燃气_蒸汽联合循环热电冷三联供系统_分析
冷热电三联供的形式及成本分析

冷热电三联供的形式:内燃机+余热利用系统;燃气轮机+余热发电机组;燃气轮机+余热利用系统;微燃机+余热利用系统。
内燃机+余热利用系统:内燃机:四冲程内燃机;吸气冲程、压缩冲程、做功冲程、排气冲程。
内燃机余热:烟气、缸套水;余热利用系统:热水烟气直燃机、板式换热器。
余热利用系统:制冷:烟气→烟气热水型直燃机中烟气高发;缸套水→烟气热水直燃机中热水发生器。
制热:烟气→烟气热水型直燃机中烟气高发;缸套水→板式换热器。
设计参数及原则设计参数:对象:办公楼,建筑面积:2万平冷负荷:50w/m2,热负荷:56w/m2电负荷:30-67w/m2采暖期:11月-4月,128天制冷期:6月-9月,88天每个工作日,机组运行10小时7:30-17:30周六日不起动,采用市网运行设计原则:以办公楼最低电负荷为标准选配发电机,产生的余热即烟气和缸套水进入烟气热水型直燃机和板式换热器制冷制热。
机组选型:电负荷:0.03×20000=600KW冷负荷:0.05×20000=1000KW热负荷:0.056×20000=1120KW发电机选型:J312额定发电功率:635KW 发电效率:40.4%额定余热功率:744KW 排热效率:46.5%可利用烟气:3400kg/h,402KW,500℃可利用热水:26.6m3/h,342KW,79-95℃:发电机组参数采用颜巴赫系列利用的余热主要为:烟气和缸套水余热机组选型:BZHE125型出力系数为:100%燃气、50%烟气、23%热水出力系数:在多能量源的条件下,某一能量源的额定功率占额定总功率的比例。
额定制冷量:1454KW 天然气:106m3/h额定制热量:1121KW 天然气:120m3/h烟气量:4873m3/h,热水量:41.1m3/h:余热机组参数采用远大系列。
负荷计算:制冷:该直燃机烟气出力最多为满负荷的50%,出力系数为0.5。
计算公式:制冷量=排烟量/额定排烟量×额定制冷功率×出力系数×发电机负荷比例。
燃气内燃机和吸附制冷机组成的冷热电三联供系统

燃气内燃机和吸附制冷机组成的冷热电三联供系统摘要:随着我国工业化和城市化进程的加快,资源和环境问题日趋严重。
同时,还有能源的匮乏、环境的日益恶化已成为当今世界各国共同面对的问题。
利用燃气替代煤作为燃料,既能提高能源利用率,又能保护环境。
但其不足之处在于,燃气价格较高,燃气资源匮乏。
因此,推广燃气内燃机和吸附制冷机组成的冷热电三联供系统技术,对我国特别是城市的环境与能源利用具有重要意义。
关键词:内燃机;吸附制冷机;冷热电三联供系统引言:燃气内燃机和吸附制冷机组成的冷热电三联供系统是一种既能利用自然气又能利用电能,又能回收废热的高效节能制冷技术,三联供可为建筑供热、供冷、供电,具有显著的节能降耗、降低二氧化碳排放等优点,已成为国内外研究热点。
一、技术原理燃气冷热电三联供系统是指将燃气燃料同时转换成三种产品:电力、热或蒸汽以及冷水,并将其一体化的多联产供能系统,是分布式能源的表现形式之一。
冷热电三联供供能模式与传统分散供能方式相比,该系统的能量综合利用率超过80%。
燃气燃烧产生的高品位能源将被用于三联供发电,其排出的热能等级较低,可被用来供给冷热电等中、低品位能源,从而形成冷热电三种能源的协同供给。
二、冷热电三联供系统的积极作用(一)、提高电力供应可靠性国家的飞速发展致使用电的依赖性也在不断增加,但是,2003年美国、加拿大的大面积停电以及2008年我国南方的冰雹灾害表明,在目前的大电网体系框架下,不管我们如何投入大量的技术和财力,都无法彻底杜绝此类停电事件的发生。
为了进一步提升电网的供电可靠性,需要对电网进行修复,因此,基于低碳思想,开发基于燃气的冷热电三联供系统,可以说是解决电网结构问题的一剂良药。
由于三联供距离客户较近,冷、热、电三联供可降低线路损耗6%-7%,解决了远距离传输、多层变配电设施建设难题,缓解了通道负荷;同时,在智能电网中,该系统不仅可用于正常供电,还可用于紧急情况下的应急备用,对某些关键客户的用电安全提供了可靠的保障。
燃气冷热电三联供系统浅析

燃气冷热电三联供系统浅析引言随着全球经济的快速发展与化石能源的短缺,提高能源利用率和保护自然环境问题日益突出。
目前我国建筑运行能耗在社会总能耗中约占27%。
根据近30年来能源界的研究和实践,普遍认为建筑节能是各种节能途径中潜力最大、最为直接有效的方式。
天然气三联供系统以其能源利用效率高、节能环保、供电安全等优势逐步应用于建筑供能领域,实现了能源的多次利用和阶梯式供应。
与传统集中式供能技术相比,天然气冷热电三联供系统具有诸多优势,主要为小型用户供给能源,其形式安全、可靠一、燃气冷热电三联供技术产生背景中国经济建设高速发展的今天,能源短缺及环境污染问题日益突出,开发新能源,调整能源结构,以建设资源节约型和环境友好型社会一直是政府的发展目标。
新能源的开发利用需要全面的考虑其经济性、社会性以及生态性,在这种大的形势下,节能减排的分布式能源系统成为我国在能源方面发展的主要对象。
国际上应对气候变化和治理空气污染一直呼声不断,近年美国页岩气的开发利用极大的增加了国际市场天然气的供应,我国自俄罗斯进口来的天然气及自身天然气的发展,使整个能源机构发生了变化,中国计划到2030年非石化资源占一次能源的比重提高到20%左右,燃气热电冷联供技术恰逢其时。
天然气分布式能源,又称燃气热电冷联供系统,是一种建立在能源梯级利用概念基础上,将供热(采暖和供热水)、制冷及发电过程一体化的能源综合利用系统,其综合能源利用效率在70%以上,受到许多发达国家的重视并被称为“第二代能源系统”。
二、燃气冷热电联供的优势及应用燃气冷热电联供作为一种高效清洁的能源利用方式,具有节能、减排、经济、安全、削峰填谷、促进循环经济发展等多种不可替代的优势。
1)提高能源综合利用效率:运用能量梯级利用原理,先發电,再利用余热,体现了由能量的高品位到低品位的科学用能,且使一次能源综合利用效率和效益大幅度提高。
2)降低排放,保护环境:由于采用清洁燃料,大量减少了烟气中温室气体和其它有害成分,一次能源综合利用率的提高和当地的各种可再生能源的利用进一步起到减排效果。
燃气冷热电三联供制冷系统节能分析

燃气冷热电三联供制冷系统节能分析1. 引言1.1 燃气冷热电三联供制冷系统节能分析燃气冷热电三联供制冷系统是一种利用燃气发电系统产生的余热和冷凝水,结合燃气制冷机组和吸收式制冷机组共同供热供冷的系统。
通过优化能源利用、提高系统效率和节能降耗的技术手段,可以实现对传统空调供热供冷系统的节能改造和提升。
通过对燃气冷热电三联供制冷系统的节能分析,可以为推动燃气冷热电技术在供热供冷领域的广泛应用提供指导和借鉴,促进能源利用效率的提高,推动我国节能减排目标的实现。
2. 正文2.1 燃气冷热电系统简介燃气冷热电系统是一种集热电、空调、供暖等功能于一体的多能源综合利用系统。
其核心是利用燃气发电机组在发电的同时产生的废热进行供暖或制冷,从而实现能源的高效利用与综合利用。
燃气冷热电系统主要由燃气发电机组、吸收式制冷机组、燃气锅炉、换热器、冷热水泵及控制系统等组成。
燃气冷热电系统具有能量利用高效、环境污染少、运行稳定等特点。
燃气发电机组通过发电产生的废热可被充分利用,实现能量的高效利用;吸收式制冷机组和燃气锅炉能够根据实际需要进行灵活调节,提高系统的灵活性和适应性;系统的运行稳定性高,具有较长的使用寿命和低维护成本等优点。
2.2 燃气冷热电三联供系统能源利用特点分析燃气冷热电三联供系统是一种集制冷、供热和发电于一体的综合能源系统,具有独特的能源利用特点。
燃气冷热电系统采用燃气发电技术,通过燃烧燃气产生电力,同时利用废热进行供热,实现了能源的多重利用。
这种一体化设计有效提高了能源利用效率,减少了能源的浪费。
燃气冷热电系统具有较高的灵活性和可调性,能够根据实际需求对能源进行灵活配置,有效平衡制冷、供热和发电之间的关系,提高系统整体运行效率。
燃气冷热电系统还具有分布式能源特点,可以实现多能源互补、灵活调度,降低能源输送损耗,提高能源利用效率。
燃气冷热电三联供系统在能源利用方面具有高效、灵活、可靠等特点,是一种节能环保的能源利用方式,有着广阔的应用前景。
燃气冷热电三联供制冷系统节能分析

燃气冷热电三联供制冷系统节能分析摘要:燃气冷热电联供系统是分布式能源系统的主要形式,是一种建立在能量梯级利用基础上的综合产能、用能分布式系统。
系统安装于最终用户端附近,首先利用一次能源驱动发电机发电,再通过各种余热利用设备对余热进行回收利用,从而向用户同时提供电力、制冷、采暖、生活热水等。
燃气冷热电联供系统以其节能、削峰填谷、环保、电力可靠性高等优点而受到广泛重视。
燃气冷热电联供系统是一个复杂的能源系统,存在冷、热、电多种能量输出,受到可燃性气体价格、电价、建筑负荷波动等多种因素影响,不同的容量配置和运行方式也会直接影响系统的性能。
因此结合项目具体情况,从节能性与经济性的角度对具体的燃气冷热电联供系统进行分析,就更显得必要。
关键词:冷热电三联供制冷系统发电效率节能冷热电三联供是实现能源梯级利用的高效能源利用形式,它可将发电之后的低品位热能用于制冷供热,以提高能源的综合利用效率。
冷热电联供发展较迅速的主要有英国、美国、加拿大、法国等国家;早在上世纪 30 年代,美国就建成了第一个冷热电联供系统,现如今分布式能源站总数已超过6000 座。
关于冷热电联系统的节能性问题,各方意见不一,多数认为系统是节能的,某些认为节能是有条件的,而另一些认为不节能。
文章从一次能耗的角度出发,通过计算制冷工况的吸收式制冷系统和电压缩式制冷系统的一次能耗,分析冷热电三联供制冷系统的节能性。
一、燃气冷热电三联供制冷系统的背景我国1998年起实施的《中华人民共和国节约能源法》明确指出:“推广热电联产、集中供热,提高热电机组的利用率,发展热能梯级利用技术,热、电、冷联产技术和热、电、煤气三联供技术,提高热能综合利用率”。
2000年原国家计委、原国家经贸委、建设部、国家环保总局联合发布的《关于发展热电联产的规定》指出:“以小型燃气发电机组和余热锅炉等设备组成的小型热电联产系统,适用于厂矿企业、写字楼、宾馆、商场、医院、银行、学校等较分散的公用建筑。
三联供系统简介

燃气三联供系统简介燃气冷热电三联供系统(Combined Cooling Heating and Power,简称CCHP)是分布式能源的一种主要形式。
以天然气为主要燃料,带动燃气发电机组运行,产生的电力满足用户的电负荷,系统排出的废热通过余热利用设备向用户供热、供冷。
燃气冷热电三联供系统的特点:(1)能源综合利用率提高大型天然气发电厂的发电效率一般为35%~55%,如果扣除厂用电和线损率,终端的发电效率只能达到30~47%,而三联供系统的燃气利用效率最高可达到90%左右。
(2)能源供应安全性高三联供系统一般采取并网方式设计,大电网与三联供发电机组互为备用,因此相当于用户增加了一路常用供电系统,提高了用户供电的可靠性。
常规的冷热空调系统一般由电制冷机组加燃气锅炉组成,采用三联供系统后可以使用发电机的余热供热,对用户来说相当增加了一套空调冷热源系统;对于使用电空调的用户相当于将原来的单一用电空调制冷变为可以同时用电和燃气,因此提高了用户的冷热供应可靠性。
(3)有良好的经济性由于电力供应日趋紧张,各地纷纷把实行峰谷电价政策作为电力需求侧管理的有效手段。
以北京为例,北京目前实行的商业峰谷电价政策,平段电价为0.70元/kwh,高峰时间为1.32元/kwh,低谷电价为0.32元/kwh,因此采用传统电制冷除了增加大电网的负担以外,还使用户必须承担高额的运行费用。
而采用三联供系统利用发电后余热来供热供冷,整个系统能源效率提高,能源供应成本下降,在能源价格不断增长的形势下更具有良好的经济效益。
另外因为免除了电力远距离输配电损失,电力使用效率也增大。
(4)有良好的环保效益天然气是清洁能源,在其完全燃烧及采取一定的治理措施后,烟气中NOX等有害成分远低于相关环保指标要求,具有较好的环保效益。
(5)电力和燃气双重削峰填谷随着天然气在能源结构中利用的比例逐步上升。
城市天然气基本用于采暖,冬夏城市的峰谷日差已经高达4~12倍。
燃气冷热电三联供制冷系统节能分析

燃气冷热电三联供制冷系统节能分析1. 引言1.1 燃气冷热电三联供制冷系统概述燃气冷热电三联供制冷系统是一种将燃气动力、供热系统与制冷系统相结合的综合能源系统,通过燃气内燃机发电产生的热量和电能来实现供热和制冷的双重功能。
这种系统利用了能源的多重利用,有效提高了能源利用效率,减少了对传统能源的依赖,具有节能环保的特点。
燃气冷热电三联供制冷系统包括燃气内燃机、余热锅炉、吸收式制冷机组等核心设备,通过燃烧燃气产生电能和热能,再利用余热进行供热,最后利用吸收式制冷机组将余热转化为制冷能力,实现了热电冷三联供的综合利用。
通过智能控制系统实现系统运行的优化调度,进一步提高了能源利用效率。
燃气冷热电三联供制冷系统在节能减排方面具有显著优势,能够有效降低能耗、减少环境负荷,是未来绿色能源系统发展的重要方向。
通过对其工作原理、节能特点、节能效果、节能措施以及节能案例的分析,可以更深入地了解和掌握这种先进的节能技术,为未来的能源转型和可持续发展提供重要参考。
2. 正文2.1 燃气冷热电三联供制冷系统工作原理燃气冷热电三联供制冷系统工作原理是通过综合利用燃气、蒸汽等能源,利用吸收式制冷技术,实现供暖、制冷和热水供应的一体化系统。
该系统由锅炉、制冷机组、换热器、输电线路等组成,通过协同工作,实现能源的高效利用。
燃气锅炉燃烧燃气产生热量,通过换热器将热量传递给水,将冷却水加热成蒸汽。
蒸汽经过蒸汽轮机驱动发电机产生电力,同时也供暖热水。
然后,蒸汽通过蒸发器将冷却水蒸发,吸收制冷剂。
制冷剂经过蒸发、压缩、冷凝、膨胀等过程实现制冷效果,将冷却水降温。
冷却水供暖循环系统,实现建筑物的供暖需求。
通过这样的工作原理,燃气冷热电三联供制冷系统实现了能源的高效利用,减少了能源的浪费,降低了能源消耗,实现了节能环保的目的。
2.2 燃气冷热电三联供制冷系统节能特点燃气冷热电三联供制冷系统具有高效能耗比。
通过优化系统设计和运行控制,系统可实现能源的最大化利用,降低能耗,提高能源利用效率,在传统供冷系统中,供热与供电是分开的,而三联供制冷系统则能够有效利用废热或废气发电,充分发挥能源的综合效益。
热电冷三联供系统节能环保效能分析

热电冷三联供系统节能环保效能分析热电冷三联供系统是热、电、冷联合供应的系统,具有节能、环保等优点。
本文将从节能、环保两个方面分析热电冷三联供系统的效能。
一、节能方面1. 减少能源浪费热电冷三联供系统是通过机械制冷、热泵等技术来制冷,以及通过余热发电来提供电力。
同时,系统还可以通过热水回收、废气回收等方式来回收能量。
这些措施都减少了能源的浪费,提高了能源的利用率。
2. 优化热力系统传统的供热系统通常采用锅炉加热的方式,存在着能源资源利用效率低的问题。
而热电冷三联供系统则可以通过采用余热回收、热泵等技术,将废温废热利用起来,提高了能源的利用效率,降低了能源消耗,实现了能源的节约和优化。
3. 节约空调能耗热电冷三联供系统可以通过有效利用冷热媒介来提供冷却与供热服务,从而降低了空调设备的耗能。
此外,该系统还可以采用智能化控制技术,根据室内外温度、湿度等因素来进行合理调控,减少了能耗。
二、环保方面1. 零废弃物排放热电冷三联供系统采用了清洁能源,如太阳能、风能等,减少了化石燃料的使用,从而减少了污染物的排放。
同时,该系统还采用了回收技术,使得能源得到了有效利用,废弃物排放减少了。
2. 减少温室气体排放传统的供热系统通常采用燃煤、燃油等非清洁能源,存在着大量温室气体的排放问题。
而热电冷三联供系统采用清洁能源,如太阳能、风能等,减少了污染物和温室气体的排放,有助于环保。
3. 可持续发展热电冷三联供系统采用清洁能源,有助于建立可持续的发展模式。
该系统通过有效利用可再生能源和储能技术,实现了节约能源、减少污染的目的,符合可持续发展的要求。
综上所述,热电冷三联供系统具有明显的节能、环保效益,逐渐得到了广泛的应用。
未来,该系统将更好地发挥其优势,为建立低碳、节能、环保的社会贡献力量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
%#### 总结
& 3’
!
"#$%&
& /’
& *+2 & ’ ’($)"
!
"#,)"
燃气 $ 蒸汽三联供系统的热力过程更加符合能量 的梯级利用原则 ! 通过溴化锂吸收式制冷循环和供热 循环的有机结合 ! 使系统内的低品位热量得到合理的 利用 " 在计算中 ! 我们发现 ! 系统里各部件的 火用效率和
./0!,1%2&% " 算例中 ! 假设有 ,2 台这样的制冷机同时
运行 ! 抽气流量为 ,3&1"+4" 5 ! 供热负荷取 3224" 5 " 燃机 出 力 ,%31678 ! 热 耗 率 ,2 9+:2;<" ;8$5 ! 排 气 流 量
6,21%6&;=" > ! 天然气热值 3+16&(,23;<" 4 % 在算例中 ! 假
火用损率是相互影响的 ! 用 火用方法分析热电冷联产是一
. +& %& !&
’&".’ ’&"01 ’+"+. ’+"#0
0&+!#+"# 0&%&+1"! 0&#!#&"# 0&0+#&"2
#’"’0 #’"’& #’"#% #’"%+
可见 ! 增大制冷机用的抽汽量可以 增 大 蒸 汽 轮 机 的 火用效率 ! 并且对整个系统的 火用效率不会构成太多的 影响 ! 故热电厂家可以针对全年不同的制冷负荷 ! 任意 的调整制冷用抽汽量 "
!
机电信息
气在燃气轮机中作功 ! 产生一部分高品位的电能 ! 接着 将燃气轮机排气送入余热锅炉中 ! 产生蒸汽以驱动汽 轮机进一步作功发电 ! 同时对汽轮机进行抽汽供热 ! 并 结合溴化锂吸收式制冷机产生冷水达到制冷效果 " 除 图上标注的一些条件外 ! 给出一些设备的效率 # 压气机 效率! !!""# ! 燃气透平效率! "!$%# ! 透平的机械 效 率 通过计算 ! 得出如表 , 中的数据所示的各装置的 火用 效率和 火用损率的大小情况 "
设制取冷量和热量后的凝水和乏汽凝结水的状态相 同 ! 都为 3&126 ) "
#$$$$ 火用 分析评价准则
火用分析是结合热力学第一定律 & 第二定律的一 种
根据表 , ! 作出 火用损分布图 ! 如图 % 所示 "
效率和 火用损率两种 "
火用效率是指能量装置在进行能量转换时 ! 被利 用
或获益的 火用值与输入或消耗的总 火用值之间的比值 ! 即
! ’(’,! "
整个三联供系统的 火用损失为 #
! /0!$’)/0!!12*0!!!2*0!$"2*0!%2*0!&’2*0!3’2*0!4"
系统总的 火用效率 #
%&#$$$$ 燃气系统中 ! 燃烧室的 火用损 占 了 整 个 三 联 供 系 !,! !/0!$’ #6
统总 火用损的 ::1&# ! 这跟燃气温度有一定的关系 " 因 此 ! 我们在设计燃烧室的结构时 ! 可以采用耐高温的材
?(.+,- 的比值 #
")
!/ /(.+,-
系统 火用效率和系统 火用损率存在这样的关系式 #
%&’$$$$ 通过分析可知 ! 溴化锂吸收式制冷机 & 燃机系统 &
换热器系统的 火用效率较低 !而燃机系统 &余热锅炉的 火用 损率较大 ! 由此可见 ! 燃气轮机系统是其中最不完善的 系统 ! 需要进行改善 ! 以提高整个三联供系统的完善程 度"
于 此 !作 者 试 图 结 合 算 列 !对 系 统 进 行 分 析 !并 提 出 几 点改进建议 "
!"""" 系统组成及计算参数
燃气 & 蒸汽联合循环热电冷三联供系统简化原理 图如图 $ 所示 "
#’++(,- ! #!% ’
注和重视% 其系统具有效率 高’可靠性强’建设周期短’ 环保效益明显等众多优点! 在空调负荷快速增长的东部 地区! 结合溴化锂吸收式制 冷技术! 可有效地调节电力 负荷的峰谷 " 当前的一些文献对该系 统的分析很少是基于热力学 第二定律的做功能力法的研 究 " 火用方法可从能量的数量 和质量两方面入手! 找出能 量转换过程的薄弱环节!基
, % 3 6 : + & " $
换热器的效率为! &’’$’# ! 制冷机 采 用 了 江 苏 双 良 公 司 ()*+! ,,+- 蒸汽型双效溴化锂吸收式制冷机组 ! 其
$"122# &"1,&# $%1&6# 6$1"2# &%12:# +21&$# :%1"6# %31&:# 6+1+2#
21&62# %$1&6%# :1&2&# 3+1,"$# ,%1%&:# 61263# 21:,6# 213",# :3162%#
!
!
’(5$’
!
料 !比 如 陶 瓷 材 料 !这 样 可 以 使 燃 气温度得到提高 ! 从而可以提升燃 烧效率 ! 降低此部分 火用损 "
火 用效率 2 3
专
题
论
述
"#$%&’ ()*+,$- ./"’%$&’%01
!"!#### 本例计算中 ! 余热锅炉的 火用
损率也较大 ! 虽然在这里余热锅炉 的出口蒸汽已属于过热蒸汽 ! 但过 热度并不是很大 ! 故 火用回收量也 不太高 " 采用双压 ! 甚至多压型余 热锅炉 ! 着手提高余热锅炉的效率
$ ! & $$!#’ #
排 烟 温 度 $%/ ’
/
(
+’/(,-********************+’++/&(,1 0 %&.’ #’!$(,#&+’ % .
#+ 压气机 (+ 冷凝器
%+ 燃烧室 *+ 热交换器
&+ 燃气轮机
++ 余热锅炉
)+ 溴化锂吸收式制冷机
如图 $ 所示 ! 该系统可分为燃机系统 ’ 蒸汽轮机系 统 ’ 余热锅炉系统 ’ 供热系统 ’ 溴化锂制冷机制冷系统 % 个子系统 " 该系统首先利用天然气燃烧产生的高温燃
表 +$$$$ 改变制冷机用的抽汽量产生的影响
制冷机台数
逆 ! 尤其是在发生器和吸收器内部 " 在完善装置设计的 同时 ! 合理选择热源温度是非常必要的 " 图 ! 显示了在 不同热源温度下 ! 制冷系统 火用效率的变化情况 " 图中的 &"’()* !+’&$ ( 差不多是饱和蒸汽状态了 ! 而其余各点均为过热蒸汽 ! 由此可见 ! 制冷系统 火用效率 是随着抽汽压力的降低而增加的 " 所以我们应该选取 较低的热源温度 ! 以提高其 火用效率 "
火用方法评价其经济性 "
& +( # 张 锐 !任萍 !黄振群" 电厂锅炉火用分析" 吉林电力 !+,,’!’+
& -’ %!%’!)
用目前已被作为一种有效的评
0 0 系统火用分析" 江苏理工大学学报 !+,,,!! & !( # 吴志刚等" . /
& +’ %!!’!*
价手段的当量热力系数来看 ! 吸收式制冷的当量热力 系数约为压缩式制冷的 %’! 倍 ! 可见 ! 溴化锂吸收式制 冷的经济效益也是很明显的 " 造成吸收式制冷系统的
!
!
专
题
论
述
"#$%&’ ()*+,$- ./"’%$&’%01
燃气&蒸汽联合循环热电冷三联供系统火 用分析
唐爱坤 ! 魏琪 ! 杨志坚 ! 王贞涛
( 江苏大学能源与动力工程学院 ! 江苏 镇江 #!#$!%)
摘
要 * 结合了热力学第一定律和第二定律 ! 通过燃机出力 $!&’#() 的燃气 + 蒸汽联合 循 环 热电冷三联供系统的算例 ! 计算了系统各组成部件的 火用效率和 火用损失 ! 从 火用分析的 角度 ! 考察了能量在其中的合理利用 ! 找出循环过程中的薄弱环节 ! 为系统进一步节能 工作的开展提供了科学依据 %
关键词 * 天然气 , 溴化锂吸收式制冷机 , 三联供 , 火用分析
!""# 年 电 力 供 应 紧 张 再 次 成 为 社 会 的 热 门 话 题 !
电煤的缺乏和价格纠纷 ! 以及居民生活用电比重上升 都使得这一现象变得越来越严重 " 随着# 西气东输 $ 工 程地不断深入进行 ! 如何提高天然气发电应用市场竞 争力 ! 也成了人们思考的另一个问题 % 作为综合节能 ! 提高天然气的利用效率的技术之一 ! 能够合理的梯级 利用能量的燃气 & 蒸汽联合循环热电冷三联供系统已 越来越多地受到各方面的关