根深蒂固的程度,作物易遭受灾害。
如果种子播到残膜下面,发芽后也长不出来,造成缺苗断条,使作物减产。
据统计,各类作物减产幅度:玉米为11%~13%,小麦9%~10%,水稻8%~14%,大豆5.5%~9.0%,蔬菜15%~59%。
连续覆膜的时间越长,残留量越大,对作物产量影响越大,连续使用15年以后,耕地将颗粒无收。
1.3危害人体健康农膜生产过程中添加一些助剂,当农膜废弃在田间或土壤里时,其中的助剂会向土壤和水中渗透、迁移,会污染大气、土质和水域等。
特别是某些含铅、镉等重金属有毒添加剂,会先通过土壤富集于蔬菜、粮食及动物体中,人食用后直接影响健康。
1.4破坏环境,有碍观瞻残膜被丢弃于田头地角,积存于排泄渠道,散落于湖泊水体或乱挂在树枝杆头,成为白色污染的重要标志,既不雅观还可能缠绕犁头和播种机轮盘,影响田间作业。
水处理中膜污染的三种类型和对应解决方案

水处理中膜污染的三种类型和对应解决方案膜污染是水处理领域中一个常见的问题,主要是指膜表面或孔道的堵塞、污染和破坏,导致膜的通量下降和该除的杂质不能有效地被滤出。
根据不同的污染物性质和膜材料特性,膜污染主要可以分为生物污染、颗粒污染和溶解物污染三种类型。
一、生物污染生物污染主要是指微生物的附着和繁殖导致的膜污染。
微生物能够通过膜孔的大小和形状附着在膜表面,并通过生产胞外聚合物形成胞囊状结构,继而扩散到整个膜。
生物污染会导致膜孔径变小、通量降低,还可能产生胞外聚合物和细胞破裂产物,使得膜表面粘附污染物,影响处理效果。
对于生物污染,常见的解决方案包括:1.物理清洗方法:常用的物理清洗方法有超声波清洗、机械刷洗和高压水清洗等。
这些方法能够有效地去除未附着的生物颗粒和胞囊状结构,但对于附着固化的生物膜效果较差。
2.化学清洗方法:利用氯、过氧化氢、次氯酸钠等强氧化性物质进行清洗,可以有效地杀灭细菌和除去生物膜。
但这些物质需要控制浓度和接触时间,避免对膜材料造成损害。
3.生物清洗方法:采用具有特定酶活性的生物酶来清除生物污染。
生物酶可以通过降解胞外聚合物和细胞破裂物质来清洗膜表面。
这种方法对于附着固化的生物膜有较好的清洁效果。
二、颗粒污染颗粒污染主要是指悬浮颗粒、胶体粒子和碎屑物质的堵塞和附着导致的膜污染。
这些颗粒物质往往会在膜表面形成过滤膜层,层层堆积最终导致通量下降。
对于颗粒污染,常见的解决方案包括:1.物理清洗方法:物理清洗方法包括超声波清洗、涡流清洗和辅助剂清洗等。
这些方法能够有效地去除膜表面的悬浮颗粒和胶体粒子,恢复膜的通量。
2.化学清洗方法:借助化学清洗剂,如酸、碱、表面活性剂等,可以溶解和分散颗粒污染物。
这些清洗剂可以在膜表面形成降低粘附能力的保护膜,防止颗粒继续附着。
3.预处理方法:通过在膜前配置粗滤器、砂滤器或沉淀池等设备,可以在一定程度上去除水中的颗粒物质,减少膜的颗粒污染。
这种方法常用于对水源中颗粒物质浓度较高的情况。
膜的污染及其控制方法

MBR技术在污水处理中的应用 1膜生物反应器(MembraneBioreactor,简称MBR),是由膜分离和生物处理结合而成的一种新型、高效的污水处理技术。
膜分离技术最早应用于微生物发酵工业,随着膜材料和制膜技术的发展,其应用领域不断扩大,已经涉及到化工、电子、轻工、纺织、冶金、食品、石油化工和污水处理等多个领域。
1 MBR技术在国外污水处理中的研究及应用膜分离技术在污水处理中的应用开始于20世纪60年代末#1969年美国的Smith等人首次将活性污泥法与超滤膜组件相结合用于处理城市污水的工艺研究,该工艺大胆地提出了用膜分离技术取代常规活性污泥法中的二沉池,利用膜具有高效截留的物理特性,使生物反应器内维持较高的污泥浓度,在F/M低比值下工作,这样就可以使有机物尽可能地得到氧化降解,提高了反应器的去除效率,这就是MBR的最初雏形。
进入20世纪70年代,有关MBR的研究进一步深入开展#1970年,Hardt等人使用完全混合生物反应器与超滤膜组合工艺处理生活污水,获得了98%的COD去除率和100%去除细菌的结果。
1971年,Bemberis等人在污水处理厂进行了MBR试验,取得了良好的试验结果。
1978年,Bhattacharyya等人将超滤膜用于处理城市污水,获得了非饮用回用水。
1978年,Grethlein利用厌氧消化池与膜分离进行了处理生活污水的研究,BOD和TN的去除率分别为90%和75%。
在这一时期,尽管各国学者对MBR工艺做了大量的研究工作,并获得了一定的研究成果,但是由于当时膜组件的种类很少,制膜工艺也不是十分成熟,膜的寿命通常很短,这就限制了MBR工艺长期稳定的运行,从而也就限制了MBR技术在实际工程中的推广应用。
进入20世纪80年代以后,随着材料科学的发展与制膜水平的提高,推动了膜生物反应器技术的向前发展,MBR工艺也随之得到迅速发展。
日本研究者根据本国国土狭小!地价高的特点对MBR技术进行了大力开发和研究,并在MBR技术的研究和开发上走在了前列,使MBR技术开始走向实际应用。
第四章 膜污染

离效果进一步降低。
精选可编辑ppt
2
膜污染原因
• 浓差极化 • 离子结垢 • 金属氧化物沉积 • 胶体物污染 • 生物污泥
精选可编辑ppt
3
膜两侧溶液传递理论
• 通量与系统操作参数和物理特征的函数: ①浓差极化-凝胶层模型(concentration Polarization-gel layer model) ②阻力模型(resistance model) ③管状收缩效应(Tubular Pinch effect)的影响
对于不可压缩滤饼, 根据Carman-Kozeny方程式,Rc可写成:
Rc
180(1
dc2
)2
3
c
对于可压缩滤饼、β滤饼的压缩性指数
Rc
WVt (P)
F
如果膜的阻力可以忽略,通量为
Jv
F(P)1
WVt
(对不可压缩滤饼,β=0;对完全可压缩滤饼β=1,通常在0.1~0.8之间,
W:单位体积料液中所含有的颗粒重量,Vt:到某一瞬间,滤液的总体积,
随P,J不呈线性。
3)形成凝胶层:符合公式 Jv Km l或n C CJ=G b P/(Rm+Rg)
P时,CG不变,Cb和Km增加;加速溶质沉积,导致Rg, 相互抵消,∴滤速基本不变。
结论:在凝胶层形成后,精单选纯可编提辑p高pt 外压,对滤速无帮助。 25
②浓度
在超滤中
凝胶层形成后
间歇操作:
• 在以微滤过滤菌体时, 斜率可在1.0~2.0之间。
精选可编辑湍ppt流: 0.83
滞流: 0.3
28
④流速
虽然增大流速有明显的优点,但需考虑:
只有当通量为浓差极化控制时,增大流速才会 使通量增加,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.膜污染的四种类型及修复策略。
吸附污染、沉淀污染、生物污染膜清洗是恢复被污染膜性能的有效方法。
膜清洗方法有物理法和化学法。
物理清洗法有顺冲即在操作时用低压。
大流量进料液冲去膜表面污染物,和反冲即把料液进口和浓缩液出口颠倒后,用进料液在低压,大流量冲去顺冲不能达到的死角。
中空超滤组件是把料液进口和渗透液出口颠倒后,用纯溶剂在高于操作压力时进行冲洗。
化学清洗法是用酸、碱、酶、络合剂,表面活性剂或消毒剂等清洗膜表面。
清洗前必须进行物理清洗,在判定污染物的性质后,确定对膜无损伤的最佳清洗剂,浓度、温度、清洗时间,清洗方法。
清洗后用纯水冲洗至无化学清洗利,再使用。
2.什么叫“负水头”,它对过滤和冲洗有何影响,如何避免滤层中负水头产生?负水头是指在过滤过程中,当滤层截留了大量杂质以致滤层某一深度处的水头损失超过该处水深时出现的水头损失。
具体的影响有两点:1、形成气囊,显然会挡住过滤口即减少了过滤面积;2、由于气囊往上浮,容易带走滤料,个人认为还有可能搅动已沉积的悬浮物。
如何避免呢,无非是从源头入手,要么增加砂上面水深,增加势能,要么控制水头损失,也可以将出水口提高到滤层砂面之上。
增加砂面上水深或令滤池出口位置等于或高于滤层表面。
3.曝气生物滤池系统组成,工艺原理,工艺特点。
组成:曝气生物滤池主体可分为布水系统、布气系统、承托层、生物填料层、反冲洗等五个部分。
原理:在滤池中装填一定量粒径较小的粒状滤料,滤料表面生长着高活性的生物膜,滤池内部曝气。
污水流经时,利用滤料的高比表面积带来的高浓度生物膜的氧化降解能力对污水进行快速净化,此为生物氧化降解过程;同时,污水流经时,滤料呈压实状态,利用滤料粒径较小的特点及生物膜的生物絮凝作用,截留污水中的悬浮物,且保证脱落的生物膜不会随水漂出,此为截留作用;运行一定时间后,因水头损失的增加,需对滤池进行反冲洗,以释放截留的悬浮物以及更新生物膜,此为反冲洗过程。
特点:(1)用粒状填料作为生物载体,如陶粒、焦炭、石英砂、活性炭等。
(2)区别于一般生物滤池及生物滤塔,在去除BOD、氨氮时需进行曝气。
(3)高水力负荷、高容积负荷及高的生物膜活性。
(4)具有生物氧化降解和截留SS的双重功能,生物处理单元之后不需再设二次沉淀池。
(5)需定期进行反冲洗,清洗滤池中截留的SS以及更新生物膜。
4.高级氧化技术特点1.产生大量非常活泼的HO-自由基,其氧化能力仅次于氟,HO- 自由基是反应的中间产物,可诱发后面的链反应。
2.反应速度快,多数有机物与羟基自由基的氧化速率常数可达10^6~10^9(MS)^-13.HO-自由基无选择直接与废水中的自由基反应将其降解为二氧化碳、水和无机盐,不会产生二次污染。
4.由于它是一种物理-化学处理过程,反应条件温和,通常对温度和压力无要求,很容易加以控制,以满足处理需要,甚至可以降解10^-9级的污染物。
5.它既可以作为单独处理又可以与其其他处理过程相匹配,6.操作简单,易于设备化管理、5.举例说明植物修复技术的主要类型及其应用。
phytoextraction植物提取该技术利用的是一些对重金属具有较强忍耐和富集能力的特殊植物。
phytostabilisation植物固定应用植物稳定原理修复污染土壤应尽量防止植物吸收有害元素,以防止昆虫、草食动物及牛、羊等牲畜在这些地方觅食后可能会对食物链带来的污染。
phytovolatilization植物挥发这一方法只适用于挥发性污染物,植物挥发要求被转化后的物质毒性要小于转化前的污染物质,以减轻环境害。
phytoinfiltration植物过滤phyto-enhanceddegradation植物加强的降解作用对于疏水性非常强的污染物,由于其会紧密结合在根系表面和土壤中,从而无法发生运移.对于这类污染物,更适合采用之后提到的植物固定和植物辅助生物修复技术来治理。
6.人工湿地生物净化系统的组成、原理及其显著特点。
见书本91-97以及题87.膜的分类方法有哪些?分别是如何分类的?材料:有机膜、无机膜结构:对称膜、非对称膜、复合膜、形状:平板膜、管式膜、中空纤维膜、卷式膜分离机理:扩散性膜、离子交换膜、选择性膜、非选择性膜分离过程、反渗透膜、渗透膜、气体分离膜、电渗析膜、渗析膜、渗透蒸发膜孔径大小:微滤膜、超滤膜、纳滤膜和反渗透膜8.人工湿地技术的主要类型及其特点目前所指的人工湿地一般都是挺水植物系统。
挺水植物系统根据水在湿地中流动的方式不同又分为三种类型:地表流湿地、潜流湿地和垂直流湿地。
①地表流湿地系统地表流湿地系统也称水面湿地系统,与自然湿地最为接近,但它是受人工设计和监督管理的影响,其去污效果又要优于自然湿地系统。
污染水体在湿地的表面流动,水位较浅,多在0.1~0.9m之间。
通过生长在植物水下部分的茎、竿上的生物膜来去除污水中的大部分有机污染物。
氧的来源主要靠水体表面扩散,植物根系的传输和植物的光合作用,但传输能力十分有限。
这种类型的湿地系统具有投资少,操作简单,运行费用低等优点,但占地面积大,负荷小,处理效果较差,易受气候影响大,卫生条件差。
处理效果易受到植物覆盖度的影响,与潜流湿地相比,需要较长时间的适应期才能达到稳定运行。
②潜流湿地系统潜流湿地系统也称渗滤湿地系统。
这种类型的人工湿地,污水在湿地床的内部流动,水位较深。
它是利用填料表面生长的生物膜、丰富的植物根系及表层土和填料截留的作用来净化污水。
由于水流在地表以下流动,具有保温性能好,处理效果受气候影响小,卫生条件较好的特点。
与水面流湿地相比,潜流湿地的水力负荷大和污染负荷大,对BOD、COD、SS、重金属等污染指标的去除效果好,出水水质稳定,不需适应期,占地小,但投资要比水面湿地高,控制相对复杂,脱N除P的效果不如垂直流湿地。
③垂直流湿地系统垂直流湿地的水流情况综合了地表流湿地和潜流湿地的特性,水流在填料床中基本上呈由上向下的垂直流,床体处于不饱和状态,氧可通过大气扩散和植物传输进入人工湿地系统。
垂直流湿地的硝化能力高于水平潜流湿地,可用于处理氨氮含量较高的污水,但对有机物的去除能力不如潜流湿地,落干/淹水时间较长,控制相对复杂,基建要求较高,夏季有孳生蚊蝇的现象。
人工湿地系统的工艺流程人工湿地系统的流态主要有四种:推流式、阶梯进水式、回流式和综合式。
阶梯进水式可以避免填料床前部的堵塞问题,有利于床后部的硝化脱氮作用的发生;回流式可以对进水中的BOD5和SS进行稀释,增加进水中的溶解氧浓度并减少处理出水中可能出现的臭味问题,出水回流同样还可以促进填料床中的硝化和反硝化脱氮作用;综合式则一方面设置了出水回流,另一方面还将进水分布到填料床的中部以减轻填料床前端的负荷。
9.污泥如何进行分类?表示污泥性质的指标有哪些?1.按成分分类(1)污泥以有机物为主要成分的称污泥。
污泥的性质是易于腐化发臭,颗粒较细,相对密度较小,(约为1.02~1.006),含水率高且不易脱水,属于胶状结构的亲水性物质。
(2)沉渣以无机物为主要成分的称沉渣。
沉渣的主要性质是颗粒较粗,相对密度较大(约为4左右),含水率较低且易于脱水,流动性差。
2.按来源分类(1)初次沉淀污泥来自初次沉淀池。
(2)剩余活性污泥来自活性污泥法后的二次沉淀池。
(3)腐殖污泥来自生物膜法后的二次沉淀池。
以上3种污泥可统称为生污泥或新鲜污泥。
(4)消化污泥生污泥经厌氧消化或好氧消化处理后,称为消化污泥或熟污泥。
(5)化学污泥用化学沉淀法处理污水后产生的沉淀物称为化学污泥或化学沉渣:如用混凝沉淀法去除污水中的磷;投加硫化物去除污水中的重金属离子;投加石灰中和酸性水产生的沉渣以及酸、碱污水中和处理产生的沉渣均称为化学污泥或化学沉渣。
3.按污泥从水中分离过程可分为沉淀污泥及生物处理污泥4.按再不同阶段分类:生污泥、浓缩污泥、消化污泥指标:1.污泥含水率污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。
初次沉淀池污泥含水率介于95%~97%,剩余活性污泥达99%以上。
2.挥发性固体和灰分挥发性固体(或称灼烧减重)近似地等于有机物含量,用VSS表示,常用单位mg/L,有时也用重量百分数表示。
VSS也反映污泥的稳定化程度;灰分(或称灼烧残渣)表示无机物含量。
3.湿污泥相对密度与干污泥相对密度湿污泥质量等于污泥所含水分与干固体质量之和。
湿污泥相对密度等于湿污泥质量与同体积的水质量之比值。
10.膜分离技术优缺点。
1)在常温下进行有效成分损失极少,特别适用于热敏性物质,如抗生素等医药、果汁、酶、蛋白的分离与浓缩(2)无相态变化保持原有的风味,能耗极低,其费用约为蒸发浓缩或冷冻浓缩的1/3-1/8(3)无化学变化典型的物理分离过程,不用化学试剂和添加剂,产品不受污染(4)选择性好可在分子级内进行物质分离,具有普遍滤材无法取代的卓越性能(5)适应性强处理规模可大可小,可以连续也可以间隙进行,工艺简单,操作方便,易于自动化(6)能耗低只需电能驱动,能耗极低,其费用约为蒸发浓缩或冷冻浓缩的1/3-1缺点:o 膜造价高,使膜- 生物反应器的基建投资高于传统污水处理工艺;o 膜污染容易出现,给操作管理带来不便;o 能耗高:首先MBR 泥水分离过程必须保持一定的膜驱动压力,其次是MBR 池中MLSS 浓度非常高,要保持足够的传氧速率,必须加大曝气强度,还有为了加大膜通量、减轻膜污染,必须增大流速,冲刷膜表面,造成MBR 的能耗要比传统的生物处理工艺高。
11.比较IC反应器和UASB反应器的主要优缺点书本193起IC厌氧反应器的优点1、IC厌氧装置在布水系统上采用旋流布水,上下三相分离器采用差别式设计,大大提高了分离效果,确保了反应器高效稳定的运行。
2、内部自动循环,不必外加动力,普通厌氧反应器的回流是通过外部加压实现的,而IC反应器以自身产生的沼气作为提升的动力来实现混合液内循环,不必设泵强制循环,节省了动力消耗。
3、处理能力高,IC反应器的负荷是UASB反应器负荷的5-7倍,UASB反应器的容积负荷通常为3-5kgCOD/m3.d,而IC 反应器的容积负荷可达到20-30kgCOD/m3.d。
4、沼气利用价值高,反应器产生的生物气纯度高,CH4为70%~80%,CO2为20%~30%,其它有机物为1%~5%,可作为燃料加以利用。
5、运行费用低,由于IC反应器的处理效率、进水负荷比UASB反应器的处理效率高,废水的处理成本低,可节省大量运行费用。
6、污泥不易流失,容易形成颗粒污泥,由于IC独特的反应器结构和高的水利负荷和产气负荷,比UASB更能形成和保持颗粒污泥。
7、投资省,占地面积少,因IC有机负荷比UASB高,因此处理同样规模的有机废水,IC反应器的容积比UASB要小,故IC反应器的建造成本比UASB要低。