晶振的工作原理教学内容
晶振系统工作原理

晶振系统工作原理
晶振系统是一种常用的时钟系统,用于产生稳定且精确的时钟信号。
晶振系统的工作原理包括以下几个步骤:
1. 晶体的机械振动:晶振系统的核心部分是晶体,通常是由石英或陶瓷等材料制成。
当电压施加在晶体上时,它会产生机械振动,将电能转化为机械能。
2. 机械振动的反馈效应:晶体振动的频率由晶体的尺寸和材料决定,这个频率通常非常稳定。
晶振系统通过将晶体的振动信号反馈给晶体。
如果晶体的振动频率与输入信号的频率一致,晶体将继续振动;如果频率不匹配,则振动将被抑制。
3. 输出的时钟信号:晶振系统从晶体中获取稳定的振动信号,并通过放大、滤波等电路处理后输出,形成高精度的时钟信号。
这个时钟信号可以用于计时、同步和驱动其他电子设备。
总之,晶振系统的工作原理是通过利用晶体的机械振动特性,实现稳定且精确的时钟信号的产生。
晶振基础知识ppt课件(共19张PPT)

在并联共振线路中的振荡频率,有99.5%的频率决定在晶体,外部的组件约只占0.5%,所以外部组件C1、C2和布线主要在 决定于启动与可信赖程度。典型的初始误差为±1%,温度变化(-30到100度〕为±0.005%,组件老化约为±0.005% CL: 负载电容是指晶振的两条引线连接IC块内部及外部所有有效电容之和,可看作晶振片在电路中串接电容。如 果负载电容太大,振荡器就会因为在工作频率的回授增益太低而不会启动,这是因为负载电容阻抗的关系,大的 负载电容会产生较长的启动稳定时间。但是若负载电容太小,会出现不是不起振〔因为整个回路相位偏移不够〕 就是振在第3、5、7泛音〔overtone〕频率。电容的误差是需要考量的,一般而言陶瓷电容的误差在±10%,可以 满足一般应用需要。所以若要有一个可靠且快速起振的振荡器,在没有导致工作在泛音频率下,负载电容应越小 越好。 Crystal常用CL SPEC:
式中,T为任意温度,T0参照温度,f0为参照温度时的频率,a0、b0、c0为参照温度时的频率温度系数。
并联电路:
(a)串联共振振荡器 (b)并联共振振荡器
1):如何选择晶体? 对于一个高可靠性的系统设计,晶体的选择非常重要,尤其设计带有睡眠唤醒(往往用低电压以求低功耗)的系统。这是因为低 供电电压使提供给晶体的激励功率减少,造成晶体起振很慢或根本就不能起振。这一现象在上电复位时并不特别明显,原因时 上电时电路有足够的扰动,很容易建立振荡。在睡眠唤醒时,电路的扰动要比上电时小得多,起振变得很不容易。在振荡回路 中,晶体既不能过激励(容易振到高次谐波上)也不能欠激励(不容易起振)。晶体的选择至少必须考虑:谐振频点,负载电容, 激励功率,温度特性,长期稳定性。 2):晶振驱动 电阻RS常用来防止晶振被过分驱动。过分驱动晶振会渐渐损耗减少晶振的接触电镀,这将引起频率的上升。可用一台示波器检 测OSC输出脚,如果检测一非常清晰的正弦波,且正弦波的上限值和下限值都符合时钟输入需要,则晶振未被过分驱动;相反, 如果正弦波形的波峰,波谷两端被削平,而使波形成为方形,则晶振被过分驱动。这时就需要用电阻RS来防止晶振被过分驱动 。判断电阻RS值大小的最简单的方法就是串联一个5k或10k的微调电阻,从0开始慢慢调高,一直到正弦波不再被削平为止。通 过此办法就可以找到最接近的电阻RS值。
晶振的工作原理

晶振的工作原理
晶振(Oscillator)是一种用来生成稳定的时钟信号的电子元件。
其工作原理主要基于谐振现象。
晶振通常由晶体和驱动电路组成。
晶体是晶振的核心部件,一般使用石英晶体。
晶振驱动电路提供激励信号,激励晶体产生振荡。
该电路一般由几个主要组成部分组成:放大电路、反馈电路和调谐电路。
具体工作原理如下:
1. 激励信号:由驱动电路通过提供适当的激励信号来引发晶体振荡。
这个激励信号可以是电压脉冲、电流脉冲或连续信号,其频率通常在晶体的共振频率附近。
2. 晶体共振:晶体共振是指在特定频率下,晶体的振荡达到最大幅度的状态。
晶体的共振频率是由晶体的物理特性决定的,例如晶体的尺寸、形状和材料等。
晶振的频率通常设计为晶体的共振频率。
3. 反馈电路:晶体振荡产生的信号经过放大电路被反馈到晶体上,使晶体持续振荡。
放大电路可以将晶体输出的微弱信号放大到足够的幅度,以供后续电路使用。
4. 调谐电路:调谐电路用来微调晶振的频率,以使其与所需的时钟频率完全匹配。
调谐电路通常由电容和电感等元件组成,通过改变这些元件的数值,可以微调晶振的频率。
通过以上过程,晶振能够产生一个稳定、精确的时钟信号,用于驱动各种电子设备的工作。
这些设备需要准确的时钟信号来同步各个部件的操作。
晶振的工作原理

晶振的工作原理晶振是一种常见的电子元件,广泛应用于各种电子设备中,如计算机、手机、电视等。
它的主要作用是产生稳定的时钟信号,用于同步各个部件的工作。
下面将详细介绍晶振的工作原理。
一、晶振的基本结构晶振由晶体谐振器和振荡电路组成。
晶体谐振器是晶振的核心部件,通常由石英晶体制成。
振荡电路则负责对晶体谐振器进行驱动和放大。
二、晶振的工作原理基于晶体的压电效应和谐振现象。
当施加外加电场或力矩时,晶体会发生形变,同时在晶体内部产生电荷分布不均衡,形成电势差。
这种电势差会导致晶体的形变反向,从而使电势差恢复原状。
这种周期性的形变和电势差变化就是晶体的振荡。
晶振利用晶体的这种振荡特性,通过振荡电路对晶体进行驱动和放大,从而产生稳定的时钟信号。
振荡电路一般由晶体谐振器、放大器和反馈电路组成。
晶体谐振器的作用是提供振荡的基频。
它由晶体和负载电容组成,晶体的特性决定了振荡的频率。
当外加电压施加在晶体上时,晶体会振荡产生电势差,这个电势差会被放大器放大,然后通过反馈电路反馈到晶体上,使晶体继续振荡。
通过调整反馈电路的参数,可以使晶体振荡的频率达到所需的稳定值。
放大器的作用是放大晶体振荡产生的信号。
它通常采用放大器管或晶体管来实现,将晶体振荡产生的微弱信号放大到足够的幅度,以供后续电路使用。
反馈电路的作用是将放大器输出的信号反馈到晶体上,使晶体继续振荡。
反馈电路一般由电容和电阻组成,通过调整电容和电阻的数值,可以控制振荡的频率和幅度。
三、晶振的特点和应用晶振具有以下几个特点:1. 高精度:晶振可以提供非常稳定的时钟信号,其频率精度可以达到很高。
2. 高稳定性:晶振的频率稳定性非常好,受温度、电压等因素的影响较小。
3. 快速启动:晶振的启动时间非常短,可以在很短的时间内达到稳定的工作状态。
4. 小尺寸:晶振体积小,重量轻,适合集成在各种电子设备中。
晶振广泛应用于各种电子设备中,主要用于提供时钟信号,用于同步各个部件的工作。
晶振的工作原理

晶振的工作原理晶振是一种常见的电子元件,广泛应用于各种电子设备中,如计算机、手机、电视等。
它的主要作用是提供稳定的时钟信号,用于同步各个电路的工作。
本文将详细介绍晶振的工作原理。
一、晶振的结构和组成晶振由晶体谐振器和驱动电路两部分组成。
1. 晶体谐振器:晶体谐振器是晶振的核心部件,通常由石英晶体制成。
石英晶体具有压电效应,当施加外力或电场时,晶体会发生形变,产生电荷。
在晶体的特定方向上,电荷的积累和释放会形成特定频率的振荡。
晶体谐振器通常由两块石英晶体片组成,中间夹有金属电极,形成一个电容器,称为谐振腔。
当外加电场频率等于晶体的谐振频率时,晶体谐振器就会开始振荡。
2. 驱动电路:驱动电路是晶振的控制部分,主要包括晶振激励电路和放大电路。
晶振激励电路会向晶体谐振器提供一定的激励电压,使晶体开始振荡。
放大电路会放大晶振输出的信号,以便其他电路可以正常工作。
二、晶振的工作原理可以分为激励和振荡两个阶段。
1. 激励阶段:当外加电压施加到晶体谐振器上时,电场会使晶体发生形变,产生电荷。
当电场的频率等于晶体的谐振频率时,晶体谐振器开始振荡。
晶体谐振器的振荡频率由晶体的物理特性和谐振腔的尺寸决定。
2. 振荡阶段:一旦晶体谐振器开始振荡,它会在谐振频率上产生稳定的振荡信号。
这个振荡信号被放大电路放大后输出,供其他电路使用。
晶振的输出信号通常是一个方波信号,频率非常稳定,可以作为时钟信号来同步其他电路的工作。
三、晶振的特点和应用晶振具有以下特点:1. 高稳定性:晶振的振荡频率非常稳定,受温度和供电电压变化的影响较小。
这使得晶振非常适合用作时钟信号源,确保电子设备的稳定运行。
2. 高精度:晶振的频率精度通常在几个百万分之一或更高,可以满足大多数电子设备对时钟信号精度的要求。
3. 小型化:晶振的体积小,重量轻,适合集成到各种小型电子设备中。
4. 易于使用:晶振只需要外加电压即可工作,使用方便。
晶振广泛应用于各种电子设备中,包括但不限于:1. 计算机:晶振作为计算机的时钟源,提供稳定的时钟信号,确保计算机各个部件的协调工作。
晶振的工作原理

晶振的工作原理晶振(Crystal Oscillator)是一种电子元件,用于产生稳定的高频振荡信号。
它广泛应用于各种电子设备中,包括计算机、通信设备、无线电设备等。
晶振的工作原理是基于压电效应和谐振原理。
晶振通常由晶体谐振器和振荡电路组成。
晶体谐振器是晶振的核心部件,它由一个压电晶体片和两个金属电极组成。
压电晶体片通常采用石英晶体,因为石英具有稳定性好、温度特性好等优点。
金属电极则用于提供电场,使晶体产生压电效应。
晶振的工作原理如下:1. 振荡电路提供反馈:晶振的振荡电路包含一个放大器和一个反馈网络。
放大器将晶体谐振器输出的信号放大,然后将放大后的信号送回晶体谐振器,形成一个正反馈回路。
2. 压电效应产生振荡:当电场施加到晶体上时,晶体味发生压电效应,即晶体味产生机械变形。
这种机械变形会导致晶体的厚度发生弱小的变化,从而改变晶体的谐振频率。
3. 谐振频率确定:晶体的谐振频率由晶体的物理尺寸和材料特性决定。
通过精确控制晶体的尺寸和材料,可以实现特定的谐振频率。
常见的谐振频率有4MHz、8MHz、16MHz等。
4. 反馈调整振荡频率:当振荡频率偏离谐振频率时,反馈网络会调整放大器的增益,使振荡频率逐渐接近谐振频率。
最终,振荡频率稳定在谐振频率附近。
晶振的工作原理可以通过以下步骤总结:1. 振荡电路提供反馈。
2. 压电效应产生振荡。
3. 谐振频率由晶体的尺寸和材料决定。
4. 反馈调整振荡频率,使其稳定在谐振频率附近。
晶振在电子设备中的应用非常广泛。
它提供了稳定的时钟信号,用于同步各个电路的工作。
例如,在计算机中,晶振用于控制CPU的时钟频率,确保计算机的稳定运行。
在通信设备中,晶振用于产生精确的调制信号,实现高质量的通信。
在无线电设备中,晶振用于产生精确的射频信号,实现无线通信。
总之,晶振的工作原理是基于压电效应和谐振原理,通过振荡电路提供反馈,产生稳定的高频振荡信号。
它在各种电子设备中发挥着重要的作用,确保设备的稳定运行和高质量的信号传输。
晶振的工作原理

晶振的工作原理引言概述:晶振是电子设备中常见的一种元件,它在电子设备中起着非常重要的作用。
晶振的工作原理是什么呢?接下来我们将详细介绍晶振的工作原理。
一、晶振的基本结构1.1 晶振由晶体谐振器和振荡电路组成,晶体谐振器是晶振的核心部件。
1.2 晶体谐振器是由晶体片、电极和封装壳体组成的。
1.3 振荡电路由晶振管脚、电容器和电阻器等元件组成。
二、晶振的工作原理2.1 当晶振通电后,晶体片受到电场的作用会发生压电效应,产生机械振动。
2.2 晶体片振动时,会产生声波,声波通过振荡电路反馈到晶体片上,形成正反馈。
2.3 正反馈作用下,晶体片会以共振频率振动,产生稳定的振荡信号。
三、晶振的频率稳定性3.1 晶振的频率稳定性取决于晶体片的质量和振荡电路的稳定性。
3.2 晶振的频率受温度、电压等外部环境因素的影响较小。
3.3 晶振的频率稳定性对于电子设备的正常运行至关重要。
四、晶振的应用领域4.1 晶振广泛应用于计算机、通信设备、数字电子产品等领域。
4.2 晶振在时钟信号、同步信号等方面有着重要作用。
4.3 晶振的稳定性和精度直接影响到设备的性能和稳定性。
五、晶振的发展趋势5.1 随着科技的不断进步,晶振的频率稳定性和精度会不断提高。
5.2 晶振将会更加小型化、高集成化,以适应电子产品的发展需求。
5.3 晶振的应用范围将会继续扩大,成为电子设备中不可或者缺的重要元件。
总结:通过以上介绍,我们了解了晶振的基本结构、工作原理、频率稳定性、应用领域以及发展趋势。
晶振作为电子设备中的重要元件,其稳定性和精度对设备的性能起着至关重要的作用,未来随着科技的不断发展,晶振将会更加小型化、高集成化,应用范围也将不断扩大。
晶振的工作原理

晶振的工作原理晶振(Crystal Oscillator)是一种基于晶体的电子元件,常用于电子设备中的时钟电路和频率稳定器。
晶振的工作原理是利用晶体的压电效应和谐振效应来产生稳定的振荡信号。
1. 晶体的压电效应晶体具有压电效应,即在晶体的两个相对平行的表面上施加压力时,会在晶体内部产生电荷分布的不均匀,从而产生电势差。
这种压电效应是由于晶体的晶格结构对压力的敏感性导致的。
2. 晶体的谐振效应晶体具有谐振效应,即当外加电场频率等于晶体的固有频率时,晶体会发生共振现象,产生较大的振荡幅度。
这是因为晶体的晶格结构对外加电场的频率具有选择性响应。
基于以上两个原理,晶振的工作可以描述如下:1. 晶振电路的组成晶振电路主要由晶体、电容和放大器组成。
晶体作为振荡元件,电容用于调节振荡频率,放大器用于放大振荡信号。
2. 晶振的工作过程首先,电源提供直流电压给晶振电路。
晶振电路中的放大器将直流电压转换为交流信号,并输入到晶体上。
晶体受到电场的作用,根据压电效应产生电势差,并通过电容调节后反馈给放大器。
当输入信号的频率等于晶体的固有频率时,晶体发生谐振现象,产生稳定的振荡信号。
这个振荡信号经过放大器放大后,输出到外部电路中。
3. 晶振的稳定性晶振具有较高的频率稳定性,这是由于晶体的固有频率非常稳定。
晶体的固有频率主要取决于晶体的物理结构和材料特性,而这些因素在制造过程中可以严格控制,从而保证了晶振的频率稳定性。
4. 晶振的应用晶振广泛应用于各种电子设备中,如计算机、手机、通信设备等。
它们在时钟电路中用于提供稳定的时钟信号,使设备能够按照预定的频率和时间进行工作。
此外,晶振还可以用作频率稳定器,用于调整和控制电子设备中的频率。
总结:晶振是一种基于晶体的电子元件,利用晶体的压电效应和谐振效应来产生稳定的振荡信号。
晶振电路由晶体、电容和放大器组成,工作过程中,晶体受到电场的作用产生电势差,并通过电容反馈给放大器,当输入信号的频率等于晶体的固有频率时,晶体发生谐振现象,产生稳定的振荡信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶振的工作原理:晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。
由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。
这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。
晶振的参数:晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。
晶振的应用:一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。
一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p 的电容构成晶振的振荡电路就是比较好的选择。
晶体振荡器也分为无源晶振和有源晶振两种类型。
无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。
无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。
晶振的种类:谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。
晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。
石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。
如在极板间所加的是交变电压,就会产生机械变形振动,同时机械变形振动又会产生交变电场。
一般来说,这种机械振动的振幅是比较小的,其振动频率则是很稳定的。
但当外加交变电压的频率与晶片的固有频率(决定于晶片的尺寸)相等时,机械振动的幅度将急剧增加,这种现象称为压电谐振,因此石英晶体又称为石英晶体谐振器。
其特点是频率稳定度很高。
晶振的万用表测试方法:小技巧:没有示波器情况下如何测量晶振是否起振?可以用万用表测量晶振两个引脚电压是否是芯片工作电压的一半,比如工作电压是5V则测出的是否是 2.5V左右。
另外如果用镊子碰晶体另外一个脚,这个电压有明显变化,证明是起振了的.小窍门:就是弄一节 1.5V的电池接在晶振的两端把晶振放到耳边仔细的听,当听到哒哒的声音那就说明它起振了,就是好的嘛!1.电阻法把万用表拨在R×10K挡,测量石英晶体两引脚间的电阻值应为无穷大。
如果测量出的电阻值不是无穷大甚至接近于零,则说明被测晶体漏电或击穿。
这种办法只能测晶体是否漏电,如果晶体内部出现断路,电阻法就无能为力了,此时必须采用下面介绍的方法2 .自制测试器按图所示电路,焊接一个简易石英晶体测试器,就可以准确地测试出晶体的好坏。
图中XS1、XS2两个测试插口可用小七脚或小九脚电子管管座中拆下来的插口。
LED发光管选择高亮度的较好。
检测石英晶体时,把石英晶体的两个管脚插入到XS1和XS2两个插口中,按下开关SB,如果石英晶体是好的则由三极管VT1、C1、C2等元器件构成的震荡电路产生震荡,震荡信号经C3耦合至VD2检波,检波后的直流信号电压使VT2导通,于是接在VT2集电极回路中的LED发光,指示被测石英晶体是好的,如果LED不亮,则说明被测石英晶体是坏的.本测试器测试石英晶体的频率很宽,但最佳工作频率为几百千赫至几十兆赫。
一个简易石英晶体测试器晶振的稳定性指标总频差:在规定的时间内,由于规定的工作和非工作参数全部组合而引起的晶体振荡器频率与给定标称频率的最大偏差。
说明:总频差包括频率温度稳定度、频率老化率造成的偏差、频率电压特性和频率负载特性等共同造成的最大频差。
一般只在对短期频率稳定度关心,而对其他频率稳定度指标不严格要求的场合采用。
例如:精密制导雷达。
频率稳定度:任何晶振,频率不稳定是绝对的,程度不同而已。
一个晶振的输出频率随时间变化的曲线如图2。
图中表现出频率不稳定的三种因素:老化、飘移和短稳。
图2 晶振输出频率随时间变化的示意图曲线1是用0.1秒测量一次的情况,表现了晶振的短稳;曲线3是用100秒测量一次的情况,表现了晶振的漂移;曲线 4 是用1天一次测量的情况。
表现了晶振的老化。
频率温度稳定度:在标称电源和负载下,工作在规定温度范围内的不带隐含基准温度或带隐含基准温度的最大允许频偏。
ft=±(fmax-fmin)/(fmax+fmin)ftref=±MAX[|(fmax-fref)/fref|,|(fmin-fref)/fref|]ft:频率温度稳定度(不带隐含基准温度)ftref:频率温度稳定度(带隐含基准温度)fmax:规定温度范围内测得的最高频率fmin:规定温度范围内测得的最低频率fref:规定基准温度测得的频率说明:采用ftref指标的晶体振荡器其生产难度要高于采用ft指标的晶体振荡器,故ftref指标的晶体振荡器售价较高。
开机特性(频率稳定预热时间):指开机后一段时间(如5分钟)的频率到开机后另一段时间(如1小时)的频率的变化率。
表示了晶振达到稳定的速度。
这指标对经常开关的仪器如频率计等很有用。
说明:在多数应用中,晶体振荡器是长期加电的,然而在某些应用中晶体振荡器需要频繁的开机和关机,这时频率稳定预热时间指标需要被考虑到(尤其是对于在苛刻环境中使用的军用通讯电台,当要求频率温度稳定度≤±0.3ppm(-45℃~85℃),采用OCXO作为本振,频率稳定预热时间将不少于5分钟,而采用MCXO只需要十几秒钟)。
频率老化率:在恒定的环境条件下测量振荡器频率时,振荡器频率和时间之间的关系。
这种长期频率漂移是由晶体元件和振荡器电路元件的缓慢变化造成的,因此,其频率偏移的速率叫老化率,可用规定时限后的最大变化率(如±10ppb/天,加电72小时后),或规定的时限内最大的总频率变化(如:±1ppm/(第一年)和±5ppm/(十年))来表示。
晶体老化是因为在生产晶体的时候存在应力、污染物、残留气体、结构工艺缺陷等问题。
应力要经过一段时间的变化才能稳定,一种叫“应力补偿”的晶体切割方法(SC切割法)使晶体有较好的特性。
污染物和残留气体的分子会沉积在晶体片上或使晶体电极氧化,振荡频率越高,所用的晶体片就越薄,这种影响就越厉害。
这种影响要经过一段较长的时间才能逐渐稳定,而且这种稳定随着温度或工作状态的变化会有反复——使污染物在晶体表面再度集中或分散。
因此,频率低的晶振比频率高的晶振、工作时间长的晶振比工作时间短的晶振、连续工作的晶振比断续工作的晶振的老化率要好。
说明:TCXO的频率老化率为:±0.2ppm~±2ppm(第一年)和±1ppm~±5ppm(十年)(除特殊情况,TCXO很少采用每天频率老化率的指标,因为即使在实验室的条件下,温度变化引起的频率变化也将大大超过温度补偿晶体振荡器每天的频率老化,因此这个指标失去了实际的意义)。
OCXO的频率老化率为:±0.5ppb~±10ppb/天(加电72小时后),±30ppb~±2ppm(第一年),±0.3ppm~±3ppm(十年)。
短稳:短期稳定度,观察的时间为1毫秒、10毫秒、100毫秒、1秒、10秒。
晶振的输出频率受到内部电路的影响(晶体的Q值、元器件的噪音、电路的稳定性、工作状态等)而产生频谱很宽的不稳定。
测量一连串的频率值后,用阿伦方程计算。
相位噪音也同样可以反映短稳的情况(要有专用仪器测量)。
重现性:定义:晶振经长时间工作稳定后关机,停机一段时间t1(如24小时),开机一段时间t2(如4小时),测得频率f1,再停机同一段时间t1,再开机同一段时间t2,测得频率f2。
重现性=(f2-f1)/f2。
频率压控范围:将频率控制电压从基准电压调到规定的终点电压,晶体振荡器频率的最小峰值改变量。
说明:基准电压为+ 2.5V,规定终点电压为+0.5V和+4.5V,压控晶体振荡器在+0.5V频率控制电压时频率改变量为-2ppm,在+4.5V频率控制电压时频率改变量为+ 2.1ppm,则VCXO电压控制频率压控范围表示为:≥±2ppm(2.5V±2V),斜率为正,线性为+2.4%。
压控频率响应范围:当调制频率变化时,峰值频偏与调制频率之间的关系。
通常用规定的调制频率比规定的调制基准频率低若干dB表示。
说明:VCXO频率压控范围频率响应为0~10kHz。
频率压控线性:与理想(直线)函数相比的输出频率-输入控制电压传输特性的一种量度,它以百分数表示整个范围频偏的可容许非线性度。
说明:典型的VCXO频率压控线性为:≤±10%,≤±20%。
简单的VCXO频率压控线性计算方法为(当频率压控极性为正极性时):频率压控线性=±((fmax-fmin)/ f0)×100%fmax:VCXO在最大压控电压时的输出频率fmin:VCXO在最小压控电压时的输出频率f0:压控中心电压频率单边带相位噪声£(f):偏离载波f处,一个相位调制边带的功率密度与载波功率之比。
输出波形:从大类来说,输出波形可以分为方波和正弦波两类。
方波主要用于数字通信系统时钟上,对方波主要有输出电平、占空比、上升/下降时间、驱动能力等几个指标要求。
随着科学技术的迅猛发展,通信、雷达和高速数传等类似系统中,需要高质量的信号源作为日趋复杂的基带信息的载波。
因为一个带有寄生调幅及调相的载波信号(不干净的信号)被载有信息的基带信号调制后,这些理想状态下不应存在的频谱成份(载波中的寄生调制)会导致所传输的信号质量及数传误码率明显变坏。
所以作为所传输信号的载体,载波信号的干净程度(频谱纯度)对通信质量有着直接的影响。
对于正弦波,通常需要提供例如谐波、噪声和输出功率等指标。
晶振的应用:图3为红外线发射出电路。
图4为晶振式发射机电路。
电路中J、VD1、L1、C3~C5、V1组成晶体振荡电路。
由于石英晶体J的频率稳定性好,受温度影响也较小,所以广泛用于无绳电话及AV调制器中。
V1是29~36MHz晶体振荡三极管,发射极输出含有丰富的谐波成分,经V2放大后,在集电极由C7、L2构成谐振于88~108MHz的网络选出3倍频信号(即87~108MHz的信号最强),再经V3放大,L3、C9选频后得到较理想的调频频段信号。