材料科学基础(上海交大)--绪论
(完整版)上海交大材料科学基础课件教学大纲

(完整版)上海交大材料科学基础课件教学大纲课程名称:材料科学基础/Fundamentals of Materials Science课堂学时:90实验学时:36适用专业:材料科学与工程类专业、冶金类专业和机电类专业一、课程的性质、地位、任务《材料科学基础》是材料类和冶金类专业的一门主干课,也是该专业的主要技术基础课。
通过讲课、实验、课堂讨论和课外实践等各个教学环节,将金属学、陶瓷学和高分子物理的基础理论融合为一体,以研究材料共性规律,即研究材料的成分、组织结构、制备工艺和性能之间的相互关系,指导材料的设计和应用,并为学习后继专业课程、从事材料科学研究和工程技术工作打下坚实的理论基础。
二、课程的教学内容和基本要求绪论(1学时)了解材料的发展史、材料科学的研究对象和内容以及学习本课程的目的意义和要求。
第一章原子结构和键合(4学时)了解物质由原子组成,而组成材料的各元素的原子结构和原子间的键合是决定材料性能的重要因素。
§1 原子结构(一)、原子结构; (二)、原子间的键合; (三)、高分子链。
§2 原子间的键合(一)、金属键 (二)、离子键 (三)、共价键(四)、范德华力 (五)、氢键§3 高分子链(一)、结构单元的化学组成1.碳链高分子 2.杂链分子 3.元素有机高分子4.无机高分子(二)、高分子链结构单元的键合方式1.均聚物结构单元顺序 2.共聚物的序列结构(三)、高分子链的几何形状(四)、高分子链的构型第二章固体结构(8学时)固态原子按其原子(或分子)聚集的状态,可划分为晶体与非晶体两大类。
晶体中的原子在空间呈有规则的周期性重复排列;而非晶体中的原子则是无规则排列的。
材料的性能与材料各元素的原子结构和键合密切相关,也与固态材料中原子或分子在空间的分布排列和运动规律以及原子集合体的形貌特征密切相关。
§1 晶体学基础(一)、晶体的空间点阵1.空间点阵概念 2.晶胞 3.晶系与布拉菲点阵4.晶体结构与空间点阵的关系(二)、晶向指数和晶面指数1.阵点坐标2.晶向指数3.晶面指数4.六方晶系指数5.晶带 6.晶面间距§2 金属的晶体结构(一)、面心立方晶体结构的晶体学特征(二)、体心立方晶体结构的晶体学特征(三)、密排六方晶体结构的晶体学特征§3 金属的相结构(一)、固溶体1.置换固溶体 2.间隙固溶体 3.有序固溶体 4.固溶体的性质(二)、中间相1.正常价化合物 2.电子化合物3.原子尺寸因素化合物(ⅰ)间隙相和间隙化合物(ⅱ)拓扑密堆相§4 离子晶体结构(一)、NaCl型结构 (二)、萤石型结构 (三)、CsCl型结构 (四)、a-Al2O3型结构§5 共价晶体结构(一)、金刚石结构 (二)、SiO2结构 (三)、VA、VIA族亚金属结构§6 聚合物晶态结构(一)、晶胞结构 (二)、晶态结构模型 (三)、聚合物结晶形态§7 非晶态结构第三章晶体缺陷(12学时)实际晶体常存在各种偏离理想结构的区域晶体缺陷。
上海交通大学材料科学基础

上海交通大学材料科学基础上海交通大学(Shanghai Jiao Tong University)是中国著名的高等学府之一,位于中国上海市徐汇区。
该校在材料科学领域备受瞩目,拥有一流的材料科学基础教育和研究实力。
1. 简介材料科学是一门研究新材料的结构、性能、制备和应用的学科。
它在各个领域都有广泛的应用,包括电子、能源、航空航天、汽车、医疗器械等。
上海交通大学的材料科学基础课程旨在培养学生对材料科学的理论和实践的综合能力,为学生未来的学术研究和工程实践打下坚实的基础。
2. 课程设置上海交通大学的材料科学基础课程涵盖了材料科学的各个方面,包括材料结构、材料性能、材料制备和材料应用等。
下面是课程的一些主要内容:2.1 材料结构该课程主要介绍材料的结晶、非晶和晶界结构等方面的知识。
学生将学习晶体结构的基本原理,如晶体晶格、晶体面和晶体缺陷等。
还将介绍非晶材料的特点和应用,以及晶界对材料性能的影响。
2.2 材料性能这门课程将重点研究材料的力学性能、热学性能和电学性能等方面的知识。
学生将学习材料的强度、硬度、韧性等力学性能参数的计算和测试方法。
还将介绍材料的导热性、热膨胀性和导电性等热学和电学性能参数的测试方法。
2.3 材料制备该课程将介绍材料的各种制备方法,包括熔融法、溶液法、气相法和固相法等。
学生将学习材料制备的基本原理和常用的制备工艺。
还将介绍材料的组织性能与制备工艺之间的关系,以及如何选择合适的制备方法。
2.4 材料应用这门课程将介绍材料在各个领域的应用,包括电子材料、能源材料、光电材料等。
学生将学习材料应用的基本原理和常见的应用技术。
还将介绍材料设计的基本思路和方法,以及面向特定应用的材料选取和优化的策略。
3. 实验教学上海交通大学的材料科学基础课程注重实践教学的环节,为学生提供了丰富的实验机会。
学生将在实验室中亲自进行各种材料制备和性能测试的实验,例如制备单晶材料、测量材料硬度和强度等。
通过实验的步骤,学生可以加深对理论知识的理解,并掌握实验技能。
材料科学基础绪论PPT课件

• 材料的性能包括物理性能、化学性能、力学性能。 • 其内部结构包括
四个层次:①原 子结构;②结合 键;③原子的排 列方式;④显微 组织
第4页/共26页
(二)材料科学与材料工程的关系
第2页/共26页
学习料料科学基础的意义 (一)材料科学的内涵
材料科学是一个跨物理、化学等 的学科。材料科学的核心问题是材 料的组织结构(Structure)和性 能(Property)以及它们之间的关 系。右图为材料科学与工程四要素。 所以,先要了解材料的结构是什么?
第3页/共26页
材料结构关系
第24页/共26页
• 1990年美国总统的科学顾问Allany Bromley明确指出“材料科学在美 国是最重要的学科”。
• 1991年日本为未来工业规划技术列举的11项主要项目中有7项是基于先 进材料之上。
• 1986年《科学的美国人》杂志指出“先进材料对未来的宇航、电子设备、 汽车以及其他工业的发展是必要的,材料科学的进步决定了经济关键部 门增长速率的极限范围。”
• 材料科学的形成:“材料”早存在,“材料科学”提出于 20世纪60年代,1957年苏联卫星上天,美国震动很大, 在大学相继建立十余个材料科学研究中心,自此开始, “材料科学”一词广泛应用。
• 一般来讲,科学是研究“为什么”的学问,而工程是解决 “怎么做”的学问。材料科学的基础理论,为材料工程指 明方向,为更好地选择、使用材料,发挥现有材料的潜力、 发展新材料提供理论基础。
《济地的制造有用物品的物质。 材料科学是研究材料的成分、组织结构、制备工艺、加工工艺、材料 的性能与材料应用之间的相互关系的科学。材料科学是当代科学技术发展 的基础、工业生产的支柱,是当今世界的带头学科之一。纳米材料科学与 技术是20世纪80年代发展起来的新兴学科,成为21世纪新技术的主导中 心。 材料科学基础是进行材料科学研究的基础理论,它将各种材料(包括 金属、陶瓷、高分子材料)的微观结构和宏观结构规律建立在共同的理论 基础上,用于指导材料的研究、生产、应用和发展。它涵盖了材料科学和 材料工程的基础理论。
上海交大硕士学位论文 第一章 绪论

第一章绪论1.1 研究的背景及意义粮食是一个国家赖以生存与发展所必不可少的物质基础之一,粮食安全是古今中外任何国家政府都必须予以高度重视的一件大事。
早在2500多年前,中国古代伟大的思想家孔子就曾指出,一个国家或政府若能“足食、足兵”,则“民信之矣”。
中国还有一句流传久远的俗语:“民以食为天”,可见在很早以前,人们就已经充分意识到了粮食与粮食安全的极端重要性。
粮食的储藏与储备是确保粮食安全的一个非常重要举措。
中国在粮食储藏储备方面有着源远流长的历史,也曾积累了非常丰富的经验。
据考古发现,远在仰韶文化时期就出现了粮仓的雏形,春秋战国时期就形成了正规的粮仓。
隋唐时代的洛阳含嘉仓,设施完善,造型优美,是中国历史上著名的大型粮仓[1]。
由国家出面进行的粮食储藏与储备行为,即为国家战略粮食储备。
依靠国家战略粮食储备,熟练应用买入与抛出的价格平衡杠杆,在丰年可以帮助农民销售盈余的粮食,防止谷贱伤农;在歉年可以平抑物价,防止物价飞涨,乃至直接赈济灾民,维护社会安定。
在中国历史上,也有某些时期由于种种原因,国家粮食储备崩溃,成为引发社会大动荡的导火索。
粮食储藏对于一个国家来说如此重要,如何有效地进行粮食储藏便成为一直以来人们不懈的追求。
随着时代的发展,认识的进步,进入新世纪以来,可持续发展战略逐渐成为世界各国的共识。
可持续发展战略共识的形成,对于粮食储藏提出了新的更高要求,即在过去所追求的高质量、高效益基础上,还要加上低能耗以及低污染。
在此背景下,世界各国开始积极探索减少储粮损失、保持储粮品质、降低储粮成本、减少或避免环境污染的绿色储粮新技术。
其中,低温储粮是最被看好的绿色储粮技术之一。
所谓绿色储粮,是指采用有效的生态手段,避免化学药剂污染,延缓粮食陈化过程,确保粮食安全、卫生的综合性防治方法,它是以储粮生态学理论为指导的储粮技术。
低温储粮,则是指利用自然低温条件或机械制冷设备,降低仓储粮食温度,并利用仓房围护结构的隔热保温性能,确保粮食在储藏期间的粮堆温度维持在低温(15℃)或准低温(20℃)以下的一种粮食储藏技术。
材料科学基础 (上海交通大学)PPT课件

注:计算时过渡族元素时价电子数视为0。
电子浓度、相、结构对应关系如下:
C电子==7/4(即21/12) ε 密排六方结构
C电子==21/13
γ 复杂立方结构
C电子==3/2(即21/14) β 体心立方结构
β-Mn 复杂立方或密排六方结构
电子价化合物具有金属特性,具有高熔点、高硬度但塑性低,与固 溶体适当搭配使合金得到强化最,作新课为件 非Fe合金中重要组成相。 28
特点: ①由配位数为12、14、15、16的配位多面体堆垛而
成; ②呈层状结构。 类型:①Lavs相
②σ相
最新课件
33
Lavs相
形成的条件:
(1)原子尺寸因素。A原子半径略大于B原子,其 理论值为rA/rB=1.255,而实际比值约在 1.05~1.68之间;
(2)电子浓度。一定的结构类型对应着一定的电 子浓度。 Lavs相形晶体结构有三种类型。典型 代表为MgCu2、MgZn2、MgNi2,与电子浓 度对应关系见表2.12(P52)
最新课件
25
2.3.2 中间相
➢ 中间相是合金组元间发生相互作用而形成的一 种新相,它可以是化合物,也可以是以化合物为基 的固溶体(二次固溶体),一般可以用化学分子式 来表示,但不一定符合化合价规律。
➢ 中间相中原子的结合方式为金属键与其它结合 键相混合的方式。它们都具有金属特性。
➢ 中间相如:钢中Fe3C、铝铜合金中CuAl、黄 铜中CuZn、半导体中GaAs、形状记忆合金中 NiTi和CuZn、核反应堆材料中Zr3Al、储氢能 源材料中LaNi5等。
结构。例如:A2B型 Mg2Pb Mg2Sn Mg2Ge Mg2Si AB型 MgS MnS FeS
正常价化合物在常温时有很高的硬度和脆性。在工业合金中,能 起到提高材料强度和硬度的作用,称为强化相。如Al-Mg-Si 合金中Mg2Si;但有时也是有害相,如钢中FeS会引起钢的脆性。
上海交大材料科学基础知识点总结

第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。
如氧化物陶瓷。
(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。
如高分子材料。
(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。
如金属。
金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。
(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。
分子晶体:熔点低,硬度低。
如高分子材料。
氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。
如复合材料。
3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。
(2)二次键(物理键):分子键和氢键。
4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。
长程有序,各向异性。
(2)非晶体:――――――――――不规则排列。
长程无序,各向同性。
第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。
图1-5特征:a 原子的理想排列;b 有14种。
其中:空间点阵中的点-阵点。
它是纯粹的几何点,各点周围环境相同。
描述晶体中原子排列规律的空间格架称之为晶格。
空间点阵中最小的几何单元称之为晶胞。
(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。
特征:a 可能存在局部缺陷;b 可有无限多种。
2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。
(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。
(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。
材料科学基础上海交大第三版

材料科学基础上海交大第三版介绍材料科学是研究材料结构、组成、性能和制备方法的学科,具有重要的理论基础和实际应用。
本文将探讨《材料科学基础上海交大第三版》这本教材的内容和意义。
教材概述《材料科学基础上海交大第三版》是由上海交通大学材料科学与工程学院编写的教材。
该教材系统地介绍了材料科学的基本概念、原理和技术。
它以全面、详细和深入的方式讲解了各种材料的结构、性能、制备和应用。
该教材的第三版相对于前两版进行了进一步的修订和更新,新增了一些最新的科研成果和实践经验。
重要章节第一章:材料科学基础该章介绍了材料科学的基本概念、发展历史和研究方法。
它讲解了材料的分类、性能评价和性能调控等内容。
通过学习该章,读者可以对材料科学有一个整体的认识。
第二章:金属材料该章主要讲解了金属材料的结构和性能。
它详细介绍了金属晶体结构、缺陷和相变等基本概念,以及金属的力学、热学和电学性能。
同时,该章还介绍了金属材料的制备方法和应用领域。
第三章:陶瓷材料该章介绍了陶瓷材料的结构和性能。
它详细讲解了陶瓷的晶体结构、缺陷和相变等基本概念,以及陶瓷的力学、热学和电学性能。
此外,该章还介绍了陶瓷材料的制备方法和应用领域。
第四章:高分子材料该章主要介绍了高分子材料的结构和性能。
它详细阐述了高分子的聚合反应、分子构象和玻璃化转变等基本概念,以及高分子的力学、热学和电学性能。
同时,该章还介绍了高分子材料的制备方法和应用领域。
第五章:复合材料该章介绍了复合材料的结构和性能。
它详细讲解了复合材料的基体材料、增强材料和界面等基本概念,以及复合材料的力学、热学和电学性能。
此外,该章还介绍了复合材料的制备方法和应用领域。
重要实验实验一:金属的晶体结构研究该实验旨在通过实际操作,观察金属的晶体结构,并了解金属的晶体缺陷。
通过该实验,学生可以进一步理解金属的结构与性能之间的关系。
实验二:陶瓷材料的力学性能测定该实验旨在通过实验测定方法,了解陶瓷材料的力学性能。
材料科学基础-上海交大第二版

1.固相烧结:固态粉末在适当的温度,压力,气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。
液相烧结:有液相参加的烧结过程。
2.金属键:自由电子与原子核之间静电作用产生的键合力。
3.离子键:金属原子自己最外层的价电子给予非金属原子,使自己成为带正电的正离子,而非金属得到价电子后使自己成为带负电的负离子,这样正负离子靠它们之间的静电引力结合在一起。
共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。
氢键:由氢原子同时与两个电负性相差很大而原子半径较小的原子(O,F,N等)相结合而产生的具有比一般次价键大的键力。
弗兰克缺陷:间隙空位对缺陷肖脱基缺陷:正负离子空位对的奥氏体:γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。
布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。
不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。
玻璃化转变温度:过冷液体随着温度的继续下降,过冷液体的黏度迅速增大,原子间的相互运动变得更加困难,所以当温度降至某一临界温度以下时,即固化成玻璃。
这个临界温度称为玻璃化温度Tg。
表面能:表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。
半共格相界:若两相邻晶体在相界面处的晶面间距相差较大,则在相界面上不可能做到完全的一一对应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子部分地保持匹配,这样的界面称为半共格界面或部分共格界面。
柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。
柏氏矢量物理意义:①从位错的存在使得晶体中局部区域产生点阵畸变来说:一个反映位错性质以及由位错引起的晶格畸变大小的物理量。
②从位错运动引起晶体宏观变形来说:表示该位错运动后能够在晶体中引起的相对位移。
部分位错:柏氏矢量小于点阵矢量的位错包晶转变:在二元相图中,包晶转变就是已结晶的固相与剩余液相反应形成另一固相的恒温转变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一次产业革命的突破口是推广应用蒸汽 但只有在开发了铁和铜等新材料以后, 机 , 但只有在开发了铁和铜等新材料以后 , 蒸汽机才得以使用并逐步推广。 蒸汽机才得以使用并逐步推广。 第二次产业革命一直延续到20世纪中叶 , 第二次产业革命一直延续到 20世纪中叶 20 世纪中叶, 以石油开发和新能源广泛使用为突破口,大力 以石油开发和新能源广泛使用为突破口, 发展飞机、汽车和其他工业, 发展飞机、汽车和其他工业,支持这个时期产 业革命的仍然是新材料开发。如合金钢、 业革命的仍然是新材料开发。如合金钢、铝合 金以及各种非金属材料的发展。 金以及各种非金属材料的发展。
先进(或新型)无机非金属材料是用氧化物、 先进(或新型)无机非金属材料是用氧化物、 是用氧化物 氮化物、碳化物、硼化物、硫化物、 氮化物、碳化物、硼化物、硫化物、硅化物以 及各种无机非金属化合物经特殊的先进工艺制 成的材料。主要包括先进陶瓷、非晶态材料、 成的材料。主要包括先进陶瓷、非晶态材料、 人工晶体、无机涂层、无机纤维等。 人工晶体、无机涂层、无机纤维等。
材料科学基础课程的教学内容
材料科学基础课程是材料科学与工程专业的重要 的学科基础课之一,主要介绍材料科学中的共性规律, 的学科基础课之一,主要介绍材料科学中的共性规律, 即材料的组成-形成(工艺)条件-结构-性能-材料用 即材料的组成-形成(工艺)条件-结构-性能途之间相互关系及制约规律。内容主要包括: 途之间相互关系及制约规律。内容主要包括:材料种 类、晶体结构、缺陷化学、非晶体结构、材料的表面 晶体结构、缺陷化学、非晶体结构、 与界面、相图、扩散、相变、 与界面、相图、扩散、相变、固相反应及烧结等基础 知识。 知识。
传统的无机非金属材料之二: 传统的无机非金属材料之二:玻璃
玻璃是由熔体过冷所制得的非晶态材料。 玻璃是由熔体过冷所制得的非晶态材料。根据其形成 网络的组分不同可分为硅酸盐玻璃、硼酸盐玻璃、 网络的组分不同可分为硅酸盐玻璃、硼酸盐玻璃、磷酸盐 玻璃等,其网络形成剂分为SiO2、B2O3和P2O5。习惯上玻 玻璃等,其网络形成剂分为SiO 璃态材料可分为普通玻璃和特种玻璃两大类。 璃态材料可分为普通玻璃和特种玻璃两大类。 普通玻璃 两大类 普通玻璃是指采用天然原料,能够大规模生产的玻璃。 普通玻璃是指采用天然原料,能够大规模生产的玻璃。 普通玻璃包括日用玻璃、建筑玻璃、微晶玻璃、 普通玻璃包括日用玻璃、建筑玻璃、微晶玻璃、光学玻璃 和玻璃纤维等。 和玻璃纤维等。
常见高温结构陶瓷包括:高熔点氧化物、 常见高温结构陶瓷包括:高熔点氧化物、碳 化物、硼化物、氮化物、硅化物。 化物、硼化物、氮化物、硅化物。 功能陶瓷包括:装置瓷(即电绝缘瓷)、电容 功能陶瓷包括:装置瓷(即电绝缘瓷)、电容 )、 器陶瓷、压电陶瓷、磁性陶瓷(又称为铁氧体)、 器陶瓷、压电陶瓷、磁性陶瓷(又称为铁氧体)、 导电陶瓷、超导陶瓷、半导体陶瓷( 导电陶瓷、超导陶瓷、半导体陶瓷(又称为敏感 陶瓷)、热学功能陶瓷(热释电陶瓷、导热陶瓷、 陶瓷)、热学功能陶瓷(热释电陶瓷、导热陶瓷、 )、热学功能陶瓷 低膨胀陶瓷、红外辐射陶瓷等)、化学功能陶瓷 低膨胀陶瓷、红外辐射陶瓷等)、化学功能陶瓷 )、 (多孔陶瓷载体等)、生物功能陶瓷等。 多孔陶瓷载体等)、生物功能陶瓷等。 )、生物功能陶瓷等
材料与人类文明
材料是人类文明、社会进步、 材料是人类文明、社会进步、科学技术发展的物 质基础和技术先导。在历史上,人们将石器、青铜器、 质基础和技术先导。在历史上,人们将石器、青铜器、 铁器等当时的主导材料作为时代的标志, 铁器等当时的主导材料作为时代的标志,称其为石器 时代、青铜器时代和铁器时代。在近代, 时代、青铜器时代和铁器时代。在近代,材料的种类 及其繁多,各种新材料不断涌现, 及其繁多,各种新材料不断涌现,很难用一种材料来 代表当今时代的特征。 代表当今时代的特征。
传统的无机非金属材料之一: 传统的无机非金属材料之一:陶瓷
陶瓷按其概念和用途不 同,可分为两大类,即普通 可分为两大类, 陶瓷和特种陶瓷。 陶瓷和特种陶瓷。 根据陶瓷坯体结构及其基 本物理性能的差异,陶瓷制 本物理性能的差异, 品可分为陶器和瓷器。 品可分为陶器和瓷器。 陶器
普通陶瓷即传统陶瓷, 普通陶瓷即传统陶瓷,是指以粘土为主要 即传统陶瓷 原料与其它天然矿物原料经过粉碎混练、 原料与其它天然矿物原料经过粉碎混练、 成型、煅烧等过程而制成的各种制品。 成型、煅烧等过程而制成的各种制品。包 括日用陶瓷、卫生陶瓷、建筑陶瓷、 括日用陶瓷、卫生陶瓷、建筑陶瓷、化工 陶瓷、电瓷以及其它工业用陶瓷。 陶瓷、电瓷以及其它工业用陶瓷。
特种玻璃(亦称为新型玻璃)是指采用精制、 特种玻璃(亦称为新型玻璃)是指采用精制、高纯或 新型原料,通过新工艺在特殊条件下或严格控制形成过程 新型原料,通过新工艺在特殊条件下或严格控制形成过程 制成的一些具有特殊功能或特殊用途的玻璃。 制成的一些具有特殊功能或特殊用途的玻璃。 特种玻璃包括SiO 含量在85 以上或55 85% 55% 特种玻璃包括SiO2含量在85%以上或55%以下的硅酸盐 玻璃、非硅酸盐氧化物玻璃(硼酸盐、磷酸盐、锗酸盐、 玻璃、非硅酸盐氧化物玻璃(硼酸盐、磷酸盐、锗酸盐、 碲酸盐、铝酸盐及氧氮玻璃、氧碳玻璃等) 碲酸盐、铝酸盐及氧氮玻璃、氧碳玻璃等)、非氧化物玻 璃(卤化物、氮化物、硫化物、硫卤化物、金属玻璃等) 卤化物、氮化物、硫化物、硫卤化物、金属玻璃等) 以及光学纤维等。 以及光学纤维等。 根据用途不同,特种玻璃分为防辐射玻璃、激光玻璃、 根据用途不同 , 特种玻璃分为防辐射玻璃 、 激光玻璃 、 生物玻璃、多孔玻璃、非线性光学玻璃和光纤玻璃等。 生物玻璃、多孔玻璃、非线性光学玻璃和光纤玻璃等。
2. 无机非金属材料
无机非金属材料是由硅酸盐、铝酸盐、硼酸盐、 无机非金属材料是由硅酸盐、铝酸盐、硼酸盐、磷酸 盐、锗酸盐等原料和(或)氧化物、氮化物、碳化物、硼 锗酸盐等原料和( 氧化物、氮化物、碳化物、 化物、硫化物、硅化物、卤化物等原料经一定的工艺制备 化物、硫化物、硅化物、 而成的材料。是除金属材料、高分子材料以外所有材料的 而成的材料。是除金属材料、 总称。它与广义的陶瓷材料有等同的含义。 总称。它与广义的陶瓷材料有等同的含义。无机非金属材 料种类繁多,用途各异,目前还没有统一完善的分类方法。 料种类繁多,用途各异,目前还没有统一完善的分类方法。 一般将其分为传统的(普通的)和新型的(先进的) 一般将其分为传统的(普通的)和新型的(先进的)无机 非金属材料两大类。 非金属材料两大类。
0.1.1 按化学组成(或基本组成)分类
1. 金属材料 2. 无机非金属材料 高分子材料(聚合物) 3. 高分子材料(聚合物) 4. 复合材料
1.金属材料 1.金属材料
金属材料是由化学元素 周期表中的金属元素组成的 材料。可分为由一种金属元 材料。 素构成的单质(纯金属); 素构成的单质(纯金属); 由两种或两种以上的金属元 素或金属与非金属元素构成 的合金。 的合金。合金又可分为固溶 体和金属间化合物。 体和金属间化合物。
0.1 材料分类
材料按化学组成(或基本组成) 0.1.1 材料按化学组成(或基本组成)分类 0.1.2 根据材料的性能分类 0.1.3 材料按服役的领域来分类 0.1.4 材料按结晶状态分类 0.1.5 材料按材料的尺寸分类
按物理性质可分为:导电材料、绝缘材料、半 物理性质可分为:导电材料、绝缘材料、 可分为 导体材料、磁性材料、透光材料、高强度材料、 导体材料、磁性材料、透光材料、高强度材料、 高温材料、超硬材料等。 高温材料、超硬材料等。 按物理效应分为:压电材料、热电材料、铁电 物理效应分为:压电材料、热电材料、 分为 材料、非线性光学材料、磁光材料、电光材料、 材料、非线性光学材料、磁光材料、电光材料、 声光材料、激光材料等。 声光材料、激光材料等。 按用途分为:电子材料、电工材料、光学材料、 用途分为:电子材料、电工材料、光学材料、 分为 感光材料、耐酸材料、研磨材料、耐火材料、 感光材料、耐酸材料、研磨材料、耐火材料、建 筑材料、结构材料、包装材料等。 筑材料、结构材料、包装材料等。
特种陶瓷是用于各种现代工业及尖端科学技术 特种陶瓷是用于各种现代工业及尖端科学技术 领域的陶瓷制品。包括结构陶瓷和功能陶瓷。 领域的陶瓷制品。包括结构陶瓷和功能陶瓷。 结构陶瓷主要用于耐磨损、高强度、耐高温、 结构陶瓷主要用于耐磨损、高强度、耐高温、 耐热冲击、硬质、高刚性、低膨胀、 耐热冲击、硬质、高刚性、低膨胀、隔热等场 所。功能陶瓷主要包括电磁功能、光学功能、 功能陶瓷主要包括电磁功能、光学功能、 生物功能、核功能及其它功能的陶瓷材料。 生物功能、核功能及其它功能的陶瓷材料。
根据陶瓷坯体结构及其基本物理性能的差异, 根据陶瓷坯体结构及其基本物理性能的差异, 陶瓷制品可分为陶器和瓷器。 陶瓷制品可分为陶器和瓷器。陶器包括粗陶 陶器 器、普陶器和细陶器。陶器的坯体结构较疏 普陶器和细陶器。 松,致密度较低,有一定吸水率,断口粗糙 致密度较低,有一定吸水率, 无光,没有半透明性,断面成面状或贝壳状。 无光,没有半透明性,断面成面状或贝壳状。
材料是当代文明的三大支柱之一
材料、能源、信息是当代社会文明和国 材料、能源、信息是当代社会文明和国 民经济的三大支柱, 民经济的三大支柱,是人类社会进步和科 学技术发展的物质基础和技术先导。 学技术发展的物质基础和技术先导。
材料是全球新技术革命的四大标志之一 材料是全球新技术革命的四大标志之一 四大标志 新材料技术、新能源技术、信息技术、 (新材料技术、新能源技术、信息技术、 生物技术)。 生物技术)。
什么是材料科学? 什么是材料科学?
材料科学是一门以固体材料为研究对象,以固体物理、 材料科学是一门以固体材料为研究对象,以固体物理、 热力学、动力学、量子力学、冶金、化工为理论基础的边 热力学、动力学、量子力学、冶金、 缘交叉基础应用学科,它运用电子显微镜、X-射线衍射、 缘交叉基础应用学科,它运用电子显微镜、 射线衍射、 热谱、电子离子探针等各种精密仪器和技术, 热谱、电子离子探针等各种精密仪器和技术,探讨材料的 组成、结构、制备工艺和加工使用过程与其机械、物理、 组成、结构、制备工艺和加工使用过程与其机械、物理、 化学性能之间的规律的一门基础应用学科, 化学性能之间的规律的一门基础应用学科,是研究材料共 性的一门学科。 性的一门学科。