纳米粒子制备

合集下载

纳米粒子的制备方法及应用

纳米粒子的制备方法及应用

纳米粒子的制备方法及应用纳米粒子的制备方法分为物理方法和化学方法。

物理方法主要包括雾化法、机械合金法、燃烧法等,化学方法主要包括溶胀法、微乳液法、共沉淀法、水热法等。

以下是关于纳米粒子的常见制备方法及其应用的详细介绍。

1. 雾化法:将物质通过高温、高压的气体和固液混合物的喷雾,使其迅速冷却固化,形成纳米粒子。

这种方法的特点是造粒速度快、控制性好,应用广泛。

例如,铜纳米粒子制备后可以应用于导电涂料、导电油墨等领域。

2. 机械合金法:通过机械能强化作用,将材料在高能物理场中研磨、冲击或研磨脱臭,使其形成纳米粒子。

这种方法能够制备高纯度的纳米材料,并且可以控制纳米颗粒的形貌和粒度。

例如,铁-铁氧化物纳米复合粒子可以应用于催化剂、磁性材料等领域。

3. 燃烧法:通过在适当的氧气中燃烧金属颗粒或金属盐溶液,使其生成纳米颗粒。

这种方法具有操作简单、制备快速的优点。

例如,钛纳米颗粒可以应用于太阳能电池、生物材料等领域。

4. 溶胀法:利用高分子溶胀、凝胶与干燥法,通过控制溶胀度和架链密度,形成纳米颗粒。

这种方法制备的纳米粒子具有较大的比表面积和较高的孔隙度,适用于吸附、分离等领域。

5. 微乳液法:利用表面活性剂和油水体系,通过溶胶-凝胶转化或乳化反应制备纳米颗粒。

这种方法具有制备精密、单分散的纳米颗粒的优点,例如,二氧化钛纳米颗粒可以应用于催化剂、阳光防护剂等领域。

6. 共沉淀法:将溶液中的金属离子还原后,通过慢慢加热和搅拌,使其形成纳米颗粒。

这种方法的优点是制备过程简单、成本低廉,适用于大批量生产。

例如,氧化铁纳米颗粒可以应用于医学成像、磁性流体等领域。

7. 水热法:将溶液放入高温高压设备中,在水的超临界状态下进行溶解、析出和固化,形成纳米颗粒。

这种方法制备的纳米材料具有优异的结晶度和热稳定性,广泛应用于催化剂、电池材料等领域。

纳米粒子具有特殊的物理、化学和光学性质,因此在众多领域中有重要的应用。

以下是几个典型的应用领域:1. 生物医学:纳米粒子在生物医学领域中具有广泛的应用,如药物载体、分子成像、肿瘤治疗等。

纳米粒子的制备方法及其在化学催化中的应用

纳米粒子的制备方法及其在化学催化中的应用

纳米粒子的制备方法及其在化学催化中的应用一、引言纳米材料是一种具有特殊物理、化学和生物性质的材料,其尺寸在1到100纳米之间。

纳米粒子是纳米材料的基本单元,其小尺寸和高比表面积使其在化学催化中具有重要的应用潜力。

本文将介绍纳米粒子的制备方法以及其在化学催化中的应用。

二、纳米粒子的制备方法1. 物理方法物理方法是通过物理手段来制备纳米粒子,例如:(1)气相凝聚法:利用高温蒸发,然后在低温下凝聚来制备纳米粒子;(2)溅射法:利用离子束轰击靶材,使其表面原子脱落并沉积成纳米粒子;(3)磁控溅射法:在较高气压下,用磁控溅射设备将材料溅射成纳米态。

2. 化学方法化学方法是通过化学反应来制备纳米粒子,例如:(1)溶胶-凝胶法:将溶胶转变为凝胶,然后进行热处理得到纳米粒子;(2)热分解法:通过热分解金属有机化合物来得到金属纳米粒子;(3)微乳液法:利用表面活性剂在非极性介质中形成微乳液,然后通过化学反应来制备纳米粒子。

3. 生物方法生物方法是利用生物体或其代谢产物来制备纳米粒子,例如:(1)生物还原法:利用细菌、真菌等生物体的代谢产物将金属离子还原成金属纳米粒子;(2)植物提取法:通过提取植物中的物质,并通过化学反应来制备纳米粒子。

三、纳米粒子在化学催化中的应用1. 催化剂载体由于纳米粒子具有高比表面积和更多的活性位点,因此可以用作催化剂的载体。

纳米粒子作为载体可以提供更多的活性位点,并且可以通过调控其尺寸和形貌来优化催化剂的性能。

2. 催化反应催化剂纳米粒子可以作为催化剂直接参与催化反应。

由于其小尺寸,纳米粒子具有更高的表面原子或分子数目,从而提高了催化反应的反应速率和选择性。

3. 纳米合金催化剂纳米合金催化剂是指由两种或多种金属纳米颗粒组成的催化剂。

通过调控合金的成分和结构,可以优化催化剂的活性和选择性。

此外,纳米合金催化剂还可以在反应过程中发生表面重构,从而提高催化剂的稳定性。

4. 纳米催化剂的应用案例纳米粒子在化学催化中的应用案例有很多,例如:(1)纳米金催化剂在氧化反应中显示出优异的活性和选择性;(2)纳米银催化剂在烯烃加氢反应中具有良好的催化活性;(3)纳米铜催化剂在甲醇重整反应中表现出出色的催化性能。

物理实验技术的纳米粒子制备方法

物理实验技术的纳米粒子制备方法

物理实验技术的纳米粒子制备方法纳米科技是当今科技领域中备受关注的热点之一。

纳米材料由于其特殊的物理、化学和生物学性质,展示出与其宏观物体截然不同的特性,被广泛应用于能源、环境、医学等多个领域。

在纳米科技的研究中,纳米粒子制备是一个关键步骤,而物理实验技术则成为纳米粒子制备的有效手段。

一、溶胶凝胶法溶胶凝胶法是纳米粒子制备中常用的一种方法。

这种方法主要通过溶胶的凝胶过程来制备纳米粒子。

在溶胶凝胶法中,首先需要选择合适的溶胶,如金属盐溶胶、金属氧化物溶胶等。

然后,在适当的条件下,通过调节溶胶中的物理和化学参数,使溶胶凝胶成粒子,并进行后续的处理和表征。

溶胶凝胶法制备纳米粒子的优势在于可以制备多种材料的纳米粒子,并且具有制备过程简单、操作灵活的特点。

例如,可以通过控制溶胶中金属离子的浓度、pH 值、温度等参数,来调控制备纳米粒子的尺寸、形貌和分散性。

二、热雾化法热雾化法是一种通过物理方法将材料转化为纳米粒子的技术。

这种方法通过将固体材料加热至熔点或沸点,并利用热膨胀效应,迅速将材料转变为微小颗粒。

热雾化法主要有热气胶凝法和电弧法两种。

在热气胶凝法中,首先将材料加热至高温区域,使其瞬间转化为气态,然后通过快速冷却将气态材料凝固为纳米粒子。

而电弧法则是利用高温电弧将金属材料蒸发,并在气相中形成纳米粒子。

热雾化法制备纳米粒子的优点是得到的纳米粒子尺寸均一、分散性好、纯度高,并且可以制备大量的纳米粒子。

缺点是制备过程中需要高温,可能会对材料的性质产生一定影响。

三、溅射法溅射法是一种将固态材料薄膜沉积到基底上并制备纳米粒子的方法。

在溅射法中,先将固体材料制备成靶材,然后使用高能粒子轰击靶材,通过溅射的方式将材料沉积到基底上形成薄膜。

接着,经过后续处理,将薄膜转变为纳米粒子。

溅射法制备纳米粒子的特点在于制备过程可控性强,可以通过调节工艺参数如靶材的成分、粒度、功率密度等来控制纳米粒子的尺寸和形貌。

此外,溅射法还具有制备材料纯度高、结晶性好等优点。

纳米粒子的制备

纳米粒子的制备

三、老化
沉淀产品在母液中静置 , 由于Gibbs- Thomson效 应 , 将发生小粒子溶解消失和大粒子长大现象 , 即Ostwald熟化。另外, 在反应沉淀过程中 , 首先 析出的常是介稳的固体相态, 尔后介稳相才转化 为更稳定的固体相态, 发生二次相转化, 如由一种 晶型转化为另一晶型, 由一种水化物转化为另一 种水化物 , 或由无定形沉淀物转化为晶型产品等。
聚结生长:微小晶粒形成后 , 液相体系成为两相 混合系统, 固相将向表面能最小的方向发展, 发生 聚结( aggregation)生长 , 属于扩散控制生长机理, 特点为生长基元 ( 0. 01—0. 1μ m)远大于单个原子 或分子。包括三个步骤 [ 7 ] : 由于 Brownian 运动 和流体剪切, 粒子间发生碰撞;通过弱作用力 ( Van derWarrs力 、 溶剂化力等)相互粘附 ;通过晶体 生长产生化学键而固化。纳米粒子之间 , 通常溶 剂化力等短程作用力占据主导地位。
一、成核
过程特征
成核热力学:根据经典成核理论,在均相成核过 程中存在临界晶核,只有半径r大于临界晶核r*的 晶胚,才能继续生长,以降低自由能,并最终形 成稳定晶核;而r<r*的晶胚,则将溶解。 r*=2βaσV/(3βvkBTlnS) 式中βv为晶核体积因子;βa为晶核面积因子; V为晶胚分子体积;σ为比表面自由能;kB为 Boltamann常数;S为饱和度比。 可见,提高饱和度比和降低表面自由能,均 能使r*减小,有利于制得纳米粒子。
谢谢
2017/2/28
二、生长Байду номын сангаас
界面生长:晶体界面生长,是生长基元不断从流 体相通过界面进入晶格位置的过程, 也是晶体和 流体界面不断向流体中推移的过程 。界面的微观 结构决定了晶体的生长机制, 而晶体的生长机制 又决定了其遵循的动力学规律。

纳米粒子制备方法及材料调控性能

纳米粒子制备方法及材料调控性能

纳米粒子制备方法及材料调控性能纳米粒子是指直径在1-100纳米之间的颗粒,由于其特殊的尺寸效应和表面效应,具有许多独特的物理、化学和生物学性能,因此在许多领域都具有广阔的应用前景。

纳米粒子的制备方法和材料的调控性能是实现纳米技术应用的关键。

本文将介绍常见的纳米粒子制备方法以及材料调控性能的相关内容。

一、纳米粒子制备方法1. 化学合成法:化学合成法是最常用的纳米粒子制备方法之一。

通过控制反应条件、溶剂、催化剂等因素来合成所需尺寸和形状的纳米粒子。

常见的化学合成方法包括溶液法、沉淀法、气相法等。

其中,溶液法是最常用的方法之一,可以通过溶胶-凝胶、共沉淀等方式来制备纳米粒子,具有简单、灵活的优点。

2. 物理法:物理法是指通过物理手段制备纳米粒子的方法。

常见的物理法包括热蒸发法、气相凝聚法、溅射法等。

物理法制备的纳米粒子通常具有较高的纯度和均一性,但制备过程较为复杂,设备要求较高。

3. 生物合成法:生物合成法是利用生物体,如细菌、真菌、植物等来制备纳米粒子。

通过植物的吸收和叶绿体的光合作用,可以有效地实现对金属离子的还原和纳米粒子的形成。

生物合成法制备的纳米粒子具有环境友好、成本低廉等优点。

二、纳米材料的调控性能1. 形状调控:纳米粒子的形状对其性能具有重要影响。

通过调节合成方法、反应条件等可以控制纳米粒子的形状,如球形、棒状、片状等。

不同形状的纳米粒子具有不同的表面积和晶面结构,从而影响其光学、电学、催化等性能。

2. 尺寸调控:纳米粒子的尺寸对其性能同样具有重要影响。

尺寸的减小可以增加纳米粒子的比表面积,从而提高催化反应速率等。

通过调节合成条件和添加表面活性剂等手段,可以有效地调控纳米粒子的尺寸,从而实现对其性能的调控。

3. 表面调控:纳米粒子的表面是其与周围环境相互作用的重要界面,通过表面修饰和功能化可以调控纳米粒子的分散性、稳定性、吸附性等性能。

例如,通过聚合物包覆、功能化修饰等手段可以增加纳米粒子与基底的相容性,提高其分散性和稳定性。

制备纳米粒子的化学方法

制备纳米粒子的化学方法

制备纳米粒子的化学方法随着科技的不断发展,纳米技术已经成为了当今社会的一个热门话题。

在这一领域中,制备纳米粒子是最为基础和常见的操作之一。

本文将为大家介绍一些常用的制备纳米粒子的化学方法,以及其原理和应用。

1. 化学还原法化学还原法是制备纳米粒子的一种常见方法。

其原理是通过还原剂将金属离子还原成金属粒子。

其制备步骤如下:首先,将金属离子溶解在溶液中,加入适量的还原剂;其次,加热反应体系,这样可以加快反应速率;最后,洗涤、分离及干燥得到所需的纳米金属粉末。

化学还原法的优点是制备简单、工艺流程短,稳定性好。

另外,该方法适用于大部分金属离子,因此在制备纳米金属粉末时,可根据需求选择不同的金属离子。

2. 氧化物热分解法氧化物热分解法是利用金属氧化物在高温条件下分解生成金属粒子的方法。

通常将金属盐在空气中热处理。

其制备步骤如下:首先,将金属盐加入反应瓶中,调节反应体系的pH值;其次,在制备过程中,将盐加热至一定温度使其分解,气体产物通过冷凝管冷却后得到水,而生成的金属粉末在瓶底沉淀;最后,去除水,将金属粉末用洗涤剂和乙醇洗涤,使其纯化,获得所需的纳米金属粉末。

氧化物热分解法的优点是制备的纳米颗粒单分散性好。

此外,该方法应用与多种金属离子,且不需使用昂贵的还原剂,因此其成本较低。

3. 沉淀法沉淀法是将溶液中的金属阳离子通过定量沉淀生成金属粒子。

其步骤如下:首先将金属盐用水或有机溶剂溶解在溶液中,然后加入络合剂,将金属阳离子络合成配合物;其次,加入氢氧化钠等碱性沉淀剂,使配合物沉淀,生成纳米金属粉末;最后,沉淀后用水洗涤,将金属粉末纯化干燥,得到所需的纳米金属粉末。

沉淀法的优点是制备简单,并且适用于多种金属离子,但沉淀法存在着分散性差的问题,因此其分散效果并不理想。

结论通过本文的介绍,我们不难发现制备纳米粒子是一个较为复杂的过程,需要熟知各种方法的原理和应用。

在制备过程中,我们需要注意各种反应条件的调节,以达到最好的制备效果。

第二章纳米粒子的制备方法课件

第二章纳米粒子的制备方法课件
2.振动球磨
2.2.1机械粉碎法
振动球磨
采用粒径为30nm的SiC和100μm左右的Al粉颗粒为初始原料,通过高能振动球磨的方法对体积分数﹪为5、10、20、30的SiCp/Al复合粉末进行了球磨处理. 复合粉体球磨30h后,可以将铝粉细化至70~100nm。
2.2.1机械粉碎法
1) 高能振动球磨法制备纳米SiCp/Al复合材料的研究
4.搅拌磨
2.2.1机械粉碎法
横臂均匀分布在不同高度上,并互成一定角度。球磨过程中,磨球与粉料一起呈螺旋方式上升,到了上端后在中心搅拌棒周围产生旋涡,然后沿轴线下降,如此循环往复。只要转速和装球量合适,在任何情况下磨筒底部都不会出现死角由于磨球的动能是由转轴横臂的搅动提供的,研磨时不会存在象滚筒球磨那样有临界转速的限制,因此,磨球的动能大大增加。同时还可以采用提高搅动转速。减小磨球直径的办法来提高磨球的总撞击几率而不减小研磨球的总动能,这样才符合了提高机械球磨效率的两个基本准则。
原理:利用高速气流(300—500m/s)或热蒸气(300—450℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。 在粉碎室中,粒子之间碰撞频率远高于粒子与器壁之间的碰撞。 特点:产品的粒径下限可达到0.1μm以下。除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。
高能球磨5 h 即可制备纯度较高、晶粒尺寸较小的以ZnO 为主的混合粉体,最佳烧结温度1 000℃比一般的固相法烧结温度降低了100~300 ℃,大大节省了生产成本。
ZnO 压敏电阻在工业生产中主要用低能球磨搅拌混合、高温烧结的方法制备,烧结温度一般为1 100~1 350 ℃。
以球或棒为介质,介质在粉碎室内振动,冲击物料使其粉碎,可获得小于2μm的粒子达90%,甚至可获得0.5μm的纳米粒子。

pt纳米粒子的制备

pt纳米粒子的制备

pt纳米粒子的制备一、引言Pt纳米粒子是一种重要的纳米材料,具有广泛的应用前景。

其制备方法也得到了广泛研究。

本文将从Pt纳米粒子的制备方法、影响制备的因素以及应用等方面进行详细介绍。

二、Pt纳米粒子的制备方法1. 化学还原法化学还原法是制备Pt纳米粒子最常用的方法之一。

该方法主要包括两步反应:首先将铵氢四氟硼酸(NH4BF4)加入含有氯铂酸(H2PtCl6)的水溶液中,生成[Pt(NH3)4]2+;然后加入还原剂(如乙二醇、甲醇等),使[Pt(NH3)4]2+被还原成金属Pt。

该方法具有简单、易于控制反应条件和产量高等优点,但也存在着控制粒径大小和分散度较难等问题。

2. 微乳液法微乳液法是利用微乳液中存在的界面活性剂和表面活性剂来控制反应体系中金属离子的聚集行为,从而实现金属纳米晶体的合成。

在微乳液法中,界面活性剂和表面活性剂的组合可以形成一种稳定的胶束结构,在这种结构中,Pt离子可以在胶束的水相区域中聚集并还原成Pt 纳米粒子。

该方法的优点是可以控制粒径大小和分散度,但需要对反应条件进行较为严格的控制。

3. 水热法水热法是利用高温高压下水分子的特殊性质来控制反应体系中金属离子的聚集行为,从而实现金属纳米晶体的合成。

在水热法中,Pt离子可以在高温高压下与还原剂(如乙二醇)反应生成Pt纳米粒子。

该方法具有简单、易于控制反应条件等优点,但也存在着产率低、粒径分布不均匀等问题。

三、影响制备Pt纳米粒子的因素1. 反应物浓度反应物浓度是影响Pt纳米粒子制备过程中最重要的因素之一。

当反应物浓度过低时,会导致产率低;当反应物浓度过高时,则会导致粒径增大或者形成聚集体。

2. 还原剂种类和浓度还原剂种类和浓度也是影响Pt纳米粒子制备过程中重要的因素之一。

不同种类的还原剂对Pt离子的还原速率和产率都有不同的影响。

此外,还原剂浓度过低会导致反应速率较慢,而过高则会导致Pt纳米粒子聚集。

3. 温度和反应时间温度和反应时间也是影响Pt纳米粒子制备过程中重要的因素之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1.7 激光诱导化学气相沉积


激光制备纳米粒子装 置一般有两种类型: 正交装置和平行装置。 其中正交装置使用方 便,易于控制,工程 使用价值大 。
5.1.8 爆炸丝(explosive filament)法


这种方法适用于工业 上连续生产纳米金属、 合金和金属氧化物纳 米粉体。 氧化物可在反应室中 充入少量氧气或对纳 米金属粉进行水热氧 化.
溅射法的优点



(1)可制备多种纳米金属粒子,包括高熔点 和低熔点金属。常规的热蒸发法只能适用于低 熔点金属; (2)能制备多组元的化合物(合金和氧化物) 纳米微粒,如Al52Ti48,Cu91Mn9及ZrO2等; (3)通过加大被溅射的阴极表面可提高纳米 微粒的产量。
5.1.4 流动液面上真空蒸镀法
5.1 气相法制备纳米微粒


5.1.2活性氢-熔融金属反应法
制备方法:含有氢气的等离子体与金属间产生电弧, 使金属熔融,电离的N2, Ar等气体(惰性气体)和H2溶 入熔融金属,然后释放出来,在气体中形成了金属的 超微粒子,用离心收集器,过滤式收集器使微粒与气 体分离而获得纳米微粒。 优点:超微粒的生成量随等离子气体中的氢气浓度增 加而上升。
5.1.7 激光诱导化学气相沉积

基本原理: 利用反应气体分子(或光敏剂 分子)对特定波长激光束的吸收,引起反 应气体分子的激光光解(紫外光解或红 外光解)、激光热解、激光光敏化和激 光诱导化学反应合成,在一定工艺条件 下(激光功率密度、反应池压力、反应 气体配比和流速、反应温度等),获得 超细粒子的空间成核和生长。


激光的特点和优点: 各种不同功率和波长 的激光器均已商品化. 激光作为加热源, 具 有功率高,定向快速, 加热和冷却速率很高, 瞬间可以完成反应的 优点.



LICVD-Laser Induced Chemical Vapor Deposition 优点:粒子表面清洁、 粒径大小精确可控、 无粘结、粒度分布均 匀 可制备出粒径为几纳 米到几十纳米的非晶 态或晶态纳米颗粒。
5.1.6 混合等离子法



等离子蒸发法 使大颗粒金属和气体流入 等离子室生成金属超微粒子。 反应性等离子蒸发法 使大颗粒金属和 气体流入等离子室,同时通入反应性气 体,生成化合物超微粒子。 等离子CVD法 使化合物随载气流入等离 子室,同时通入反应性气体,生成化合 物超微粒子。
5.1.7 激光诱导化学气相沉积
5.1.7 激光诱导化学气相沉积


硅烷分子很容易按下 式热解 SiH4Si(g)+2H2





典型生长过程包括如下5 个过程: 反应体向粒子表面的输 运过程; 在粒子表面的沉积过程; 化学反应(或凝聚)形 成固体过程; 其它气相反应产物的沉 积过程; 气相反应产物通过粒子 表面输运过程。
第五章 纳米颗粒的制备


制备方法分为以下三大类
气相法 液相法 高能球磨法(也可以认为是固相法)
5.1 气相法制备纳米微粒


5.1.1低压气体中蒸发法 (气体冷凝法) 制备方法:在低压的氩、 氮等惰性气体中加热金属, 使其蒸发后形成超微粒 (1-1000nm)或纳米微粒。 加热源:(1)电阻加热法; (2)等离子喷射法;(3) 高频感应法;(4)电子束 法;(5)激光法。



(1)可制备Ag, Au, Pd, Cu,Fe,Ni,Co,Al,In 等超 微粒,平均粒径约3nm, 而用惰性气体蒸发法很 难获得尺寸这样小的微 粒; (2)粒径均匀,分布窄; (3)填加表面活性剂减 小超微粒子的团聚,均 匀地分布在油中; (4)粒径的尺寸可控
5.1.5 通电加热蒸发法
5.1.1低压气体蒸发法
在高真空达到0.1Pa后,充入惰性气 体低压达到2kPa。加入欲蒸发的物质置于 坩埚内,加热蒸发产生烟雾。由于惰性气 体的对流使烟雾向上移动,在接近充液氮 的冷却棒(77K),最后得到超微粒物质。
纳米微粒粒径的控制


通过调节惰性气体压 力,蒸发物质的分压, 惰性气体的温度来调 节粒径的大小。 随蒸发速率或原物质 蒸汽压力的增加,粒 径变大。
5.1.7 激光诱导化学气相沉积

粒子生长速率可用下式表示 这里[SiH4]是指SiH4分子浓度,KR为反 应速率常数;SiH4为Langmuir沉积系 数,VSi为分子体积。
dV (VSi K R SiH 4 SiH 4 ) /(1 SiH 4 SiH 4 ) dt


SiC 超 微 粒 的 产 量 随 电流的增大而增加。 产率为0.5g/min 该方法可以制备Cr, Ti,V,Zr,Hf,Mo, Nb , Ta 和 W 等 碳 化 物超微粒子。
5.1.6 混合等离子(mixed plasma)法



特点: (1)超微粒子的纯 度很高; (2)物质可以充分 加热和反应; (3)可使用非惰性 的气体(反应性气 体)
5.1.9 化学气相凝聚法(CVC)

原理是利用高纯惰性气 体作为载气,携带金属 有机先驱物,例如六甲 基二硅烷等,进入钼丝 炉炉温为1100~1400 ℃, 气氛的压力保持在 100~1000Pa的低压状态, 在此环境下,原料热解 形成团簇,进而凝聚成 纳米粒子,最后附着在 内部充满液氮的转动衬 底上,经刮刀刮下进入 纳米粉收集器。
5.1.7 激光诱导化学气相沉积

当反应体100%转换时,最终粒子直径为
6 C0 M d N

1/ 3
这里C0 为硅烷初始浓度;N单位体积成核数, M为硅分子量,为生成物密度。 最终d﹤10nm且纯度很高。
5.1.7 激光诱导化学气相沉积
采用不同的原料气, 经化学反应可合成不 同的纳米粒子, 反应式如下: 3SiH4(g)+4NH3(g)Si3N4(s)+12H2(g) SiH4(g)+CH4(g) SiC(s)+4H2(g) 2SiH4(g)+C2H4(g) 2SiC(s)+6H2(g) 式中:g为气态;s为固态。
两种方法比较


CVC 热解发生在炉管内外, 且部分粒子会沉积到 炉管上. 粒径分布不太均匀.


CF-CVC 热解发生在燃烧器外, 且由于火焰的高度均 匀,每个粒子基本都 经历了相同的温度和 时间. 粒径分布很窄.

5.1 气相法制备ttering)
制备方法:用两块金属板 分别作为阳极和阴极,阴 极为蒸发用的材料,在两 电 极 间 充 入 Ar 气 ( 40250Pa),两电极间施加的 电压范围为0.3-1.5KV。由 于两电极间的辉光放电形 成了Ar正电离子,在电场 的作用下Ar离子冲击阴极 靶材表面,使靶材原子从 其表面蒸发出来形成超微 粒子 。
5.1.9 燃烧火焰化学气相凝聚 法(CF-CVC)

当含有金属有机先驱物 蒸气的载气与可燃性气 体的混合气体均匀地流 过喷气嘴时,产生均匀 的平面燃烧火焰,火焰 由C2H2 ,CH4 或H2 在 O2 中燃烧所致。反应室的 压 力 保 持 100~500Pa 的 低压。金属有机先驱物 经火焰加热在燃烧器的 外面热解形成纳米粒子, 附着在转动的冷阱上, 经刮刀刮下收集。
相关文档
最新文档