有限单元法基本思想-原理-数值计算过程

合集下载

有限单元法原理与应用

有限单元法原理与应用

有限单元法原理与应用有限单元法(Finite Element Method,简称FEM)是一种数值计算方法,广泛应用于工程领域的结构分析、流体力学、热传导等问题的求解。

它将复杂的结构或物理现象分割成有限数量的简单单元,通过对每个单元进行数学建模和分析,最终得出整个系统的行为。

本文将介绍有限单元法的基本原理和其在工程领域中的应用。

有限单元法的基本原理是将连续的物理现象离散化为有限数量的单元,每个单元都可以通过简单的数学方程来描述。

这些单元相互连接,形成一个整体的系统,通过对每个单元的行为进行分析,最终得出整个系统的行为。

有限单元法的核心思想是将复杂的问题简化为简单的数学模型,通过数值计算方法求解这些模型,从而得到系统的行为。

有限单元法在工程领域有着广泛的应用。

在结构分析中,可以用有限单元法来模拟各种复杂的结构,如桥梁、建筑、飞机机翼等,通过对结构的受力、变形等进行分析,来评估结构的安全性和稳定性。

在流体力学中,有限单元法可以用来模拟流体的流动行为,如水流、气流等,通过对流体的速度、压力等进行分析,来优化流体系统的设计。

在热传导问题中,有限单元法可以用来模拟物体的温度分布和传热行为,如热传导、对流、辐射等,通过对热场的分析,来优化热传导系统的设计。

有限单元法的应用还不仅限于工程领域,它也被广泛应用于地质勘探、医学图像处理、材料科学等领域。

在地质勘探中,有限单元法可以用来模拟地下岩层的力学行为,来评估地下资源的分布和开采方案。

在医学图像处理中,有限单元法可以用来模拟人体组织的力学行为,来辅助医学诊断和手术设计。

在材料科学中,有限单元法可以用来模拟材料的力学性能和热物理性能,来指导新材料的设计和制备。

总的来说,有限单元法作为一种数值计算方法,具有广泛的应用前景和重要的理论意义。

通过对有限单元法的深入理解和应用,可以更好地解决工程领域中的复杂问题,推动工程技术的发展和进步。

希望本文对有限单元法的原理和应用有所帮助,也希望读者能够进一步深入研究和应用有限单元法,为工程领域的发展做出更大的贡献。

第1章 有限元法概述

第1章 有限元法概述

第一章有限元法概述第一节有限元法的发展及基本思想随着现代工业、生产技术的发展,不断要求设计高质量、高水平的大型、复杂和精密的机械及工程结构。

为此目的,人们必须预先通过有效的计算手段,确切地预测即将诞生的机械和工程结构,在未来工作时所发生的应力、应变和位移。

但是传统的一些方法往往难以完成对工程实际问题的有效分析。

弹性力学的经典理论,由于求解偏微分方程边值问题的困难,只能解决结构形状和承受载荷较简单的问题,对于几何形状复杂、不规则边界、有裂缝或厚度突变,以及几何非线性、材料非线性等问题往往遇到很多麻烦,试图按经典的弹性力学方法获得解析解是十分困难的,甚至是不可能的。

因此,需要寻求一种简单而又精确的数值分析方法。

有限元法正是适应这种要求而产生和发展起来的一种十分有效的数值计算方法。

这个方法起源于20世纪50年代中期航空工程中飞机结构的矩阵分析。

1960年美国的克劳夫(C l o u g h)采用此方法进行飞机结构分析时,首次将这种方法起名为“有限单元法”(finite element method),简称“有限元法”。

有限单元法的基本思想,是在力学模型上将一个原来连续的物体离散成为有限个具有一定大小的单元,这些单元仅在有限个节点上相连接,并在节点上引进等效力以代替实际作用于单元上的外力。

对于每个单元,根据分块近似的思想,选择一种简单的函数来表示单元内位移的分布规律,并按弹性理论中的能量原理(或用变分原理)建立单元节点力和节点位移之间的关系。

最后,把所有单元的这种关系式集合起来,就得到一组以节点位移为未知量的代数方程组,解这些方程组就可以求出物体上有限个离散节点上的位移。

图1.1是用有限元法对直齿圆柱齿轮的轮齿进行的变形和应力分析,其中图1.1(a)为有限元模型,图1.1(b)是最大切应力等应力线图。

在图1.1(a)中采用8节点四边形等参数单元把轮齿划分成网格,这些网格称为单元;网格间互相连接的点称为节点;网格与网格的交界线称为边界。

有限单元法基本原理和数值方法

有限单元法基本原理和数值方法

有限单元法基本原理和数值方法1. 引言有限单元法(Finite Element Method,FEM)是一种数值计算方法,广泛应用于结构力学、流体力学、电磁场及热传导等领域中。

本文将介绍有限单元法的基本原理和数值方法,并阐述其在工程实践中的应用。

2. 基本原理有限单元法的基本原理是将复杂的连续体问题离散化为若干简单的子域,即有限单元。

每个有限单元由一个或多个节点组成,通过将子域内的导数方程或平衡方程转化为代数方程,再通过求解这些代数方程得到全局解。

有限单元法的基本步骤如下: - 确定问题的几何形状和边界条件; - 将几何形状分割为有限个单元,并为每个单元定义适当的数学模型; - 根据单元的数学模型建立刚度矩阵、质量矩阵等,并通过组装成全局矩阵; - 应用合适的边界条件,并求解线性或非线性代数方程组; - 根据代数方程组的解,计算各个单元内部的物理量。

3. 数值方法有限单元法中常用的数值方法包括: - 剖分方法:将连续域剖分为若干简单的有限单元,常用的有三角形剖分和四边形剖分。

- 元素类型:根据问题的特性选择合适的单元类型,如线性元、三角元、四边形元等。

- 积分方法:采用高斯积分等方法对每个单元内的积分方程进行数值求解。

- 方程求解:对线性方程组采用直接法(如高斯消元法)或迭代法(如共轭梯度法)进行求解。

- 后处理:根据问题的要求,进行应力、位移、应变等物理量的计算和显示。

4. 应用实例有限单元法广泛用于工程实践中,以下为其常见应用实例:- 结构力学:用于模拟建筑物、桥梁、飞机等结构的应力和变形。

- 流体力学:用于模拟流体在管道、水槽、风洞等中的流动。

- 电磁场:用于模拟电磁场在电路、电机、天线等中的分布。

- 热传导:用于模拟热传导在导热管、散热器、热交换器等中的传热情况。

5. 结论有限单元法作为一种数值计算方法,在工程实践中得到了广泛应用。

通过将连续问题离散化为有限单元,再通过数值方法求解代数方程组,可以获得连续问题的近似解。

有限单元法基础

有限单元法基础

性体在各节点处的位移解。
3、单元分析---三角形单元
y
3.1 单元的结点位移和结点力向量
从离散化的网格中任取一个单元。三个结点 按反时针方向的顺序编号为:i, j, m。
结点坐标: (xi,yi) , (xj,yj) , (xm,ym) 结点位移: (ui,vi) , (uj,yj) , (um,vm) 共有6个自由度
单元位移插值函数: u(x, y) a1 a2 x a3 y
(3.1)
v(x, y) a4 a5x a6 y
插值函数的系数: a1 aiui a ju j amum / 2 A, a4 aivi a jv j amvm / 2 A,
a2 biui bju j bmum / 2 A, a5 bivi bjv j bmvm / 2 A,
um a1 a2 xm a3 ym , vm a4 a5 xm a6 ym ,
求解以上方程组得到以节点位移和节点坐标表示的6个参数:
a1 aiui a ju j amum / 2 A, a4 aivi a jv j amvm / 2 A, a2 biui bju j bmum / 2 A, a5 bivi bjv j bmvm / 2 A, a3 ciui c ju j cmum / 2 A, a6 civi c jv j cmvm / 2 A,
研究方法
从数学上讲它是微分方程边值问题(椭圆型微分方程、抛物型微分方程和双曲型微 分方程)的一种的数值解法,是一种将数学物理问题化为等价的变分问题的解法,并作 为一种通用的数值解法成为应用数学的一个重要分支。从物理上讲是将连续介质物理 场进行离散化,将无限自由度问题化为有限自由度问题的一种解方法。从固体力学上 认识,是瑞利-里兹法的推广。

有限单元法ppt课件

有限单元法ppt课件

06
有限单元法的发展趋势和展 望
发展趋势
工程应用领域拓展
随着科技的发展,有限单元法在解决 复杂工程问题上的应用越来越广泛, 不仅局限于结构分析,还涉及到流体 动力学、热传导等领域。
与其他方法的结合
有限单元法正与其他数值方法(如有 限差分法、边界元法等)进行交叉融 合,形成更为强大的数值分析工具。
05
有限单元法的优缺点
优点
灵活性
有限单元法允许对复杂的几何形状进 行离散化,适用于解决各种形状和大 小的问题。
高效性
有限单元法能够处理大规模问题,通 过使用计算机技术,可以快速求解。
广泛的应用领域
有限单元法被广泛应用于工程、物理 、生物等领域,是一种通用的数值分 析方法。
易于理解和实现
有限单元法的基本概念直观易懂,且 实现起来相对简单。
01
利用线性代数方法,将 各个单元的数学模型和 节点信息组合成整体方
程组。
03
将节点的未知量返回到 原问题中,得到问题的
解。
05
根据问题的物理性质和 边界条件,建立单元的 数学模型和节点信息。
02
解整体方程组,得到节 点的未知量。
04
有限单元法的特点
适用范围广
可以用于解决各种类型的问题,如弹性力学 、流体力学、传热学等。
高精度与高效率
研究者们致力于开发更高效、精确的 算法,以解决大规模、非线性、动态 等复杂问题。
并行化与云计算应用
随着计算资源的丰富,有限单元法的 计算过程正逐步实现并行化,利用云 计算平台进行大规模计算已成为趋势 。
展望
理论完善与创新
随着工程实践的深入,有限单元法的理论体系将进一步完善,同时会 有更多创新性的算法和模型出现。

有限单元法的基本原理

有限单元法的基本原理

有限单元法的基本原理有限单元法(Finite Element Method,FEM)是一种常用于工程和科学领域中求解复杂问题的数值方法。

它的基本原理可以概括为将复杂的连续问题离散化为简单的有限个单元,然后利用数值方法对各个单元进行分析,最终得到整个问题的近似解。

以下将详细介绍有限单元法的基本原理。

1.连续问题的离散化:2.单元的建立:利用有限单元法,每个单元内部的位移和应力分布可以通过简单的变换关系来表示。

通常,在每个单元内部选择一种合适的形状函数来表示位移和应力的连续变化。

在线性有限元分析中,常用的形状函数为线性函数,而在非线性有限元分析中,常用的形状函数可以是二次或更高次函数。

3.边界条件的施加:在有限单元法中,为了求解问题的唯一解,必须施加适当的边界条件。

边界条件可以是约束位移、施加力或给定的位移等。

通过施加适当的边界条件,可以将问题转化为一个封闭的系统,方便求解。

4.系统的建立:利用有限单元法,可以将整个问题表示为一个线性或非线性的代数方程组。

构建这个方程组需要考虑到每个单元的位移和应力之间的关系。

通过组装每个单元的刚度矩阵和力向量,最终可以得到整个问题的刚度矩阵和力向量。

5.方程组的求解:得到整个问题的刚度矩阵和力向量后,可以使用各种数值方法求解代数方程组。

常用的方法有直接法(如高斯消元法)和迭代法(如共轭梯度法)。

求解得到的位移和应力即为整个问题的近似解。

6.解的后处理:在有限单元法中,为了解决工程问题,通常需要进一步对位移和应力进行后处理。

后处理可以包括计算其他感兴趣的物理量、绘制应力和位移图等。

通过后处理,可以更好地理解问题的本质和它们的工程意义。

总结起来,有限单元法通过将连续问题离散化为有限个单元,然后使用适当的形状函数表示位移和应力的连续变化,通过施加边界条件和构建代数方程组,最终得到问题的近似解。

有限单元法在工程和科学领域中被广泛应用,可以有效地解决各种复杂问题。

有限元入门

有限元入门
体所有各点的位移都远小于物体的原有尺寸,因而应变和转角 都远小于1,这样,在考虑物体变形以后的平衡状态时,可以 用变形前的尺寸来代替变形后的尺寸,而不致有显著的误差; 并且,在考虑物体的变形时,应变和转角的平方项或乘积项都 可以略去不计,这就使得弹性力学中的微分方程都成为线性方 程。
有限差分方法
(Finite Differential Method)
该方法将求解域划分为差分网格,用有限 个网格节点代替连续的求解域。有限差分 法以泰勒级数展开等方法,把控制方程中 的导数用网格节点上的函数值的差商代替 进行离散,从而建立以网格节点上的值为 未知数的代数方程组。该方法是一种直接 将微分问题变为代数问题的近似数值解法, 数学概念直观,表达简单,是发展较早且 比较成熟的数值方法。
三、 塑性加工中的有限元法概述
有限元法与其它塑性加工模拟方法相比,功能最 强、精度最高、解决问题的范围最广。它可以采 用不同形状、不同大小和不同类型的单元离散任 意形状的变形体,适用于任意速度边界条件,可 以方便地处理模具形状、工件与模具之间的摩擦 、材料的硬化效应、速度敏感性以及温度等多种 工艺因素对塑性加工过程的影响,能够模似整个 金属成形过程的流动规律,获得变形过程任意时 刻的力学信息和流动信息,如应力场、速度场、 温度场以及预测缺陷的形成和扩展。
1-7 有限单元法的基本内容
有限元法的力学基础是弹性力学,而方程求解的原理是泛 函极值原理,实现的方法是数值离散技术,最后的技术载 体是有限元分析软件。必须掌握的基本内容应包括: 1、基本变量和力学方程(即弹性力学的基本概念) 2、数学求解原理(即能量原理) 3、离散结构和连续结构的有限元分析实现(有限元分析 步骤) 4、有限元法的应用(即有限元法的工程问题研究) 5、各种分析建模技巧及计算结果的评判 6、学习典型分析软件的使用,初步掌握一种塑性有限元 软件 注意:会使用有限元软件不等于掌握了有限元分析工具

有限元计算原理与方法

有限元计算原理与方法

1.有限元计算原理与方法有限元是将一个连续体结构离散成有限个单元体,这些单元体在节点处相互铰结,把荷载简化到节点上,计算在外荷载作用下各节点的位移,进而计算各单元的应力和应变。

用离散体的解答近似代替原连续体解答,当单元划分得足够密时,它与真实解是接近的。

1.1. 有限元分析的基本理论有限元单元法的基本过程如下:1.1.1.连续体的离散化首先从几何上将分析的工程结构对象离散化为一系列有限个单元组成,相邻单元之间利用单元的节点相互连接而成为一个整体。

单元可采用各种类型,对于三维有限元分析,可采用四面体单元、五西体单元和六面体单元等。

在Plaxis 3D Foundation程序中,土体和桩体主要采用包含6个高斯点的15节点二次楔形体单元,该单元由水平面为6节点的三角形单元和竖直面为四边形8节点组成的,其局部坐标下的节点和应力点分布见图3.1,图3.1 15节点楔形体单元节点和应力点分布界面单元采用包含9个高斯点的8个成对节点四边形单元。

在可能出现应力集中或应力梯度较大的地方,应适当将单元划分得密集些;若连续体只在有限个点上被约束,则应把约束点也取为节点:若有面约束,则应把面约束简化到节点上去,以便对单元组合体施加位移边界条件,进行约束处理;若连续介质体受有集中力和分布荷载,除把集中力作用点取为节点外,应把分布荷载等效地移置到有关节点上去。

最后,还应建立一个适合所有单元的总体坐标系。

由此看来,有限单元法中的结构已不是原有的物体或结构物,而是同样材料的由众多单元以一定方式连接成的离散物体。

因此,用有限元法计算获得的结果只是近似的,单元划分越细且又合理,计算结果精度就越高。

与位移不同,应力和应变是在Gauss 积分点(或应力点)而不是在节点上计算的,而桩的内力则可通过对桩截面进行积分褥到。

1.1.2. 单元位移插值函数的选取在有限元法中,将连续体划分成许多单元,取每个单元的若干节点的位移作为未知量,即{}[u ,v ,w ,...]e T i i i δ=,单元体内任一点的位移为{}[,,]Tf u v w =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限单元法学习报告在对力学问题分析求解过程中,方法可以概括为两种方法,一种为解析法,对具体问题具体分析,通过一定的推导用具体的表达式获得解答,由于实际工程中结构物的复杂性,此方法在处理工程问题是十分困难的;另一种是数值法,有限元法是其中一种方法,其数学逻辑严谨,物理概念清晰,又采用矩阵形式表达基本公式,便于计算机编程,因此在工程问题中获得广泛的应用。

有限元法基本原理是,将复杂的连续体划分为简单的单元体;将无限自由度问题化为有限自由度问题,因为单元体个数是有限的;将偏微分方程求解问题化为有限个代数方程组的求解问题。

通常以位移为基本未知量,通过虚功原理和最小势能原理来求解。

基本思想是先化整为零,即离散化整体结构,把整体结构看作是由若干个通过结点相连的单元体组成的整体;再积零为整,通过结点的平衡来建立代数方程组,最后计算出结果。

我将采用最简单的三结点三角形为基本单元体,解决弹性力学中的平面问题为例,解释有限单元法的基本原理、演示数值计算过程和一般性应用结论。

一、离散化解决平面问题时,主要单元类型包括三角形单元(三结点、六结点)和四边形单元(四结点矩形、四结点四边形、八结点四边形)等。

选用不同的单元会有不同的精度,划分的单元数越多,精度越高,但计算量也会越大。

因此在边界曲折,应力集中处单元的尺寸要小些,但最大与最小单元的尺寸倍数不宜过大。

在集中力作用点及分布力突变的点宜选为结点,不同厚度,不同材料不能划分在同一单元中。

三角形单元以内角接近60°为最好。

充分利用对称性与反对称性。

二、单元分析将一个单元上的所有未知量用结点位移表示,并将分布在单元上的外力等效到结点上。

1、位移函数选取:根据有限元法的基本思路,将连续体离散为有限的单元集合后,此时单元体满足连续性、均匀性、各向同性、完全线弹性假设。

单元与单元之间通过结点连接并传递力,位移法(应用最广)以结点位移δi=(u i v i)T为基本未知量,以离散位移场代替连续位移场。

单元体内的位移变化可以用位移函数(位移模式)来表示,因为有限元分析所得结果是近似结果,为了保证计算精度和收敛性,x位移函数应尽可能反应物体中的真实位移,即满足完备性和连续性的要求:①位移模式必须能反映单元的刚体位移。

②位移模式必须能反映单元的常量应变。

③位移模式应尽可能反应位移的连续性。

设三角形单元三个结点编号为i、j、m。

平面三角形单元位移函数选取为u=α1+α2x+α3y v=α4+α5x+α6y可以写成00u u yv v y ωω=-⎧⎨=+⎩的形式,00u v 、反映了单元的刚体平动,ω反映了单元的刚体转动,满足完备性和连续性的要求①。

采用插值法由单元结点位移列阵δe=()ii j j mm u v u v u v T计算α1、α2、α3、α4、α5、α6.,求出位移d=[u (x ,y), v (x ,y )]。

6个未知量,6个代数方程,得d e=N δede=u v ⎛⎫ ⎪⎝⎭=00000i j m ijm N N N N N N ⎛⎫ ⎪⎝⎭()ii j j mm u v u v u v T式中N i =(a i +b i x+c i y)/2A ,a i =j j mmx y x y b i = -11imy y c i =11jmx x (i 、j 、m 轮换)A 为三角形面积,为避免A<0,i 、j 、m 按逆时针排列。

N 为形函数矩阵,形函数Ni 的性质有:①N i (x i ,y i )=1 N i (x j ,y j )=0 Ni (xm ,ym )=0 ②N i (x ,y )+N j (x ,y )+N m (x ,y )=1可推出三个形函数中,两个是独立的,反映了刚体平移。

令z=Ni ,在直接坐标系中画出Ni 、Nj 、Nm 的函数图形是以Ni (xi ,yi )=1为高的四面体,所以结点位移影响单元的位移场,单元的位移场是线性分布的,相邻单元在公共边上的位移是连续的,单元相邻边的位移只取决于单元相邻公共边上的结点而与其他结点无关,无论以哪个单元计算相邻边的位移,结果一定相同。

形函数N i e决定了单元内的位移模式,反映了i 结点位移对单元内任意点位移的贡献率。

2、根据几何方程用单元结点位移表示单元应变:()00010002ij m ij m i i j j mm i ijjmm u x B b b v c c c u v u v u v y A cb c b c b u v y x ε⎛⎫∂ ⎪∂ ⎪⎛⎫ ⎪∂ ⎪== ⎪ ⎪∂ ⎪ ⎪⎝⎭⎪∂∂+ ⎪∂∂⎝⎭Te e B εδ=B 为几何矩阵B 可写为分块矩阵B =(B i B j B m )T,B i =00ii ii b c c b ⎛⎫⎪⎪ ⎪⎝⎭,B 内所有元素与x ,y 无关,所以该单元内应变是常量,反映单元的常量应变,满足完备性和连续性的要求 ,这是一种常应变单元。

3、根据物理方程用单元结点位移表示单元应力:e e D σε= 2101011002E D μμμμ⎛⎫ ⎪⎪= ⎪- ⎪- ⎪⎝⎭D 为弹性矩阵e e e e D DB S σεδδ=== S 为应力矩阵S=DB 中,每一个元素都是常数,所以e σ的每一个分量与单元内x ,y 位置无关,这是一种常应力单元。

因为在三结点三角形单元中,位移函数中含有坐标的一次项,其误差为()2o x ∆,而应力、应变是常量,其误差为()o x ∆,比位移精度低。

4、根据虚功原理用单元结点位移表示单元结点力单元在结点处受力,单元会发生变形,因此单元在结点处所受到的力与单元结点位移肯定有关系。

单元间通过结点的相互作用成为整体,因此每一单元的受力——位移关系找出来,整体的受力——位移关系也就出来了。

记单元节点力为()e ijm F F F F =T,单元结点虚位移为()*e***i j m =Tδδδδ单元内应力为()e xy xy σσστ=T, 单元内虚应变()****x yxy εεεγ=T根据虚功原理,()()**TTe e e AF dxdy t δεσ=∙⎰⎰,可得e T e AF B DBdxdy t δ=⋅⋅⎰⎰因为B 、D 中元素都是常数,e T e e F B DBtA K δδ==,K=B TDB tA 为单元刚度矩阵。

K 为6行6列矩阵可写为()T i T j i jm T m B K tA B D B B B B ⎛⎫ ⎪== ⎪ ⎪⎝⎭iiij im jij j jm mimjmm k k k k k k k k k ⎛⎫ ⎪ ⎪ ⎪⎝⎭,xxxy ij ij ij i j yxyy ijij k k k B DB At At k k ⎛⎫== ⎪ ⎪⎝⎭,xyij k 表示j 结点处发生y 方向的单位位移时所引起的i 结点处x 方向的结点力。

不同类型不同形式的单元,只有弹性矩阵D 和几何矩阵B 不同,计算子块矩阵的公式相同,平面问题中,影响刚度矩阵K 的只有几何矩阵B 。

K 的性质有:K 中每个元素表示个单元结点沿坐标方向发生单位位移时所引起的结点力。

②K 为对称矩阵。

③单元做刚体位移时,单元内不产生应变应力,结点力为0,所以K 中每行每列元素之和为0,所以0K=,所以只根据e e F K δ=无法求得唯一解。

5、根据虚功等效原则计算等效结点力根据有限元的基本方法,单元内任意点的位移、应变、应力等最终都要用结点位移来表示,所以作用在物体上的外力也要用结点位移表示。

为了计算等效结点力,在任意的虚位移上,使原载荷与等效载荷虚功相等。

设外力为p f ,结点虚位移为*e δ,则任意点虚位移为**e e d N δ=,等效节点载荷为e L F ,有*eT *eT e p L d f t F δ= e T L p F N f t =(集中力)同理得e T L S F N f ds t =⋅⎰(面力),e L A F Nfdxdy t =⋅⎰⎰(体力)。

三、整体分析将结构的所有单元通过结点连接起来,形成一个整体的离散结构以代替实际的连续体,以形成以结点位移为未知量的整体结构的有限元代数方程组,最后求得结点位移。

对结点受力分析:结点受到与之相关的单元给它的反作用力和外载荷的等效结点力,这两组力坐标轴方向相反,所以应该相等,即i Li eeF F =∑∑,设有n 个结点,每个结点建立两个方向的方程,不考虑外界约束时,共2n 个方程,2n 个未知量(,,...ix iy jx δδδ),为了建立这个代数方程组,建立整个弹性体的结点力和结点位移的关系式L K F δ=,K (2n ×2n )为整理刚度矩阵,δ为整体结点位移列阵,F L 整体结点载荷列阵。

为了求整体刚度矩阵,要找到它与已求得的单元刚度矩阵的关系,在整体中对结点编码,设整体刚度矩阵中某元素为Kij ,意为j 个结点在x 或y 方向发生位移引起i 个结点x 或y 方向的结点力,找到同时用到i 与j 结点的单元,并用与之对应的单元刚度矩阵中的元素ksm 相加得到Kij ,整体刚度矩阵也是奇异矩阵,必须考虑边界约束条件,消除K 的奇异性,才能求解结点位移。

再由单位结点等效载荷得到整体结点载荷列阵F L 。

这样K 、F L 已知,求解代数方程,解出整体结点位移列阵δ,得到相应的单元结点位移δe。

δe得到了,相应的d e、σe、εe等就得到了。

相关文档
最新文档