新浙教版八年级上册数学期中考试试题及复习资料
2022-2023学年浙教新版八年级上册数学期中复习试卷(有答案)

2022-2023学年浙教新版八年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.下列图形是轴对称图形的是()A.B.C.D.2.在Rt△ABC中,∠C=90o,∠A=2∠B,则∠A=()A.30o B.45o C.60o D.70o3.下列说法中,不一定成立的是()A.如果a>b,那么a+c>b+c B.如果a+c>b+c,那么a>bC.如果a>b,那么ac2>bc2D.如果ac2>bc2,那么a>b4.如图,△ABE≌△ACF.若AB=5,AE=2,BE=4,则BF的长度是()A.4B.3C.5D.65.若一个三角形的三个内角的度数比为3:4:7,则这个三角形的最大内角的度数为()A.90°B.75°C.60°D.120°6.已知△ABC的周长是36cm,AB=AC,AD⊥BC,垂足为D,△ABD的周长是30cm,则AD的长是()A.6 cm B.8 cm C.12 cm D.20 cm7.已知在△ABC中,AB=AC,点D是AB的中点,过点D作DE⊥AB,与△ABC另一边交于点E,若∠A=α度,则∠AEB的度数为()A.α或180﹣2αB.180﹣2αC.90°或180﹣2αD.90°或α8.下列4个命题中,真命题是()A.a是实数,则也是实数B.一个数的算术平方根是正数C.直角都相等D.垂直于同一条直线的两条直线平行9.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BC=4,BE=2.5,则DE的长是()A.1B.1.5C.0.5D.210.已知△ABC,∠ACB=90°,AC=BC=4.D是AB的中点,P是平面上的一点,且DP =1,连接BP、CP,将点B绕点P顺时针旋转90°得到点B′,连接AB′,则AB′的最大值为()A.6B.2+2C.3+2D.4+二.填空题(共6小题,满分24分,每小题4分)11.不等式2x+4>0的解集是.12.如图,在Rt△ABC中,∠ACB=90°,以Rt△ABC的三边为边向外作正方形,正方形内的数字代表其面积,则S的值为.13.如图,点E在线段AC上,△ABC≌△DAE,若BC=4,DE=7,则EC=.14.已知等腰三角形的周长为16cm,若其中一边长为5cm.则底边长为cm.15.如图,已知在△ABC中,∠C=25°,点D在边BC上,且∠DAC=90°,AB=DC.则∠BAC的度数为°.16.如图,△ABC≌△EDC,∠C=90°,点D在线段AC上,点E在线段CB延长线上,则∠1+∠E=°.三.解答题(共7小题,满分66分)17.(6分)如图是5×5的正方形方格图,点A,B在小方格的顶点上,要在小方格的顶点确定一点,使△ABC是等腰三角形,在方格中画出满足条件的点C.(用C1、C2……表示)18.(8分)用不等式的性质解下列不等式.(1)x﹣3<1;(2)4x≥3x﹣1;(3)﹣x+2>5;(4)﹣3x﹣9>0.19.(8分)如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB垂足为E.求证:(1)CD=BE;(2)AB=AC+CD.20.(10分)如图,已知AB∥CD,AC平分∠DAB.求证:△ADC是等腰三角形.21.(10分)已知,△ABC是等边三角形,D、E分别是BC、AC边上的点,AE=CD,连接AD、BE相交于点P,BQ⊥AD于Q(1)求∠BPD的度数;(2)若PQ=3,PE=1,求AD的长.22.(12分)如图,在等腰三角形ABC中,AB=AC=5,AD是△ABC的角平分线,DE∥AC交AB于点E.(1)证明:AE=ED;(2)求线段DE的长.23.(12分)数学课上,李老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE DB(填“>”,“<”或“=”).(2)特例启发,解决问题解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在AB的延长线上,点D在直线BC上,且ED=EC.若△ABC的边长为2,AE=3,求CD的长.(请画出符合题意的图形,并直接写出结果)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、是轴对称图形,本选项正确;D、不是轴对称图形,本选项错误.故选:C.2.解:∵∠C=90o,∴∠A+∠B=90°,∵∠A=2∠B,∴2∠B+∠B=90°,∴∠B=30°,∴∠A=2∠B=60°,故选:C.3.解:根据不等式的性质,不等式两边同时加上或减去一个整式,不等号的方向不变.可知A不符合题意;根据不等式的性质,不等式两边同时加上或减去一个整式,不等号的方向不变.可知B 不符合题意;若c=0则不等式不成立,C符合题意;根据不等式的性质,不等式两边同时乘以或除以一个正数不等号的方向不变,可知D不符合题意.故选:C.4.解:∵△ABE≌△ACF,∴AE=AF=2,∴BF=AB﹣AF=3,故选:B.5.解:设一份为k°,则三个内角的度数分别为3k°,4k°,7k°,则3k°+4k°+7k°=180°,解得7k°=90°.所以最大的内角是90°.故选:A.6.解:根据题意,AB=AC,所以△ABC为等腰三角形,又AD⊥BC,即D为BC的中点,∵△ABC的周长是36cm,∴AB+AC+BC=36,即2AB+2BD=36,∵△ABD的周长是30cm,∴AB+BD+AD=30,∴AD=30﹣18=12(cm),故选:C.7.解:如图1,∵点D是AB的中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∴∠ABE=∠A=α,∴∠AEB=180°﹣∠A﹣∠ABE=180°﹣2α;如图2,∵AB=AC,∠BAC=α,∴∠B=∠C=(180°﹣α)=90°﹣,∵点D是AB的中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∴∠ABE=∠BAE=90°﹣,∴∠AEB=180°﹣∠B﹣∠BAE=α,综上所述,∠AEB的度数为α或180﹣2α,故选:A.8.解:A、a是实数,则不一定是实数,如a=0,则没有意义,不是实数,故本选项错误;B、一个数的算术平方根是非负数,故本选项错误;C、直角都相等,故本选项正确;D、在同一平面内,垂直于同一条直线的两条直线平行,故本选项错误.故选:C.9.解:延长AD交BC于N,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∵BE=2.5,∴BM=2.5,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∵BC=4,∴BN=2,∴NM=2.5﹣2=0.5,∴DM=2NM=1∴DE=EM﹣DM=2.5﹣1=1.5.故选:B.10.解:连接BB′,如图:由旋转可知:PB=PB′,∠BPB′=90°,∴∠PBB′=45°,∴BB′=PB,∴=,∵AC=BC,∠ACB=90°,∴∠ABC=45°,∴∠ABC=∠PBB′,∴∠ABB′=∠CBP,∵==,∴=,∴=,∴△ABB′∽△CBP,∴==,∴AB'=CP,∵PC≤CD+DP=2+1,∴点P落在CD的延长线与⊙D的交点处,PC的值最大,∴AB′≤(2+1)=4+,∴AB′的最大值为4+.故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:移项得:2x>﹣4,解得:x>﹣2,故答案为:x>﹣212.解:∵∠ACB=90°,∴BC2+AC2=AB2,即S+9=12,解得S=3.故答案为:3.13.解:∵△ABC≌△DAE,∴AE=BC=4,AC=DE=7,∴CE=AC﹣AE=7﹣4=3,故答案为:3.14.解:当5cm是等腰三角形的底边时,则其腰长是(16﹣5)÷2=5.5(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是16﹣5×2=6(cm),能够组成三角形.故该等腰三角形的底边长为:5或6cm.故答案为:5或6.15.解:取CD的中点E,连接AE,在Rt△ADC中,DE=EC,∴AE=CD=ED=EC,∴∠EAC=∠C=25°,∴∠AED=∠EAC+∠C=50°,∵AE=ED,∴∠EAD=∠EDA=65°,∵AB=DC,AE=CD,∴AB=AE,∴∠BAE=80°,∴∠BAC=∠BAE+∠EAC=105°,故答案为:105.16.解:∵△ABC≌△EDC,∴∠1=∠EDC,∵∠C=90°,∴∠EDC+∠E=90°,∴∠1+∠E=90°,故答案为:90.三.解答题(共7小题,满分66分)17.解:如图所示:C在C1,C2,C3,C4位置上时,AC=BC;C在C5,C6位置上时,AB=BC.18.解:(1)两边都加上3可得x<4;(2)两边都减去3x,得:x≥﹣1;(3)两边都减去2,得:﹣x>3,两边都乘以﹣3,得:x<﹣9;(4)两边都加上9,得:﹣3x>9,两边都除以﹣3,得:x<﹣3.19.(1)证明:∵在△ABC中,AC=BC,∠C=90°,∴△ABC是等腰直角三角形,∴∠B=45°,∵DE⊥AB,∴△BDE是等腰直角三角形,∴DE=BE.∵AD是△ABC的角平分线,∴CD=DE,∴CD=BE;(2)证明:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE.在Rt△ACD与Rt△AED中,∵,∴Rt△ACD≌Rt△AED(HL),∴AE=AC.∵由(1)知CD=BE,∴AB=AE+BE=AC+CD.20.证明:∵AB∥CD,∴∠BAC=∠DCA,∵AC平分∠DAB,∴∠BAC=∠DAC,∴∠DAC=∠DCA,∴△ADC是等腰三角形.21.解:(1)∵AB=AC,AE=CD,∠BAE=∠C=60°,在△ABE和△CAD中∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,∴∠BPQ=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°.(2)由(1)得△ABE≌△CAD,在Rt△BPQ中,∠BPQ=60°,∴∠PBQ=30°,∵PQ=3,∴BP=2PQ=6,又∵PE=1,∴BE=BP+PE=7,∴AD=BE=7.22.(1)证明:∵AD是△ABC的角平分线,∴∠CAD=∠BAD,∵DE∥AC,∴∠CAD=∠EDA,∴∠BAD=∠EDA,∴AE=ED;(2)解:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠EDA+∠BDE=90°,∠BAD+∠B=90°,∵∠BAD=∠EDA,∴∠BDE=∠B,∴BE=DE,∵AE=ED,∴DE=BE=AE,∵AB=AE+BE=5,∴DE=2.5.23.解:(1)如图1中,∵△ABC是等边三角形,AE=EB,∴∠BCE=∠ACE=30°,∠ABC=60°,∵ED=EC,∴∠D=∠ECD=30°,∵∠EBC=∠D+∠BED,∴∠D=∠BED=30°,∴BD=BE=AE.故答案为:=;(2)结论:AE=BD.理由如下:如图2中,作EF∥BC交AC于F.∵∠AEF=∠B=60°,∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF,∠AFE=60°,∴∠EFC=∠DBE=120°,∵AB=AC,AE=AF,∴BE=CF,∵∠D=∠ECB=∠CEF,且∠DBE=∠EFC,BE=CF,∴△DBE≌△EFC(AAS),∴BD=EF=AE,∴BD=AE,故答案为:=;(3)如图3中,当E在AB的延长线上时,作EF∥BC交AC的延长线于F,∵EF∥BC,∴∠BCE=∠CEF,∠ABC=∠AEF=60°,∠ACB=∠AFE=60°,∴△AEF是等边三角形,∴AE=EF=AF=3,∴BE=CF,∵DE=CE,∴∠EDC=∠DCE,∴∠EDC=∠CEF,且BE=CF,∠F=∠ABC=∠DBE=60°,∴△DBE≌△EFC(AAS)∴BD=EF=3,∴CD=DB+BC=3+2=5.。
浙教版初中数学八年级上册期中测试卷(标准难度)(含答案)

浙教版初中数学八年级上册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36分)1.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x−2,2x−1.若这两个三角形全等,则x等于( )B. 3C. 4D. 5A. 732.如图,点A,E,F,D在同一直线上,AB//CD,AB=CD,AE=DF,则图中全等三角形共有( )A. 1对B. 2对C. 3对D. 4对3.如图,在△ABC中,点D在AC上,连结BD,∠ABD=2∠DBC,∠ADB=2∠C,∠DBC=∠A,则图中等腰三角形共有( )A. 0个B. 1个C. 2个D. 3个4.如图,在△ABC中,AB=AC,若∠BAD=30∘,AD是BC上的高,AD=AE,则∠EDC的度数为( )A. 10∘B. 15∘C. 20∘D. 30∘5.已知关于x的不等式x−a≥1,若x=1是不等式的解,x=−1不是不等式的解,则a的取值范围为( )6.三个连续自然数的和小于15,这样的自然数组共有( )A. 6组B. 5组C. 4组D. 3组7.如图,已知∠BAD=∠CAE,AC=AE,下列添加的条件中不能证明△ABC≌△ADE的是( )A. DE=BCB. AB=ADC. ∠C=∠ED. ∠B=∠D8.两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB.在探究筝形的性质时,得到下列结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=12AC⋅BD.其中正确的有A. 0个B. 1个C. 2个D. 3个9.已知下列命题: ①若a+b=0,则a与b互为相反数; ②若a>0,则√a2=(√a)2; ③两直线平行,同位角相等; ④若a2+b2=0,则a=0,b=0.其中原命题与逆命题均为真命题的个数为( )A. 4B. 3C. 2D. 110.如图,在△MNP中,∠P=60∘,MN=NP,MQ⊥PN,垂足为Q,延长MN至点G,取NG=NQ,若△MNP的周长为a,MQ=b,则△MGQ的周长为( )A. 2a+12b B. 2b+12a C. a+b D. 2a+2b11.我们知道不等式1+x2<1+2x3+1的解集是x>−5,现给出另一个不等式1+(3x−1)2<1+2(3x−1)3+1,它的解集是( )12.规定[x]为不大于x的最大整数,如[3.6]=3,[−2.1]=−3,若[x+12]=3且[3−2x]=−4,则x的取值范围为( )A. 52<x<72B. 3<x<72C. 3<x≤72D. 52≤x<72第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.一次生活常识竞赛共有25道题,答对一题得4分,不答题得0分,答错一题扣2分.若小明有2道题没答,且竞赛成绩高于80分,则小明至多答错了______道题.14.已知不等式组{x≥−a−1 ①,−x≥−b ②在同一条数轴上表示不等式 ①, ②的解集如图所示,则b−a的值为.15.如图,等边△ABC的边长为12cm,M,N两点分别从点A,B同时出发,沿△ABC的边顺时针运动,点M的速度为1cm/s,点N的速度为2cm/s,当点N第一次到达B点时,M,N两点同时停止运动,则当M,N运动时间t=s时,△AMN为等腰三角形.16.如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为____________.三、解答题(本大题共9小题,共72分)17.在正方形网格中,网格线的交点叫做格点,三个顶点均在格点上的三角形叫做格点三角形.(1)在图1中计算格点三角形ABC的面积是______ ;(每个小正方形的边长为1)(2)△ABC是格点三角形.①在图2中画出一个与△ABC全等且有一条公共边BC的格点三角形;②在图3中画出一个与△ABC全等且有一个公共点A的格点三角形.18.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线交于点P,∠A=50°,求∠BPC的度数.19.如图,△ABC的两条角平分线BD,CE相交于点O,∠A=60°.求证:CD+BE=BC.20.如图,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.(1)求线段AD的长;(2)求△ABC的周长.21.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.22.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3780元,则该水果每千克售价至少为多少元?23.已知关于x的不等式组{x−a⩾05−2x>1(1)若a=−1,求不等式组的解集.(2)若不等式组只有四个整数解,求实数a的取值范围.24.某公司的1号仓库与2号仓库共存粮450吨,如果从1号仓库运出存粮的60%,从2号仓库运出存粮的40%,2号仓库所余粮食就比1号仓库所余粮食多30吨,从1号仓库、2号仓库调运存粮到加工厂的运价分别为120元/吨和100元/吨.(1)求1号仓库与2号仓库原来各存粮多少吨?(2)该公司将两个仓库中原来的存粮共调出300吨运往加工厂进行深加工,若2号仓库调出的粮食不少于1号仓库调出粮食的1.5倍,设从1号仓库调出m吨粮食到加工厂,求m的取值范围;(3)在(2)的条件下,若1号仓库到加工厂的运价可优惠a元/吨(15≤a≤30),2号仓库到加工厂的运价不变,当总运费的最小值为30360元时,请直接写出a的值.25.某超市购进A和B两种商品,已知每件A商品的进货价格比每件B商品的进货价格贵2元,用250元购买A商品的数量恰好与用200元购买B商品的数量相等.(1)求A商品的进货价格;(2)计划购进这两种商品共30件,且投入的成本不超过280元,那么最多购进多少件A商品?答案和解析1.【答案】B【解析】 【分析】此题主要考查了全等三角形的性质,关键是掌握性质定理,要分情况讨论.首先根据全等三角形的性质:全等三角形的对应边相等可得:3x −2与5是对应边,或3x −2与7是对应边,计算发现,3x −2=5时,2x −1≠7,故3x −2与5不是对应边. 【解答】解:∵△ABC 与△DEF 全等,当3x −2=5,2x −1=7,x =73,把x =73代入2x −1中,2x −1≠7,∴3x −2与5不是对应边,当3x −2=7时,x =3,把x =3代入2x −1中,2x −1=5, 故选B .2.【答案】C【解析】 【分析】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS 、HL 。
【八年级】八年级上册数学期中考试题(新浙教版有答案)

【八年级】八年级上册数学期中考试题(新浙教版有答案)来新浙江教育版第八次数学期中考试一、(每小题3分,共30分)1.众所周知△ ABC,ab=AC,∠ a=56°,高度BD和BC之间的夹角为()a.28°b.34°c.68°d.62°2.在△ ABC,ab=3,AC=4,将BC扩展到D,使CD=BC,连接ad,则ad长度的值范围为()a.1<ad<7b.2<ad<14c.2.5<ad<5.5d.5<ad<113.如图所示,在△ 美国广播公司,∠ C=90°,CA=CB,ad平分∠ 驾驶室,与BC相交于D,D⊥ 点E处的AB,AB=6,则△ 黛布是()a.4b.6c.8d.104.使用尺子和指南针使角度等于已知角度。
示意图如下∠a′o′b′=∠aob的依据是a、(s.s.s.)b.(s.a.s.)c.(a.s.a.)d.(a.a.s.5.举一个错误命题的反例:“任何角度的补码都不小于这个角度”。
正确的反例是()a.∠α=60⩝,∠α的补角∠β=120⩝,∠β>∠αB∠ α=90&ord∠ α互补角∠ β=900&ord∠ β= ∠ αc.∠α=100⩝,∠α的补角∠β=80⩝,∠β<∠αd、两个角相互补充(问题3)6.△abc与△abc中,条件①ab=ab,②bc=bc,③ac=ac,④∠a=∠a,⑤∠b=∠b,⑥∠c=∠c,则下列各组条件中不能保证△abc≌△abc的是()A.①②③B①②⑤C①③⑤D②⑤⑥7.如图,在△abc中,ab=ac,高bd,ce交于点o,ao交bc于点f,则图中共有全等三角形()a、 7对B.6对C.5对D.4对8.如图,在△abc中,∠c=90°,ac=bc,ad平分∠bac交bc于点d,de⊥ab于点e,若△deb的周长为10c,则斜边ab的长为()a、 8cb.10cc.12cd.20c9.如图,△abc与△bde均为等边三角形,ab<bd,若△abc不动,将△bde绕点b旋转,则在旋转过程中,ae与cd的大小关系为()a、 AE=CDB。
2022-2023学年浙教新版八年级上册数学期中复习试卷(含解析)

2022-2023学年浙教新版八年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.下列银行图标中,属于轴对称图形的是( )A.B.C.D.2.在长为2、3、4、5的四根木条中,任选三根能组成三角形的选法有( )A.1种B.2种C.3种D.4种3.已知a<b,则下列四个不等式中,不正确的是( )A.2a<2b B.﹣5a<﹣5bC.a﹣2<b﹣2D.1.2+a<1.2+b4.已知下列命题,其中真命题的个数( )(1)27的立方根是﹣3;(2)有理数与数轴上的点一一对应;(3)平方根是它本身的数有±1和0;(4)同位角相等;(5)等腰三角形两腰上的高相等;(6)若a2=b2,则a=b.A.4个B.3个C.2个D.1个5.如图,AD,BE,CF是△ABC的三条中线,以下结论正确的是( )A.BC=2AD B.AF=AB C.AD=CD D.BE=CF6.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( )A.4种B.3种C.2种D.1种7.已知平面直角坐标系上的动点A(x,y),满足x=1+2a,y=1﹣a,其中﹣2≤a≤3,有下列四个结论:①﹣3≤x≤7 ②﹣2≤y≤0 ③0≤x+y≤5 ④若x≤0,则0≤y≤3.其中正确的结论是( )A.①③B.①②C.②④D.③④8.如图,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,若CD=2,那么BD等于( )A.6B.4C.3D.29.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为7和15,则b的面积为( )A.8B.22C.24D.2610.[问题背景]①如图1,CD为△ABC的中线,则有S△ACD=S△BCD;②如图2,将①中的∠ACB特殊化,使∠ACB=90°,则可借助“面积法”或“中线倍长法”证明AB=2CD;[问题应用]如图3,若点G为△ABC的重心(△ABC的三条中线的交点),CG⊥BG,若AG×BC=16,则△BGC面积的最大值是( )A.2B.8C.4D.6二.填空题(共6小题,满分24分,每小题4分)11.如果有序数对(a,b)表示某栋楼房中a层楼b号房,那么有序数对(3,2)表示该栋楼房中的 层楼 号房,小明家在该栋楼的26层楼5号房,用有序数对表示为 .12.“等角对等边”的逆命题是 .13.如图,已知Rt△ABC,∠ABC=90°,BO是斜边AC上的中线.(1)若BO=3cm,则AC= cm;(2)若BO=6.5cm,AB=5cm,则BC= cm.14.等腰三角形一底角平分线与其对边所成的锐角为84°,则等腰三角形的顶角大小为 .15.有一条铁丝长a米,用去了一半少b米(已知a>2b),则铁丝还剩 米.16.已知,在△ABC中,AB=,∠C=22.5°,将△ABC翻折使得点A与点C重合,折痕与边BC交于点D,如果DC=2,那么BD的长为 .三.解答题(共7小题,满分66分)17.(6分)解不等式组:.18.(8分)已知点P(2a﹣1,3﹣a),且点P在第二象限.(1)求a的取值范围;(2)若点P到坐标轴的距离相等,求点P的坐标.19.(8分)如图,四边形ABCD和四边形ECGF都是正方形,边长分别为a和6,点D在边EC上.(1)求阴影部分图形的面积.(用含a的代数式表示)(2)当a=4时,计算阴影部分图形的面积.20.(10分)如图,AD平分∠BAC,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF.求证:(1)点D为EF的中点;(2)AD⊥BC.21.(10分)如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.22.(12分)如图,AE∥BC,AB=BC,CD⊥AB于点D,若∠ACD=24°,求∠CAE的度数.23.(12分)已知:等腰Rt△ABC,∠ACB=90°,AC=BC.(1)如图1,直线l过点B,过点A作AD⊥l于D,连接CD.①填空:∠CAD+∠CBD= °;②求的值.(2)如图2,∠CEB=45°,连接AE,求证:AE2=2CE2+BE2.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选:B.2.解:四根木条的所有组合:2,3,4和2,4,5和3,4,5和2,3,5;根据三角形的三边关系,得能组成三角形的有2,3,4和2,4,5和3,4,5.故选:C.3.解:根据不等式的性质可得:选项A:根据不等式的性质2,在a<b的两边同时乘以2,可得2a<2b,故A正确,不符合题意;选项B:根据不等式的性质3,在a<b的两边同时乘以﹣5,可得﹣5a>﹣5b,故B不正确,符合题意;选项C:根据不等式的性质1,在a<b的两边同时减去2,可得a﹣2<b﹣2,故C正确,不符合题意;选项D:根据不等式的性质1,在a<b的两边同时加上1.2,可得1.2+a<1.2+b,故D 正确,不符合题意;综上,只有选项B不正确.故选:B.4.解:27的立方根是3,故(1)中的命题是假命题;有理数与数轴上的点一一对应,故(2)中的命题是假命题;平方根是它本身的数只有0,故(3)中的命题是假命题;如果两直线不平行时,同位角就不相等,故(4)中的命题是假命题;等腰三角形两腰上的高相等,故(5)中的命题是真命题;若a2=b2,则a=±b,故(6)中的命题是假命题;故选:D.5.解:∵AD、BE、CF是△ABC的三条中线,∴AE=EC=AC,AB=2BF=2AF,BD=DC=BC,故A、C、D都不一定正确;B正确.故选:B.6.解:设租二人间x间,租三人间y间,则四人间客房7﹣x﹣y.依题意得:,解得:x>1.∵2x+y=8,y>0,7﹣x﹣y>0,∴x=2,y=4,7﹣x﹣y=1;x=3,y=2,7﹣x﹣y=2.故有2种租房方案.故选:C.7.解:∵x=1+2a,∴a=,而﹣2≤a≤3,∴﹣2≤≤3,∴﹣3≤x≤7,所以①正确;∵y=1﹣a,∴a=1﹣y,∴﹣2≤1﹣y≤3,∴﹣2≤y≤3,所以②错误;∵x+y=1+2a+1﹣a=2+a,∴a=x+y﹣2,∴﹣2≤x+y﹣2≤3,∴0≤x+y≤5,所以③正确;当x≤0,则1+2a≤0,解得a≤﹣,∴﹣2≤a≤﹣,∴﹣2≤1﹣y≤﹣,∴≤y≤3,所以④错误.故选:A.8.解:∵∠C=90°,∠B=30°,∴∠BAC=90°﹣30°=60°,又∵AD是∠BAC的平分线,∴∠BAD=∠CAD=30°,根据直角三角形的性质可知:AD=2CD=2×2=4,根据勾股定理可得:AC==2,又知,∠B=30°,则AB=2AC=4,则根据勾股定理可得:BC==6,则BD=BC﹣CD=6﹣2=4.故选:B.9.解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2=7+15=22,即S b=22,则b的面积为22,故选:B.10.解:[问题背景]①如图1,过点C作CH⊥AB于H,∵CD为△ABC的中线,∴AD=BD,∵S△ACD=AD×CH,S△BCD=×BD×CH,∴S△ACD=S△BCD;②延长CD至Q,使DQ=CD,连接BQ,∵AD=BD,∠ADC=∠BDQ,CD=DQ,∴△ACD≌△BQD(SAS),∴AC=BQ,∠ACD=∠Q,∴AC∥BQ,∴∠ACB=∠CBQ=90°,又∵BC=BC,∴△ACB≌△QBC(SAS),∴CQ=AB,∴AB=2CD;[问题应用]∵点G为△ABC的重心,∴BE,AD是△ABC的中线,∴AE=CE,CD=DB,S△ACD=S△ABC=S△BCE,∴S△AEG=S△BDG,∴S△AEG=S△CEG=S△CDG=S△BDG,∴S△AGC=2S△CDG,∴AG=2GD,∵CG⊥BG,∴当GD⊥BC时,△BGC面积有最大值,∴△BGC面积的最大值=×BC×GD=×BC×AG=4,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:根据题意有序数对(3,2)表示该栋楼房中的3层楼2号房,小明家在该栋楼的26层楼5号房,用有序数对表示为(26,5).故答案为:3,2;(26,5).12.解:“等角对等边”的逆命题为等边对等角.故答案为等边对等角.13.解:(1)∵Rt△ABC,∠ABC=90°,BO是斜边AC上的中线,BO=3cm,∴AC=2BO=6cm;(2)∵Rt△ABC,∠ABC=90°,BO是斜边AC上的中线,BO=6.5cm,∴AC=2BO=13cm,又∵AB=5cm,∴BC===12(cm).故答案为6;12.14.解:设∠ABC=∠C=2x°,∵BD平分∠ABC,∴∠ABD=∠CBD=x°,则∠A=180°﹣4x°,①当∠ADB=84°时,在△ABD中,x+180﹣4x+84=180,解得:x=28,∴∠A=180°﹣4×28°=68°;②当∠CDB=84°时,∵∠CDB=∠A+∠ABD,∴84=180﹣4x+x,解得:x=32,∴∠A=180°﹣4×32°=52°;综上所述:∠A的度数为52°或68°,故答案为:52°或68°.15.解:由题可得,铁丝还剩a﹣(a﹣b)=a+b(米),故答案为:(a+b).16.解:分两种情况:①当∠B为锐角时,如图所示,过A作AF⊥BC于F,由折叠可得,折痕DE垂直平分AC,∴AD=CD=2,∴∠ADB=2∠C=45°,∴△ADF是等腰直角三角形,∴AF=DF=,又∵AB=,∴Rt△ABF中,BF==1,∴BD=BF+DF=1+;②当∠ABC为钝角时,如图所示,过A作AF⊥BC于F,同理可得,△ADF是等腰直角三角形,∴AF=DF=,又∵AB=,∴Rt△ABF中,BF==1,∴BD=DF﹣BF=﹣1;故答案为:+1或﹣1.三.解答题(共7小题,满分66分)17.解:,由①得:x≤2,由②得:x<﹣3,∴不等式组的解集为x<﹣3.18.解:(1)∵点P(2a﹣1,3﹣a),且点P在第二象限,∴,解得:a<;(2)∵点P到坐标轴的距离相等,∴2a﹣1+3﹣a=0,解得:a=﹣2,故2a﹣1=﹣5,3﹣a=5,故点P的坐标为(﹣5,5).19.解:(1)阴影部分图形的面积为:a2+62﹣a2﹣(a+6)×6=a2﹣3a+18.(2)当a=4时,原式=×42﹣3×4+18=8﹣12+18=14.20.证明:(1)过点D作DH⊥AB于H,∵AD平分∠BAC,DE⊥AC,DH⊥AB,∴DE=DH,∵BF∥AC,DE⊥AC,∴BF⊥DF,∵BC平分∠ABF,DH⊥AB,DF⊥BF,∴DF=DH,∴DE=DF,∴点D为EF的中点;(2)∵BF∥AC,∴∠C=∠DBF,且∠CDE=∠BDF,DE=DF,∴△DCE≌△DBF(AAS)∴CD=BD,∵BC平分∠ABF,∴∠ABD=∠DBF,∴∠C=∠ABD,∴AC=AB,且CD=BD,∴AD⊥BC.21.解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.22.解:∵CD⊥AB,∴∠ADC=90°,∵∠ADC+∠CAD+∠ACD=180°,∠ACD=24°,∴∠CAD=180°﹣∠ADC﹣∠ACD=180﹣90°﹣24°=66°,∵AB=BC,∴∠BCA=∠CAD=66°,∵AE∥BC,∴∠CAE=∠BCA=66°.23.(1)解:①∵AD⊥l于D,∴∠ADB=90°,∵∠ACB=90°,∴∠CAD+∠CBD=360°﹣∠ADB﹣∠ACB=360°﹣90°﹣90°=180°,故答案为:180;②如图1,延长DB至M,使BM=AD,连接CM,由①可知,∠CAD+∠CBD=180°,∵∠CBM+∠CBD=180°,∴∠CAD=∠CBM,在△CAD和△CBM中,,∴△CAD≌△CBM(SAS),∴CD=CM,∠ACD=∠BCM,∴∠BCM+∠BCD=∠ACD+∠BCD=∠ACB=90°,即∠DCM=90°,∴△CDM是等腰直角三角形,DM==CD,∵DM=BD+BM=BD+AD,∴BD+AD=CD,∴==;(2)证明:如图2,过点C作CF⊥CE,使CF=CE,连接EF、BF,则△CEF是等腰直角三角形,∴EF2=CE2+CF2=2CE2,∠CEF=45°,∴∠BEF=∠CEF+∠CEB=45°+45°=90°,∴BF2=EF2+BE2=2CE2+BE2,∵∠ACB=90°,∠ECF=90°,∴∠ACB+∠BCE=∠ECF+∠BCE,即∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF,∴AE2=2CE2+BE2.。
浙教版八上数学期中试题(含答题卷和参考答案)

八年级上数学学科期中练习卷 2016.11一、 选择题(每题3分,12题,共36分)1.在一些汉字的美术字中,有的是轴对称图形。
下面四个美术字中可以看作轴对称图形的是( ▲ )A .B .C .D .2.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( ▲ )。
A .13cm ,12cm ,20cm B .8cm ,7cm ,15cm C .5cm ,5cm ,11cm D .3cm ,4cm ,8cm 3.下列句子是命题的是( ▲ )A .画∠AOB =45º B .小于直角的角是锐角吗?C .连结CD D .相等的角是对顶角4. 如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( ▲ )A .B .C .D .5. 如图所示,AB ∥CD ,EF ⊥BD ,垂足为E ,∠1=50°,则∠2的度数为( ▲ ) A. 50° B. 40° C. 45° D. 25°6.小冬不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去,能配一块与原来一样大小的三角形?应该带 ( ▲ ) A. 第1块 B. 第2块 C. 第3块 D. 第4块7.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30°,则∠C 的度数为( ▲ ) A .50° B .40° C .30° D .20°8.下列命题中,真命题的个数有( ▲ ) ①有一个角为60º的等腰三角形是等边三角形;第6题第5题 第7题②三边长为3,4,5的三角形为直角三角形;③等腰三角形的两条边长为2,4,则等腰三角形的周长为10或8; ④到线段两端距离相等的点在这条线段的垂直平分线上. A .4个 B .3个 C .2个 D .1个9.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD=8,则点P 到BC 的距离是( ▲ )A .2B .4C .6D .810.如图,△ABC 中,D 为AB 上一点,E 为BC 上一点,且AC=CD=BD=BE ,∠A=50°,则∠CDE 的度数为( ▲ )A .50°B .51°C .51.5°D .52.5°11.如图,正△ABC 的边长为4,过点B 的直线l ⊥AB ,且△ABC 与△A ′BC ′关于直线l 对称,D 为线段BC ′上一动点,则AD+CD 的最小值是( ▲ ). A .8 B. 82C . 43D . 4+312.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( ▲ ) ABC .32D .不能确定二、填空题(每题4分,6题,共24分)13.在Rt △ABC 中,∠C =Rt ∠,∠A =55º,则∠B = ▲ . 14.等腰三角形的顶角是50°,则它的底角是_____▲ _____.15.在直角三角形中,两条直角边的长分别是6和8,则斜边上的中线长是 ▲ 16.命题“全等三角形的面积相等”的逆命题是 ▲ .第9题 第10题第11题17.如图,在△ABC 中,分别以AC 、BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE 、BD 交于点O ,则∠AOB 的度数为 ▲ .18.如图,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60°得到线段AQ ,连接BQ .若PA=5,PB=12,PC=13,则四边形APBQ 的面积为 ▲ .二、解答题19.(8分)已知△ABC ,用直尺和圆规作下列图形:(保留作图痕迹并写出结论) (1)AC 边上的中线 (2)角平分线CM20.(8分)杨阳同学沿一段笔直的人行道行走,在由A 步行到达B 处的过程中,通过隔离带的空隙O ,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下: 如图,AB ∥OH ∥CD ,相邻两平行线间的距离相等,AC ,BD 相交于O ,OD ⊥CD .垂足为D ,已知AB=25米,请根据上述信息求标语CD 的长度.21. (10分)如图:已知在ABC △中,D 为BC 边的中点,过点D 作DE AB DF AC ⊥,⊥,且DE=DF ,垂足分别为E F ,.(1) 求证:BED CFD △≌△; (2) 求证:AB AC .EA F 第17题第18题22.(10分)如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连结EC .(1)求∠ECD 的度数; (2)若CE=12,求BC 长.23.(12分)如图,等边△ABC 中,AO 是∠BAC 的角平分线,D 为AO 上一点,以CD 为一边且在CD 下方作等边△CDE ,连结BE . (1) 求证:△ACD ≌△BCE ;(2) 延长BE 至Q, P 为BQ 上一点,连结CP 、CQ 使CP =CQ =10, 若BC =16时,求PQ 的长.24.(本题12分)问题引入:(1)如图24①,在△ABC 中,点O 是∠ABC 和∠ACB 平分线的交点,若∠A =α,则∠BOC =______(用α表示);如图24②,∠CBO =13∠ABC ,∠BCO =13∠ACB ,∠A =α,则∠BOC =______(用α表示).(2)如图24③,∠CBO =13∠DBC ,∠BCO =13∠ECB ,∠A =α,请猜想∠BOC =______(用α表示),并说明理由. 类比研究:(3)BO ,CO 分别是△ABC 的外角∠DBC ,∠ECB 的n 等分线,它们交于点O ,∠CBO =1n ∠DBC ,∠BCO =1n ∠ECB ,∠A =α,请猜想∠BOC =______.第23题第22题 OC BA图24②AO图24①O C B AED图24③2016学年八年级上数学期中答题卷2016.11 (全卷满分120分,考试时间90分钟)一、选择题:(本题有12小题,每小题3分,共36分)…………………………………………………………二、填空题:(本题有6小题,每小题4分,共24分)13.______________ 14. _____________15. ____________ 16. ____________ __ 17. _____________ 18. ____________三、解答题:(本题有6个小题,共60分)19.(每小题4分,共8分)已知△ABC,用直尺和圆规作下列图形:(保留作图痕迹并写出结论)(1)AC边上的中线(2)角平分线CM20. (本题8分)21. (每小题5分,共10分)(1)(2)22. (每小题5分,共10分)(1)(2)(2)24.(每空2分,第(2)题说理4分,共12分) (1) ; (2) ; 解:2016学年八年级上数学学科期中练习卷参考答案2016.11一、选择题(每题3分,共36分)1—5 DADAB 6—10 BCCBD 11—12 AB二、填空题(每题4分,共24分)13.35° 14. 65° 15. 5 16.面积相等的两个三角形全等。
新浙教版八年级上册期中考试数学试卷(解析卷)

新浙教版八年级上册期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.如图,已知△ABC中,AD,AE,AF分别是三角形的高线,角平分线及中线,那么下列结论错误的是()A.AD⊥BC B.BF=CF C.BE=EC D.∠BAE=∠CAE解:∵AD,AE,AF分别是三角形的高线,角平分线及中线,∴AD⊥BC,∠BAE=∠CAE,BF=CF,而BE=CE不一定成立,故选:C.2.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.3.如图,CD是Rt△ABC斜边上的高,∠A=40°,则∠1=()A.30°B.40°C.45°D.60°解:根据题意可知:∠ACD+∠A=90°,∠ACD+∠1=90°,∴∠1=∠A.∴∠1=40°,故选B.4.下列命题是假命题的为()A.如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形B.锐角三角形的所有外角都是钝角C.内错角相等D.平行于同一直线的两条直线平行解:A.如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形,是真命题;B.锐角三角形的所有外角都是钝角,是真命题;C.内错角相等,是假命题;D.平行于同一直线的两条直线平行,是真命题;故选:C.5.若a>b,则下列不等式成立的是()A.a﹣2<b﹣2B.﹣3a>﹣3b C.﹣a<﹣b D.解:A、a>b两边都﹣2可得a﹣2<b﹣2,错误;B、a>b两边都乘以﹣3可得﹣3a<﹣3b,错误;C、a>b两边都乘以﹣1可得﹣a<﹣b,正确;D、a>b两边都除以2可得>,错误;故选:C.6.在三角形ABC中,AB=7,BC=2,并且AC的长为奇数,则AC=()A.3B.5C.7D.9解:∵AB=7,BC=2,∴7+2=9,7﹣2=5,∴5<AC<9,∵AC为奇数,∴AC=7.故选:C.7.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB ≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS解:∵O是AA′、BB′的中点,∴AO=A′O,BO=B′O,在△OAB和△OA′B′中,∴△OAB≌△OA′B′(SAS),故选:A.8.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AD=4,BC=6,则AB的长为()A.2B.5C.4D.6解:∵在△ABC中,AB=AC,AD⊥BC,AD=4,BC=6,∴BD=DC=3,∴在Rt△ABD中,AB==5.故选:B.9.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC的外角∠ACD,则∠E=()A.40°B.36°C.20°D.18°解:∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠ABC,∴∠A=∠ACD﹣∠ABC,∵∠ABC=40°,∠ACD=76°,∴∠ACD﹣∠ABC=36°,∵BE平分∠ABC,CE平分∠ACD,∴∠ECD=∠ACD,∠EBC=∠ABC,∵∠ECD是△BCE的一个外角,∴∠ECD=∠EBC+∠E,∴∠E=∠ECD﹣∠EBC=∠ACD﹣∠ABC=18°.故选:D.10.如图,△ABC中,∠ABC和∠ACB的平分线交于点F,过点F作DE∥BC交AB 于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②∠DFB=∠EFC;③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的是()A.①②③B.①②③④C.①③D.①解:①∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB,∵BF是∠ABC的平分线,CF是∠ACB的平分线,∴∠FBC=∠DFB,∠FCE=∠FCB,∵∠DBF=∠DFB,∠EFC=∠ECF,∴△DFB,△FEC都是等腰三角形.∴①正确②∵△ABC不是等腰三角形,∴②∠DFB=∠EFC,是错误的;③∵△DFB,△FEC都是等腰三角形.∴DF=DB,FE=EC,即有DE=DF+FE=DB+EC,∴△ADE的周长AD+AE+DE=AD+AE+DB+EC=AB+AC.∴③正确,共2个正确的.④∵△ABC不是等腰三角形,∴∠ABC≠∠ACB,∴∠FBC≠∠FCB,∴BF=CF是错误的,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.用反证法证明“若a⊥c,b⊥c,则a∥b”时,第一步应先假设a不平行于b.解:用反证法证明“若a⊥c,b⊥c,则a∥b”时,第一步应先假设a不平行于b,故答案为:a不平行于b12.如图,数轴上表示的是关于x的不等式组中两个不等式的解集,则这个不等式组的解集为2≤x≤3.解:根据数轴得:,则这个不等式组的解集为2≤x≤3,故答案为:2≤x≤313.如图所示,△ABC 的两条中线AD ,BE 交于点F ,连接CF ,若△ABF 的面积为8,则△ABC 的面积为 24 .解∵AD 是中线,∴S △ABD =S △ADC ,S △BDF =S △FDC , ∴S △ABD ﹣S △BDF =S △ADC ﹣S △FDC , 即S △ABF =S △ACF , 同理得:S △ABF =S △BFC , ∴S △ABF =S △ACF =S △BFC , ∴3S △ABF =S △ABC =24, 故答案为:2414.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,则小正方形的面积为 (a ﹣b )2 (用含a 表示代数式)解:由图可知:小正方形的面积=(a ﹣b )2, 故答案为:(a ﹣b )2,15.如图,CA ⊥AB ,垂足为点A ,AB=8,AC=4,射线BM ⊥AB ,垂足为点B ,一动点E 从A 点出发以2/秒的速度沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED=CB ,当点E 运动 0,2,6,8 秒时,△DEB 与△BCA 全等.解:①当E在线段AB上,AC=BE时,△ACB≌△BED,∵AC=4,∴BE=4,∴AE=8﹣4=4,∴点E的运动时间为4÷2=2(秒);②当E在BN上,AC=BE时,∵AC=4,∴BE=4,∴AE=8+4=12,∴点E的运动时间为12÷2=6(秒);③当E在线段AB上,AB=EB时,△ACB≌△BDE,这时E在A点未动,因此时间为0秒;④当E在BN上,AB=EB时,△ACB≌△BDE,AE=8+8=16,点E的运动时间为16÷2=8(秒),故答案为:0,2,6,8.16.如图,Rt△ABC中,∠C=90°,AC=13.5,BC=9,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段CN的长为6.解:设CN=x,由折叠的性质可得DN=AN=13.5﹣x,∵D是BC的中点,∴CD=4.5,在Rt△NCD中,x2+4.52=(13.5﹣x)2,解得x=6.即CN=6.故答案为:6三.解答题(共8小题,满分66分)17.(6分)在数轴上表示下列不等式:(1)x>2(2)﹣2<x≤1.解:(1)将x>2表示在数轴上如下:(2)将﹣2<x≤1表示在数轴上如下:18.(8分)如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=34°,∠AEB=80°,求∠CAD的度数.解:∵BE为△ABC的角平分线,∴∠CBE=∠EBA=34°,∵∠AEB=∠CBE+∠C,∴∠C=80°﹣34°=46°,∵AD为△ABC的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=44°.19.(10分)已知:如图,AC=AB,∠ACD=∠ABD,求证:CD=BD.证明:连接BC,∵AC=AB,∴∠ACB=∠ABC;∵∠DCB=∠ACD﹣∠ACB,∠DBC=∠ABD﹣∠ABC,而∠ACD=∠ABD,∴∠DCB=∠DBC,∴CD=BD.20.(10分)已知三角形的三边长分别为a,b,c,且满足+|b﹣5|=0,求c的取值范围.解:∵+|b﹣5|=0,∴a﹣3=0,b﹣5=0,∴a=3,b=5,∴5﹣3<c<5+3,即2<c<8.21.(8分)如图是著名的赵爽弦图,它是由四个全等的直角三角形拼成,每个直角三角形的两直角边的长分别为a和b,斜边长为c,请你用它验证勾股定理.22.(10分)如图,△ABC的外角平分线AE与BC的延长线交于点E,∠E=20°,∠ACB=75°,求∠B的度数.解:∵∠E=20°,∠ACB=75°,∴∠CAE=75°﹣20°=55°,∵AE平分∠CAD,∴∠EAD=55°,∴∠B=∠EAD﹣∠E=55°﹣20°=35°.23.(6分)如图,已知∠MAN,点B在射线AM上.(Ⅰ)尺规作图:(i)在AN上取一点C,使BC=BA;(ii)作∠MBC的平分线BD,(保留作图痕迹,不写作法)(Ⅱ)在(Ⅰ)的条件下,求证:BD∥AN.(Ⅰ)解:(i)如图,点C为所作;(ii)如图,BD为所作;(Ⅱ)证明:∵AB=AC,∴∠A=∠BCA,∵BD平分∠MBC,∴∠MBD=∠CBD,∵∠MBC=∠A+∠BCA,即∠MBD+∠CBD=∠A+∠BCA,∴∠MBD=∠A,∴BD∥AN.24.(8分)如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.解:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=AC.。
浙教版八上数学期中精准复习题及答案

浙教版八上数学期中模拟题(请把必要的解答过程呈现出来!)班级姓名1.命题:直角三角形的两个锐角互余,的逆命题为___________________________________2.等腰三角形的一个外角等于100°,则这个等腰三角形顶角的度数为_________3.已知关于x 、y 的二元一次方程组⎩⎨⎧=++=-a y x a y x 523的解满足x >y ,且关于x 的不等式组⎪⎩⎪⎨⎧≥-<+731412212x a x 无解,那么所有符合条件的整数a 的个数为4.如图△ABC 中,点D 为BC 的中点,AB =13,AC =5,AD =6,则△ABC的面积是5.不等式组⎩⎨⎧<<+<<+6271x m x m 有解且解集是2<x <m +7,则m 的取值范围为6.如图,在△ABC 中,AD 是BC 边上的高,且∠ACB =∠BAD ,AE 平分∠CAD ,交BC 于点E ,过点E 作EF ∥AC ,分别交AB 、AD 于点F 、G .则下列结论:①∠BAC =90°;②∠AEF =∠BEF ;③∠BAE =∠BEA ;④∠B =2∠AEF ,其中正确的有______________(填序号)7(本题6分)解下列不等式(组)(1)2131x x ≤+-(2)⎪⎪⎩⎪⎪⎨⎧-≤-->+814311523x x x x 8.(本题8分)如图,折叠长方形纸片ABCD 的一边AD,使点D 落在BC 边上的点F 处,AE 为折痕已知AB=8,BC=10,则EC的长是多少?9(本题8分)如图,在△ABC ,AD ⊥BC ,AE 平分∠BAC 交BC 于点E ,过点E 作EF ⊥AC ,垂足为F .(1)若∠DAE =10°,∠AEF =50°,求∠B ,∠C 的度数;(2)若∠DAE =α,∠AEF =β,请直接用含α,β的式子表示∠B ,∠C.10(本题10分)如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以1.5cm/s的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,则经过秒后,点P与点Q第一次在△ABC的AC边上相遇?(在横线上直接写出答案,不必书写解题过程)11(本题12分)在△ABM中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AM=3,MC=2,AB=32,求△ABC中AB边上的高.(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.12.(12分)如图所示,在△ABC中,∠B=90°,AB=8cm,BC=6cm,P,Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为1cm/s,点Q从点B开始沿B→C→A方向运动,且速度为2cm/s,它们同时出发,设出发的时间为t(s).(1)出发2s后,求PQ的长.(2)出发几秒后,△PQB能第一次形成等腰三角形?(3)当点Q在边CA上运动时,求△BCQ成为等腰三角形时的运动时间.13(本题12分)一方有难,八方支援.“新冠肺炎”疫情来袭,除了医务人员主动请缨逆行走向战场外,众多企业也伸出援助之手,某公司用甲,乙两种货车向武汉运送爱心物资.两次满载的运输情况如表:甲种货车辆数乙种货车辆数合计运物资吨数第一次3431第二次2634(1)求甲、乙两种货车每次满载分别能运输多少吨物资;(2)由于疫情的持续,该公司安排甲乙货车共10辆进行第三次物资的运送,运送的物资不少于48.4吨,其中每辆甲车一次运送花费500元,每辆乙车一次运送花费300元,请问该公司应如何安排车辆最节省费用?1.答案:在一个三角形中有两个角互余,那么这个三角形是直角三角形解析:逆命题为:在一个三角形中有两个角互余,那么这个三角形是直角三角形2.答案:020或080解析:当这个外角是顶角的外角时,顶角为080,当这个外角是底角的外角时,顶角为020,3.答案:7解析:解方程组⎩⎨⎧=++=-a y x a y x 523得:⎩⎨⎧-=+=212a y a x ,∵关于x 、y 的二元一次方程组的⎩⎨⎧=++=-a y x a y x 523的解满足x >y ,∴2a +1>a ﹣2,解得:a >﹣3,解不式组⎪⎩⎪⎨⎧≥-<+731412212x a x ,得:2127-<≤a x 又∵关于x 的不等式组⎪⎩⎪⎨⎧≥-<+731412212x a x 无解,∴2127-≥a ,解得:a ≤4,即﹣3<a ≤4,∴所有符合条件的整数a 的个数为7个(﹣2,﹣1,0,1,2,3,4,共7个),故答案是:7.4.答案:30解析:延长AD 至E ,使ED =AD ,连接BD ,∵D 为BC 的中点,∴CD =BD ,在△ACD 和△EBD 中,⎪⎩⎪⎨⎧=∠=∠=BD CD EDB ADC ED AD ,∴△ACD ≌△EBD (SAS ),∴AC =BE ,S △ACD =S △EBD ,∴S △ABE =S △ABE ,∵AC =5,AD =6,∴BE =5,AE =12,∵AB =13,∴AB 2=BE 2+AE 2,∴△ABE 为直角三角形,且∠AEB =90°,∴S △ABE =21AE •BE =21×12×5=30,∴△ABC 的面积是30.5.答案:15-≤<-m 解:∵不等式组⎩⎨⎧=++=-ay x a y x 523的解集是2<x <m +7,∴m +1≤2且m +7≤6且m +7>2,解得:﹣5<m ≤﹣1,故答案是:15-≤<-m .6.答案:①③④.解析:∵AD ⊥BC ,∴∠ADC =90°,∴∠C +∠CAD =90°,∵∠BAD =∠C ,∴∠BAD +∠CAD =90°,∴∠CAB =90°,故①正确,∵∠BAE =∠BAD +∠DAE ,∠DAE =∠CAE ,∠BAD =∠C ,∴∠BAE =∠C +∠CAE =∠BEA ,故③正确,∵EF ∥AC ,∴∠AEF =∠CAE ,∵∠CAD =2∠CAE ,∴∠CAD =2∠AEF ,∵∠CAD +∠BAD =90°,∠BAD +∠B =90°,∴∠B =∠CAD =2∠AEF ,故④正确,无法判定∠AEF =∠BEF ,故②错误;故答案为:①③④.7.解析:(1)去分母得:()xx 3612≤+-去括号得:xx 3622≤+-移项合并得:4≥x (2)⎪⎪⎩⎪⎪⎨⎧-≤-->+814311523x x xx 解不等式x x ->+1523,得:58->x 解不等式81431-≤-x x 得:27≤x ∴原不等式组的解为:2758≤<-x8.解析:∵四边形ABCD为长方形,∴DC=AB=8cm;∠B=∠C=90°;由题意得:AF=AD=10,设EF=DE=xcm,EC=8-x;由勾股定理得:BF2=102-82,∴BF=6,∴CF=10-6=4;在Rt△EFC中,由勾股定理得:x2=42+(8-x)2,解得:x=5,EC=8-5=3,故答案为:3.9.解析:(1)∵AD⊥BC,∠DAE=10°,∴∠AED=∠ADE﹣∠DAE=80°,∵∠AEF=50°,∴∠FEC=180°﹣∠AEF﹣∠AED=50°,∵EF⊥AC,∴∠EAF=90°﹣∠AEF=40°,∠C=90°﹣∠FEC=40°,∵AE平分∠BAC,∴∠BAC=2∠EAC=80°,∵∠B+∠C+∠BAC=180°,∴∠B=180°﹣∠B﹣∠C=180°﹣80°﹣40°=60°;(2)∵AD⊥BC,∠DAE=α,∴∠AED=∠ADE﹣∠DAE=90﹣α,∵∠AEF=β,∴∠FEC=180°﹣∠AEF﹣∠AED=180﹣β﹣(90﹣α)=90+α﹣β,∵EF⊥AC,∴∠EAF=90﹣β,∠C=90°﹣∠FEC=β﹣α,∵AE平分∠BAC,∴∠BAC=2∠EAC=180﹣2β,∵∠B+∠C+∠BAC=180°,∴∠B=180°﹣∠BAC﹣∠C=α+β.10.解析:(1)设运动时间为t ,点Q 的速度为v ,∵点D 为AB 的中点,∴BD =3,∴BP =t ,CP =4﹣t ,CQ =vt ,由于△BPD ≌△CQP ,且∠B =∠C当BP =CQ 时,∴t =vt ,∴v =1,当BP =CP 时,t =4﹣t ,∴t =2,∴BD =CQ∴3=2v ,∴v =23,综上所述,点Q 的速度为1cm /s 或23cm /s (2)设经过x 秒后P 与Q 第一次相遇,依题意得:1.5x =x +2×6,解得:x =24(秒)此时P 运动了24×1=24(cm )又∵△ABC 的周长为16cm ,24=16+8,∴点P 、Q 在AC 边上相遇,即经过了24秒,点P 与点Q 第一次在AC 边上相遇.故答案为2411.解析:(1)∵∠ABM =45°,AM ⊥BM ,∴AM =BM =AB cos45°=3,∵MC =2,∴BC =5,∴AC =13322222=+=+CM AM ,∴△ABC 中AB 边上的高=2252353=⨯=⨯AB BC AM ;(2)延长EF 到点G ,使得FG =EF ,连接BG .⎪⎩⎪⎨⎧=∠=∠=AM BM AMC BMD MC DM ,∴△BMD ≌△AMC (SAS ),∴AC =BD ,又∵CE =AC ,∴BD =CE ,⎪⎩⎪⎨⎧=∠=∠=FE FG EFC BFG FC BF ,∴△BFG ≌△CFE (SAS ),∴BG =CE ,∠G =∠E ,∴BD =CE =BG ,∴∠BDG =∠G =∠E.12.解析:(1)cm BQ 422=⨯=,cm AP AB BP 6128=⨯-=-=,∵090=∠B ,cm BP BQ PQ 13222=+=,(2),8,2t BP t BQ -==∴tt -=82解得:38=t ,∴出发s 38后,△PQB 能第一次形成等腰三角形;(3)①如图1所示,当BQ CQ =时,CBQ C ∠=∠,∵0090,90=∠+∠∴=∠ABQ CBQ ABC ,∴090=∠+∠C A ,∴,5,,cm AQ CQ AQ BQ ABQ A ==∴=∴∠=∠∴cm CQ BC 11=+,∴()s t 5.5211=÷=,②如图2所示:当BC CQ =时,cm CQ BC 12=+,∴()s t 6212=÷=③如图3所示:当BQ BC =时,过点B 作AC BE ⊥于点E,∵()cm BC AB AC 10682222=+=+=,∴()cm AC BC AB BE 5241086=⨯=⋅=,∴()cm BE BC CE 51852462222=⎪⎭⎫ ⎝⎛-=-=,∴()()cm CQ BC cm CE CQ 2.13,2.72=+∴==∴()s t 6.622.13=÷=,综上所述,当t 为()s 5.5或()s 6或()s 6.6时,△BCQ 为等腰三角形3.解析:(1)设甲、乙两种货车每次满载分别能运输x 吨和y 吨物资,根据题意得:⎩⎨⎧=+=+34623143y x y x ,解得⎩⎨⎧==45y x ,答:甲、乙两种货车每次满载分别能运输5吨和4吨物资;(2)设安排甲货车z辆,乙货车(10﹣z)辆,根据题意得,5z+4(10﹣z)≥48.4,解得,z≥8.4,∵x为整数,z≤10,∴x=9或10,设总运费为w元,根据题意得,w=500z+300(10﹣z)=200z+3000,∵200>0,∴w随z的增大而增大,∴当z=9时,w的值最小为w=200×9+3000=4800,答:该公司应如何甲货车9辆,乙货车1辆最节省费用.。
(完整word版)浙教版八年级上册数学期中难题复习

浙教版八年级上册期中一、选择1. 小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标,,,),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带去.A. 第块B. 第块C. 第块D. 第块2. 已知等腰三角形的一个外角等于,则它的顶角是A. B. C. 或 D. 不能确定3. 不等式的非负整数解有个.A. B. C. D. 无数4. 以下列各数为边长,不能组成直角三角形的是A. ,,B. ,,C. ,,D. ,,5. 如图,已知,求作一点,使到的两边的距离相等,且,下列确定点的方法正确的是A. 为,两角平分线的交点B. 为,两边上的高的交点C. 为,两边的垂直平分线的交点D. 为的角平分线与的垂直平分线的交点6. 下列命题中,属于假命题的是A. 三角形中至少有一个角大于B. 如果三条线段长分别为,,,那么这三条线段能组成三角形C. 三角形的外角等于与它不相邻的两个内角的和D. 如果一个三角形是轴对称图形,那么这个三角形一定是等腰三角形7. 如图,在中,,,,若,则的度数为A. B. C. D.8. 已知方程组:的解,满足,则的取值范围是A. B. C. D.9. 如图,中,,点,分别是,的中点,在上找一点,使最小,则这个最小值是A. B. C. D.10. 如图,,,,点,为边上的两点,且,连接,,则下列结论:① ;② 为等腰三角形;③ ;④ ,其中正确的有个.A. B. C. D.二、填空题11. 在中,,,,在射线上一动点,从点出发,以厘米每秒的速度匀速运动,若点运动秒时,以,,为顶点的三角形恰为等腰三角形,则所用时间为秒.12. 在中,,,则的长的取值范围是.13. 如图,用尺规作图作“一个角等于已知角”的原理是:因为,所以.由这种作图方法得到的和全等的依据是(写出全等判定方法的简写).14. 直角三角形两直角边长为和,则此直角三角形斜边上的中线的长是.15. 若关于的一元一次不等式组无解,则的取值范围为.16. 如图,三边的中线,,的公共点为,若,则图中阴影部分的面积是.三、解答题17. 解下列不等式(组),并把解集表示在数轴上.(1);(2)18. 如图,在中,.(1)用尺规在边上求作一点,使(不写作法,保留作图痕迹);(2)连接,若,时,试求点到边的距离.19. 如图,在中,,取点与点,使得,,连接与交于点.求证:(1);(2).20. 在中,,一边上高为,求底边的长(注意:请画出图形).21. 如图,中,,,的垂直平分线交于,为垂足,连接.(1)若,求长;(2)求的度数.22. 随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为元,元的A,B两种型号的净水器,下表是近两周的销售情况:(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于元的金额采购这两种型号的净水器共台,求A种型号的净水器最多能采购多少台?(3)在()的条件下,公司销售完这台净水器能否实现利润为元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23.如图(),,,,.点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动.它们运动的时间为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B ′C ′D ′O ′A ′ODC BA(第4题)宏夏学堂新浙教版八上数学期中考试一、选择题(每小题3分,共30分)1.已知在△ABC 中,AB =AC ,∠A =56°,则高BD 与BC 的夹角为( )A .28°B .34°C .68°D .62°2.在△ABC 中,AB =3,AC =4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为( )A .1<A D <7B .2<A D <14C .2.5<AD <5.5 D .5<A D <113.如图,在△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,D E ⊥AB 于点E ,且AB =6,则△DEB 的周长为( )A .4B .6C .8D .10 4.用直尺和圆规作一个角等于已知角的示意图如下,则说明 ∠A ′O ′B ′=∠AOB 的依据是 A .(S .S .S .)B .(S .A .S .) C .(A .S .A .)D .(A .A .S .5. 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( ) A.∠α=60º,∠α的补角∠β=120º,∠β>∠α B.∠α=90º,∠α的补角∠β=900º,∠β=∠α C.∠α=100º,∠α的补角∠β=80º,∠β<∠αD.两个角互为邻补角 (第3题)6. △ABC 与△A´B´C ´中,条件①AB = A´B´,②BC = B´C´,③AC =A´C´,④∠A=∠A´,⑤∠B =∠B´,⑥∠C =∠C´,则下列各组条件中不能保证△ABC ≌△A´B´C´的是( )A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥7.如图,在△ABC 中,AB =AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形( )A .7对B .6对C .5对D .4对8.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,D E ⊥AB 于点E ,若△DEB 的周长为10cm ,则斜边AB 的长为( )A .8 cmB .10 cmC .12 cmD . 20 cm9.如图,△ABC 与△BDE 均为等边三角形,A B <BD ,若△ABC 不动,将△BDE 绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为( )A .AE =CDB .A E >CDC .A E <CD D .无法确定10.已知∠P =80°,过不在∠P 上一点Q 作QM ,QN 分别垂直于∠P 的两边,垂足为M ,N ,则∠Q 的度数等于( )A .10°B .80°C .100°D .80°或100°CH EDC B A一、填空题(每小题2分,共20分)11.如图,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 . 12.如图,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌△ ,理由是 ,△ABE ≌△ ,理由是 .(第1题) (第2题) (第4题)13.已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是 cm. 14.如图,AD 、A´D´分别是锐角△ABC 和△A´B´C´中BC 与B´C´边上的高,且AB = A´B´,AD = A´D´,若使△ABC ≌△A´B´C´,请你补充条件 (只需填写一个你认为适当的条件)15. 若两个图形全等,则其中一个图形可通过平移、 或 与另一个三角形完全重合. 16. 如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC +∠DFE =___________度(第16题) (第17题) (第18题)17.已知:如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,则DN +MN的最小值为__________.18.如图,在△ABC 中,∠B =90o ,D 是斜边AC 的垂直平分线与BC 的交点,连结AD ,若 ∠DAC :∠DAB =2:5,则∠DAC =___________.19.等腰直角三角形ABC 中,∠BAC =90o ,BD 平分∠ABC 交AC 于点D ,若AB +AD =8cm ,则底边BC上的高为___________.20.锐角三角形ABC 中,高AD 和BE 交于点H ,且BH =AC ,则∠ABC =__________度.(第19题) (第20题)MND CBADC B A EDCBAEA BD FC三、解答题(每小题5分,共30分)21.如图,点E 在AB 上,AC =AD ,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为 ,你得到的一对全等三角形是∆ ∆≅ . 22.如图,EG ∥AF ,请你从下面三个条件中再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况),并给予证明.①AB =AC ,②DE =DF ,③BE =CF , 已知:EG ∥AF , = , = , 求证: 证明:(第22题)23. 如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选择3个作为题设,余下的1个作为结论,写一个真命题,并加以证明. ①AB =DE ,②AC =DF ,③∠ABC =∠DEF ,④BE =CF(第23题)24. 如图,四边形ABCD 中,点E 在边CD 上.连结AE 、BF ,给出下列五个关系式:①AD ∥BC ;②DE =CE ③. ∠1=∠2 ④. ∠3=∠4 . ⑤AD +BC =AB 将其中的三个关系式作为假设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题,书写形式如:如果……,那么……,并给出证明; (2)用序号再写出三个真命题(不要求证明); (3)真命题不止以上四个,想一想就能够多写出几个真命题EDAC 4321FB25.已知,如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E , DE =FE , AB ∥FC . 问线段AD 、CF 的长度关系如何?请予以证明.26.如图,已知ΔABC 是等腰直角三角形,∠C =90°.(1)操作并观察,如图,将三角板的45°角的顶点与点C 重合,使这个角落在∠ACB 的内部,两边分别与斜边AB 交于E 、F 两点,然后将这个角绕着点C 在∠ACB 的内部旋转,观察在点E 、F 的位置发生变化时,AE 、EF 、FB 中最长线段是否始终是EF ?写出观察结果.(2)探索:AE 、EF 、FB 这三条线段能否组成以EF 为斜边的直角三角形?如果能,试加以证明.四、探究题 (每题10分,共20分)27.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.28.如图a ,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE.OP AM N E B C DF A CE F B D图① 图② 图③(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a中的△ABC绕点C旋转一定的角度,请你画山一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现).ACF BE ACFB 图a 图b参考答案一、1.∠DBE , CA 2.△ACE , SAS , △ACD , ASA (或SAS )3. 64.CD =C´D´(或AC =A´C´,或∠C =∠C´或∠CAD =∠C´A´D´)5.平移,翻折6. 907. 108. 20º9.248- 10. 45二、11. A 12. D 13. B 14.A 15.C 16.C 17.A 18.B 19.A 20.D三、21.可选择BD BC DAB CAB DE CE =∠=∠=、、等条件中的一个.可得到△ACE ≌△ADE 或△ACB≌△ADB 等.22.结合图形,已知条件以及所供选择的3个论断,认真分析它们之间的内在联系 可选①AB =AC ,②DE =DF ,作为已知条件,③BE =CF 作为结论;推理过程为:∵EG ∥AF ,∴∠GED =∠CFD ,∠BGE =∠BCA ,∵AB =AC ,∴∠B =∠BCA , ∴∠B =∠BGE ∴BE =EG ,在△DEG 和△DFC 中,∠GED =∠CFD ,DE =DF ,∠EDG =∠FDC ,∴△DEG ≌△DFC ,∴EG =CF ,而EG =BE ,∴BE =CF ;若选①AB =AC ,③BE =CF 为条件,同样可以推得②DE =DF , 23.结合图形,认真分析所供选择的4个论断之间的内在联系由④BE =CF 还可推得BC =EF ,根据三角形全等的判定方法,可选论断:①AB =DE ,②AC =DF ,④BE =CF 为条件,根据三边对应相等的两个三角形全等可以得到:△ABC ≌△DEF ,进而推得论断③∠ABC =∠DEF ,同样可选①AB =DE ,③∠ABC =∠DEF ,④BE =CF 为条件,根据两边夹角对应相等的两个三角形全等可以得到:△ABC ≌△DEF ,进而推得论断②AC =DF . 24. (1)如果①②③,那么④⑤证明:如图,延长AE 交BC 的延长线于F 因为AD ∥BC 所以 ∠1=∠F 又因为∠AED =∠CEF ,DE =EC 所以△ADE ≌△FCE ,所以AD =CF ,AE =EF 因为∠1=∠F ,∠1=∠2 所以∠2=∠F 所以AB =BF .所以∠3=∠4 所以AD +BC =CF +BC =BF =AB(2)如果①②④,那么③⑤;如果①③④,那么②⑤;如果①③⑤,那么②④. (3) 如果①②⑤,那么③④;如果②④⑤,那么①③;如果③④⑤,那么①②.25. (1)观察结果是:当45°角的顶点与点C 重合,并将这个角绕着点C 在重合,并将这个角绕着点C在∠ACB 内部旋转时,AE 、EF 、FB 中最长的线段始终是EF .(2)AE 、EF 、FB 三条线段能构成以EF 为斜边的直角三角形,证明如下:在∠ECF 的内部作∠ECG =∠ACE ,使CG =AC ,连结EG ,FG ,∴ΔACE ≌ΔGCE ,∴∠A =∠1,同理∠B =∠2,∵∠A +∠B =90°,∴∠1+∠2=90°,∴∠EGF =90°,EF 为斜边.四、27.(1)FE 与FD 之间的数量关系为FE =FD (2)答:(1)中的结论FE=FD 仍然成立图① 图② 证法一:如图1,在AC 上截取AG =AE ,连接FG ∵ ∠1=∠2,AF =AF ,AE =AG ∴ △AEF ≌△AGF∴ ∠AFE =∠AFG ,FG =FE ∵ ∠B=60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线 ∴ ∠2+∠3=60°,∠AFE =∠CFD =∠AFG =60°∴ ∠CFG =60° ∵ ∠4=∠3,CF =CF ,∴ △CFG ≌△CFD ∴ FG =FD ∴ FE =FD 证法二:如图2,过点F 分别作F G ⊥AB 于点G ,FH ⊥BC 于点H ∵ ∠B =60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线 ∴ ∠2+∠3=60° ∴ ∠GEF =60°+∠1,FG =FH∵ ∠HDF =∠B +∠1 ∴ ∠GEF =∠HDF ∴ △EG F ≌△DHF ∴ FE =FD28. (1)AF =BE .证明:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACF =∠BCE =60.∴△AFC ≌△BEC . ∴AF =BE . (2)成立. 理由:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形, ∴AC =BC ,CF =CE ,∠ACB =∠FCE =60°. ∴∠ACB -∠FCB =∠FCE -∠FCB. 即∠ACF =∠BCE . ∴△AFC ≌△BEC . ∴AF =BE . (3)此处图形不惟一,仅举几例.如图,(1)中的结论仍成立.图⑤(4)根据以上证明、说明、画图,归纳如下:如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE.。