建筑结构大震下弹塑性分析.ppt

合集下载

建筑结构抗震弹塑性分析

建筑结构抗震弹塑性分析

• 多自由度体系与单自由度体系之间存在一定的关系,这意味着结构 的反应主要由单一振型控制;
• 结构沿高度的变形形状可由某一形状向量控制,并且在整个结构反
应过程中,该形状向量保持不变。
– 这两个假定都是不严格正确的,但很多学者研究表明:对于反应主要由第一振 型控制的结构,Pushover 分析方法可以准确、简便地评估结构的抗震性能。
① 你知道自己设计的结构到底能抵抗多大的地震吗? ② 你知道自己设计的结构在大震时什么地方先破坏吗? ③ 你知道自己设计的结构是先发生剪切破坏还是弯曲破坏 ?
④ 结构屈服后还能抵抗多大的地震力和变形· ?
⑤ 你用实配钢筋验算过“强剪弱弯”、“强柱弱梁”吗?
⑥ 大震下要结构要保持弹性需要多大截面和配筋?
Pushover方法的基本原理

Pushover方法的发展
– 静力弹塑性分析 (Pushover)方法最早是 1975年由 Freeman 等提出的,以 后虽有一定发展,但未引起更多的重视; – 九十年代初美国科学家和工程师提出了基于性态的设计方法,引起了日 本和欧洲同行的极大兴趣,Pushover方法随之重新激发了广大学者和设 计人员的兴趣,纷纷展开各方面的研究。 – 一些国家抗震规范也逐渐接受了这一分析方法并纳入其中,如ATC-40
Pushover方法的基本原理

Pushover方法的基本原理
– 其优点突出体现在:较底部剪力法和振型分解反应谱法,它考虑了结构 的弹塑性特性;较时程分析法,其输入数据简单,工作量较小。 – pushover分析还只是一种近似而且是基于静力荷载进行的,因此它不能
精确的代替动力时程分析方法,它不能检测到结构在强烈地震中可能发
位移时停止荷载递增,最后在合作终止状态对结构进行抗震性能评估(

某超高层结构罕遇地震弹塑性分析

某超高层结构罕遇地震弹塑性分析

图1 钢筋(钢材)本构关系曲线图2 混凝土本构关系曲线图3 一维纤维束单元452021.09 |567图5 SAUSAGE 计算模型6 多波频谱特性Chl_Talwan-03_NO_2525Darfield_NewZealand_NO_6897,TG(0.49)人工波1各地震波平均反应谱壳单元节点分布钢筋层壳单元中面截面积分点472021.09 |技术探讨2.6.2结构基底剪力由大震弹塑性及大震弹性基底剪力响应时程曲线可以发现各条波弹塑性分析剪力与弹性时程结果趋势大致相符,而幅值略低于弹性,说明大震下耗能构件达到塑性屈服后结构刚度降低,地震响应减小。

时程分析所得到的底部剪力最大值如表2所示。

罕遇地震弹性与弹塑性分析基底剪力对比给出了结构罕遇地震弹塑性分析与弹性分析基底剪力的比较。

从表中可以看出,由于结构在罕遇地震作用下混凝土发生损伤,出现了塑性变形,结构的侧向刚度随之减弱,使得基底剪力较弹性分析的基底剪力小。

整体结构基底剪力弹塑性的结果约是弹性结果的76%~85%。

2.6.3结构构件的抗震性能选取起控制作用的天然波Tottori_Japan_NO_6274提取计算结果,得到核心筒剪力墙混凝土框架柱混凝土的损伤,见图7、图8。

由上图可以看出整栋楼的绝大部分墙体轻微损坏,底部加强部位的部分楼层,核心筒剪力墙出现轻微~轻度损伤,且主要发生在核心筒外墙端部和转角处;底部加强部位以上楼层,仅在核心筒收墙处出现少量的重度损坏;剪力墙连梁耗能充分,大部分连梁损伤程度为中度~重度损伤。

绝大部分框架柱无损坏;仅有角柱截止处及顶部混凝土柱截止处的少量柱钢筋进入塑性,具有较大安全储备。

结语根据对本工程在罕遇地震作用下的非线性时程分析计算结果,可得出以下结论:(1)在地震波作用下,结构层间位移满足规范规定,结构整体可以满足“大震不倒”的设防要求。

(2)弹塑性分析得到的基底剪力与弹性分析得到的基底剪力的比值在0.76~0.85范围内,说明震后结构刚度未发生剧烈下降,结构抗震性能较好。

建筑弹塑性分析PUSHOVER

建筑弹塑性分析PUSHOVER

2.需求谱法
结构抗震性能需求谱是在给定地震作用下, 不同周期结构的承载力和位移响应的需求 值。
先将能力曲线转化为A-D格式,能力谱曲线
将不同的周期结构的加速度响应需求Sa和位
移响应需求Sd也在A-D坐标系下给出,由此得
到的Sa-Sd关系曲线即为需求谱。对于弹性结
构,弹性谱加速度需求Sa可以采用地震弹性
其中 Dntqnt/,n D表n 示t 一个对应原结构
第n阶振型的单自由度体系在地震作用 下u g ( t ) 的位移响应,圆频率和阻尼比分别为 和 n 。
从而可n 求得结构第n阶振型的位移,内力,层
间位移等。
对前N阶振型都采用上述方法求算其最大响应 量,并采用某种方法进行组合(SASS法或 CQC法)—振型分解反应谱法。
Fass
T
ass
fs(D,signD)
aTssm ;对于地震响应由结构振型
向 量量成正控a s 比s制a s的s的荷弹载塑进性行结推构覆,,仍即采:用振型sa向ss mass
得到
Fass
Vb Mass
uroof
,DБайду номын сангаасass
roof ass
u u V
V
b
基底剪力, r o o顶f 点位移。 — r o 的o f 关系曲线称为
b
“结构的能力曲线”。或“推覆曲线”
为便于评价结构抗震性能是否达到要求,还
可以按照单阶振型反应谱法将推覆曲线上
各店的承载力和位移转化为谱加速度与谱 位移的关系曲线,得到结构的能力谱曲线,
即 S a S格d 式能力谱曲线。
Sa
Vb M
,
Sd
uroof
roof

第13章-结构的弹塑性分析

第13章-结构的弹塑性分析

弹性动力时程分析。

弹塑性分析的目的和基本方法。

罕遇大震下结构性能的评估
选取地震波实测地震波——特征参数
保留的旧版地震波库人工输入地震波选择
抗倒塌分析图
4.1。

弹塑性分析软件整体功能简介
4.3。

弹塑性静力分析软件PUSH 工程实例——高层混凝土结构
高层钢结构 4.4。

弹塑性静力分析软件PUSH工程实例
单层钢框架模型
9层钢框架模型
弹塑性动力时程分析参数选择
5.2。

弹塑性动力分析软件EPDA工程实例
2008奥运会国家主体育场看台原五棵松体育场(2008奥运会篮球馆)
某高层混凝土结构2008奥运会国家主体育场罩棚(鸟巢)
某大体量超高层混凝土结构某高层加固工程
5.3。

弹塑性动力分析软件EPDA验证
单层钢框架模型
9层钢框架模型。

第四弹塑性变形验算剖析

第四弹塑性变形验算剖析

如果任意某层
a(i) 0.8 则认为沿高度分布是不均匀的。
薄弱楼层弹塑性层间位移的计算:
u p p ue
其中
ue
(i)
Ve (i) ki
u p ---弹塑性层间位移;
ue ---层间弹性位移;
Ve (i) ---楼层i的弹性地震剪力;
p ---弹塑性层间位移增大系数,当薄弱层的屈服强度系数不小于相邻
对于排架柱 y M y / M e
M-y--按实际配筋面积和、材料强度标准值和轴向力计算的正截面受弯承载力; M-e--按罕遇地震作用标准值计算的弹性地震弯矩。
对于多层和高层建筑结构 y Vy / Ve
y ---楼层屈服强度系数; V y ---按构件实际配筋面积和材料强度标准值计算的楼层受剪承载力;
钢结构
M by f ykWP
上、下柱的柱端弯矩为:
M c1
ic1 ic1 ic 2
M by
M c2
ic 2 ic1 ic 2
M by
3)混合型节点
上、下柱的柱端弯矩为: M c2 M cy
M c1
M by M c 2
薄弱楼层的位置:
a.楼层屈服强度系数沿高度分布均匀的结构,可取底层:
各楼层弹性地震剪力为
Ve (4) F4 484 kN
Ve (3) Ve (4) F3 1004 kN
Ve (2) Ve (3) F2 1365 kN Ve (1) Ve (2) F1 1589 kN
例:4层钢筋混凝土框架,梁截面250mm × 600mm,柱450mm×450mm,为
b.楼层屈服强度系数沿高度分布不均匀的结构,可取该系数最小的楼层 和相对较小的楼层,一般不超过2-3处;

工程弹塑性力学课件

工程弹塑性力学课件
工程弹塑性力学课件
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。

弹性、弹塑性时程分析

弹性、弹塑性时程分析

PKPM软件园地 建筑结构.技术通讯 2007年1月弹性、弹塑性时程分析法在结构设计中的应用杨志勇 黄吉锋(中国建筑科学研究院 北京 100013)0 前言地震作用是建筑结构可能遭遇的最主要灾害作用之一。

几十年来,人们积累了大量的实测地震资料,这些资料多以位移、速度或者加速度时程的形式体现。

与此相对应,时程分析方法也被认为是最直接的一种计算建筑结构地震响应的方法。

但是,由于地震作用随机性导致计算结果的不确定性,弹性时程分析方法只是结构设计的一种辅助计算方法;虽然如此,抗震规范为了增强重要结构的抗震安全性,还是将弹性时程分析方法规定为常遇地震作用下振型分解反应谱法的一种补充计算方法;尤其是考虑了结构的弹塑性性能后,弹塑性时程分析方法更是被普遍认为是一种仿真的罕遇地震作用响应计算方法。

《建筑抗震设计规范》(GB50011-2001)第3.6.2,5.1.2,5.5.1,5.5.2,5.5.3等条文规定了时程分析相关的内容。

下面结合TAT ,SATWE ,PMSAP 和EPDA 等软件应用,探讨如何将弹性、弹塑性时程分析正确应用到结构设计中去。

1 弹性时程分析的正确应用11正确地在软件中应用弹性时程分析方法需要对规范的相关条文规定有正确的认识。

以下几点是需要特别明确的:(1)抗震规范第5.1.2条第3点规定,“可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值”。

在设计过程中,如何实现“较大值”有不同的做法:1)设计采用弹性时程分析的构件内力响应包络值的多波平均值与振型分解反应谱法计算结果二者的较大值直接进行构件设计;2)在实现振型分解反应谱方法时,放大地震力使得到的楼层响应曲线包住时程分析楼层响应曲线的平均值。

图1 SATWE 地震作用放大系数前一种做法可能使得构件配筋较大,因为在时程分析过程中,构件内力的最大响应具有不同时性,采用包络值进行设计会使得构件内力,尤其是压弯构件内力偏于保守。

建筑结构抗震设计ppt课件

建筑结构抗震设计ppt课件

b. 9度地区,可采用下沉式天窗;
c. 突出屋面的钢筋砼天窗,侧板与柱宜采用螺栓连接。
(5) 支撑系统
(6) 柱 单层砖柱房屋:
6、7度地区可采用十字形无筋砖柱; 8度地区Ⅰ、Ⅱ类场地采用竖向配筋组合砖柱; 8度地区(Ⅲ、Ⅳ类场地)和9度地区的中柱采用钢 筋砼柱。 单层钢筋砼柱厂房:
厂房中的各种柱采用钢筋砼柱。 a. 截面形式和尺寸:矩形、工字形、双肢形、管柱形等。
排架的侧向柔度d11按下式计算:
11

F


a 11
11

F
(1
-
x1
)


a 11
11
F=1
x1
11
11
F=1
x1
11
x2
11
a11
F=1
⑵ 两跨不等高厂房
采用能量法计算并考虑KT影响,计算自振周期:
T1 2kT
Gi ui2
K i ui2
式中
u1、u2-将结构简图转动900,将G1、G2视为垂直于 杆件的荷载,在G1、G2处产生的水
e. 在满足有关抗震构造措施时,规范规定下列建筑 可不进行抗震计算:
(a) . 7度地区Ⅰ、Ⅱ类场地内的柱高不超过4.5m且 两端均有
均有 2.
(b). 7度地区Ⅰ、Ⅱ类场地内的柱高不超过10m且两端
山墙的单跨及等高多跨钢筋砼柱厂房。 设计计算内容 自振周期的计算; 内力计算; 强度计算。
3. 厂房质量集中系数的确定
平位u移1 。 11G1 12G2 u2 21G1 22G2
⑶ 三跨不对称带升高中跨的厂房结构:
T1 2KT
G1u12 G2u22 G3u32 G1u1 G2u2 G3u3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹塑性分析的规范规定
➢ 《建筑抗震设计规范》GB 50011-2001 ➢ 《高层混凝土结构技术规程》JGJ 3-2002 ➢ 《高层民用建筑钢结构技术规程》JGJ99-
98
《建筑抗震设计规范》
3.4.3条 竖向不规则结构应(宜)进行弹塑 性变形分析
3.6.2条 弹塑性分析可以根据具体情况采用 弹塑性静力、时程、简化方法
3。周期-最大层间位移曲线——基于等效单质点体系 综合统计出的结构周期顶点位移曲线。随着结构进入 弹塑性状态,结构的自振周期、顶点位移反应也发生 变化,竖向连接需求谱与能力谱曲线的交点,则该点 的层间位移值可以理解为抵抗设计烈度大震时的结构 弹塑性层间位移,也可以把该点的层间位移与规范限 值比较,比规范小则满足设计要求,反之则认为不满 足设计要求。
结构薄弱部位的判断
1。最大层间位移、最大有害层间位移所在的楼层; 2。层间位移、有害层间位移超过规范限值的楼层; 3。结构构件塑性铰、剪力墙破坏点比较集中的部位; 4。结构局部变形较大的部位; 5。结构弹塑性反应力突变的部位。
薄弱部位 薄弱层
结构抗倒塌验算
1。需求谱曲线(周期-影响系数曲线)——结构在静 力推覆分析过程中,随着结构的破坏、结构阻尼的增 加、结构自振周期的变化,反映出结构在设计烈度大 震下的弹塑性最大水平地震影响系数曲线。该曲线综 合反映了结构弹塑性变形过程中地震作用变化的情况。
➢ 方程解法
PCG解线性方程 多种解动力微分方程方法 多种解非线性方程方法
➢ 接力SATWE、PMSAP程序,适用的结构类型 广泛
动力弹塑性分析方法示意图
静力弹塑性分析方法
➢ 较动力弹塑性分析方法可一定程度 节省计算时间
➢ 与动力弹塑性分析方法互为补充 ➢ PUSH中已经实现
静力弹塑性分析原理
实例二、2008奥运会国家主体育场看台
实例三、2008奥运会国家主体育场罩棚(鸟巢)
静力弹塑性分析软件PUSH实 现
荷载因子
1.3 1.25 1.2 1.15 1.1 1.05
1 0
试验数据 有限元解
1000
2000
3000
结构顶点位移(mm)
罕遇地震下结构性能的评估
弹塑性位移角控制 结构薄弱部位的判断 结构的抗倒塌验算 大震下结构抗震性能的整体评估 弹塑性分析结果的讨论
《高层混凝土结构技术规程》
➢ 4.6.4条 , 4.6.5条 ,5.1.13条, 4.6.4条 有具体规定
➢ 基本遵从于《建筑抗震设计规范》
《高层民用建筑钢结构技术规程》
➢ 5.3.6条~5.3.10条 ,5.4.4条, 5.5.3条 有具体规定
➢ 有层间侧移延性比规定
弹塑性分析方法
➢ 动力弹塑性(时程)分析方法 ➢ 静力弹塑性分析方法 ➢ 简化弹塑性分析方法
建筑结构大震下弹塑性分析
➢弹塑性分析目的、意义 ➢弹塑性分析方法 ➢弹塑性分析的具体实现
弹塑性分析目的、意义
➢ 三水准设防中的“大震不倒” ➢ 两阶段设计中的“第二阶段弹塑性变形验算” ➢ 强震下变形验算的基本问题:
计算薄弱层位移反应和变形能力;通过改善 结构均匀性和加强薄弱层使得层间位移角满 足限值要求。
5.5.2条 何种结构需要进行弹塑性变形验算 5.5.3条 弹塑性变形验算方法 5.5.4条 弹塑性分析的简化方法 5.5.5条 地和9 度时高大的单层钢筋混凝土 柱厂房的横向排架
2) 7 9 度时楼层屈服强度系数小于0.5 的钢筋 混凝土框架结构
影响系数 层间位移角
周期-影响系数曲线 需求谱曲线
1/105
周期-最大位移角曲线
周期-加速度曲线 能力曲线
T 等效单自由度体系验算曲线
4。抗倒塌验算的其它方法——弹塑性分析可以按设定 的方式考虑结构的倒塌机制。如下图所示,当结构由 于外部原因,在局部失去支撑,此时分析结构的现状。
大震下结构整体性能的评估
简化弹塑性分析方法及局限性
➢ 适应范围小 ➢ 薄弱层确定不准确 ➢ 弹塑性层间位移为估算结果
动力弹塑性分析方法
➢ 理论基础较扎实的一种方法 ➢ 适用范围较为广泛 ➢ 对使用者要求较高 ➢ 计算时间相对较大 ➢ EPDA中已经实现
动力弹塑性分析原理
➢ 单元模型
梁、杆、柱、撑采用纤维束模型 剪力墙采用弹塑性壳单元
3) 高度大于150m 的钢结构
4) 甲类建筑和9 度时乙类建筑中的钢筋混凝土 结构和钢结构
5) 采用隔震和消能减震设计的结构
宜进行弹塑性变形验算的结构
1) 表5.1.21 所列高度范围且属于表3.4.2-2 所 列竖向不规则类型的高层建筑结构 2) 7 度类场地和8 度时乙类建筑中的钢筋混凝 土结构和钢结构 3) 板柱-抗震墙结构和底部框架砖房 4) 高度不大于150m 的高层钢结构
2。能力曲线(周期-加速度曲线)——基于等效单质点体 系综合统计出的结构周期加速度曲线。随着结构进入 弹塑性状态,结构的自振周期、顶点加速度反应也发 生变化,当该曲线穿过需求普曲线时,说明结构能够 抵抗设计烈度的大震,否则就认为不能抵抗设计烈度 的大震情况。越早穿过需求普曲线,说明结构抵抗大 震的能力越强,当曲线趋于水平时,说明结构接近破 坏、倒塌;
➢ 较为先进的单元类型 ➢ 先进的弧长法加载策略 ➢ 非线性方程叠代方法的多种选择 ➢ 波前法解线性方程 ➢ 病态方程的特殊解法处理 ➢ 接力SATWE程序,适应的结构类型广

静力弹塑性分析方法示意图
动力弹塑性分析软件EPDA实 现
16.2。弹塑性动力分析软件EPDA工程实例 实例一、五棵松体育场(2008奥运会篮球馆)
弹塑性位移角控制
1。结构各层弹塑性最大位移、位移角,平均位移、位 移角;
2。最大变形时刻的结构整体位移、位移角曲线; 3。对于高层尤其是超高层结构应考察有害位移、有害
层间位移角,有害位移是结构真正的变形位移,对高 层结构最大有害层间位移与最大层间位移往往差异较 大,分布也不同; 4。目前抗震规范仍然以层间位移角给出判断指标,所 以弹塑性位移控制仍以规范为准。
相关文档
最新文档