四川大学化工原理流体力学实验报告

合集下载

化工原理流体综合实验报告(DOC)

化工原理流体综合实验报告(DOC)

流体综合实验实验目的1)能进行光滑管、粗糙管、闸阀局部阻力测定实验,测出湍流区阻力系数与雷诺数关系曲线图;2)能进行离心泵特性曲线测定实验,测出扬程与流量、功率与流量以及离心泵效率与流量的关系曲线图;3)学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解涡轮流量计、电动调节阀以及相关仪表的原理和操作;离心泵特性测定实验一、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、轴功率N及效率η与泵的流量Q之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。

由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。

1.扬程H的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:(1-1)由于两截面间的管子较短,通常可忽略阻力项fhΣ,速度平方差也很小,故也可忽略,则有(1-2)式中:H=Z2-Z1,表示泵出口和进口间的位差,m;ρ——流体密度,kg/m3 ;g——重力加速度m/s2;p 1、p2——分别为泵进、出口的真空度和表压,Pa;H1、H2——分别为泵进、出口的真空度和表压对应的压头,m;u 1、u2——分别为泵进、出口的流速,m/s;z 1、z2——分别为真空表、压力表的安装高度,m。

由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。

2.轴功率N的测量与计算N=N电×k (W)(1-3)其中,N电为电功率表显示值,k代表电机传动效率,可取k=0.953.效率η的计算泵的效率η是泵的有效功率Ne与轴功率N的比值。

有效功率Ne是单位时间内流体经过泵时所获得的实际功率,轴功率N是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。

泵的有效功率Ne可用下式计算:N e=HQρg (1-4)故泵效率为(1-5)四、实验步骤及注意事项(一)实验步骤:1.实验准备:(1)实验用水准备:清洗水箱,并加装实验用水。

流体力学综合实训报告总结

流体力学综合实训报告总结

本次流体力学综合实训旨在通过实际操作和理论学习的结合,使我对流体力学的基本原理、基本方法及实验技能有更深入的理解和掌握。

通过实训,我能够提高自己的动手能力、实验技能和综合运用知识解决实际问题的能力。

二、实训内容1. 流体力学基本实验(1)流体流速分布测量实验通过实验,我学习了流速分布的测量方法,掌握了流速分布曲线的绘制技巧。

实验结果表明,流速分布曲线呈现出明显的抛物线形状,符合流体力学的基本理论。

(2)流量测量实验在流量测量实验中,我学习了流量计的使用方法,掌握了不同流量计的优缺点。

通过实验,我了解了流量测量在工程实践中的应用,提高了自己的实际操作能力。

(3)伯努利方程实验通过伯努利方程实验,我加深了对伯努利方程的理解,学会了如何运用伯努利方程解决实际问题。

实验结果表明,伯努利方程在流体力学中具有广泛的应用价值。

2. 流体力学综合实验(1)管道摩擦系数测定实验在管道摩擦系数测定实验中,我学习了管道摩擦系数的测量方法,掌握了不同管道的摩擦系数。

实验结果表明,管道摩擦系数与管道材料、粗糙度等因素有关。

(2)弯管流量测量实验弯管流量测量实验使我了解了弯管对流体流动的影响,学会了如何测量弯管流量。

实验结果表明,弯管流量与弯管角度、管道直径等因素有关。

(3)流体阻力实验流体阻力实验使我掌握了流体阻力系数的测量方法,了解了流体阻力系数与流体特性、管道形状等因素的关系。

实验结果表明,流体阻力系数在工程实践中具有重要的应用价值。

1. 实验技能提高通过本次实训,我掌握了流体力学基本实验和综合实验的操作方法,提高了自己的实验技能。

在实验过程中,我学会了如何使用实验仪器、如何观察实验现象、如何分析实验数据,为今后从事相关领域的工作奠定了基础。

2. 理论知识深化在实训过程中,我结合实验现象对流体力学的基本原理进行了深入思考,使我对流体力学的基本理论有了更深刻的理解。

同时,通过实验数据的分析,我对流体力学的基本方法有了更全面的掌握。

化工原理含实验报告(3篇)

化工原理含实验报告(3篇)

第1篇一、实验目的1. 理解并掌握化工原理中的基本概念和原理。

2. 通过实验验证理论知识,提高实验技能。

3. 熟悉化工原理实验装置的操作方法,培养动手能力。

4. 学会运用实验数据进行分析,提高数据处理能力。

二、实验内容本次实验共分为三个部分:流体流动阻力实验、精馏实验和流化床干燥实验。

1. 流体流动阻力实验实验目的:测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re的关系,将测得的~Re曲线与由经验公式描出的曲线比较;测定流体在不同流量流经全开闸阀时的局部阻力系数。

实验原理:流体在管道内流动时,由于摩擦作用,会产生阻力损失。

阻力损失的大小与流体的雷诺数Re、管道的粗糙度、管道直径等因素有关。

实验中通过测量不同流量下的压差,计算出摩擦系数和局部阻力系数。

实验步骤:1. 将水从高位水槽引入光滑管,调节流量,记录压差。

2. 将水从高位水槽引入粗糙管,调节流量,记录压差。

3. 改变流量,重复步骤1和2,得到一系列数据。

4. 根据数据计算摩擦系数和局部阻力系数。

实验结果与分析:通过实验数据绘制~Re曲线和局部阻力系数曲线,与理论公式进行比较,验证了流体流动阻力实验原理的正确性。

2. 精馏实验实验目的:1. 熟悉精馏的工艺流程,掌握精馏实验的操作方法。

2. 了解板式塔的结构,观察塔板上汽-液接触状况。

3. 测定全回流时的全塔效率及单板效率。

4. 测定部分回流时的全塔效率。

5. 测定全塔的浓度分布。

6. 测定塔釜再沸器的沸腾给热系数。

实验原理:精馏是利用混合物中各组分沸点不同,通过加热使混合物汽化,然后冷凝分离各组分的方法。

精馏塔是精馏操作的核心设备,其结构对精馏效率有很大影响。

实验步骤:1. 将混合物加入精馏塔,开启加热器,调节回流比。

2. 记录塔顶、塔釜及各层塔板的液相和气相温度、压力、流量等数据。

3. 根据数据计算理论塔板数、全塔效率、单板效率等指标。

4. 绘制浓度分布曲线。

实验结果与分析:通过实验数据,计算出了理论塔板数、全塔效率、单板效率等指标,并与理论值进行了比较。

四川大学化工原理流体力学实验报告

四川大学化工原理流体力学实验报告

qHρg
qHρ 9.81 1000
qHρ 102
三、实验流程图
球阀 1

子 流
球阀 2


球阀 3
闸阀 2
闸阀 1
水箱
真空压力表 离心泵
压力表
四、实验操作步骤
流体力学实验流程示意图
1、求 λ 与 Re 的关系曲线
1) 根据现场实验装置,理清流程,检查设备的完好性,熟悉各仪表的使用方法。
2) 打开控制柜面上的总电源开关,按下仪表开关,检查无误后按下水泵开关。
式中:N — —离心泵轴功率, kW;
传 — —机械传动效率,近似 值取为0.95;
N电 — —电动机的输入功率, 由功率表测定。
3
四川大学化工原理流体力学实验报告
(4)离心泵效率η的 测定:泵的效率是指理 论功率与轴功率的比值 ,即
η
Nt N
而理论功率N t是离心泵对流体所做的 有效功率,即
Nt
3. 测定在一定转速下离心泵的特性曲线。
二、实验原理
1、求 与 Re 的关系曲线
流体在管道内流动时,由于实际流体有粘性,其在管内流动时存在摩擦阻力,必然会引起
流体能量损耗,此损耗能量分为直管阻力损失与局部阻力损失。流1 体在水平直管内作稳态流2
动(如图 1 所示)时的阻力损失可根据伯努利方程求得。
以管中心线为基准面,在 1、2 截面间列伯努利方程:
p1
g
u
2 1
2g
Z1 H
p2 g
u
2 2
2g
Z2
Hf
因p1 p 大气压 - p真,p 2 p 大气压 p 表,Z2 - Z1 0.2,所以水经离心泵所

化工原理第一次实验报告-流体力学试验-可编辑-格式正确-有数据处理

化工原理第一次实验报告-流体力学试验-可编辑-格式正确-有数据处理

本科生实验报告题目流体力学实验学院化学工程学院专业学生姓名学号年级指导教师二Ο一九年十月十七日1.实验目的(1)测定水在管道内流动的直管阻力,绘制λ与Re的关系曲线。

(2)测定一定转速下,离心泵的特性曲线。

(3)比较同一流体在不同管径和不同材质管道内流动时的阻力变化。

(4)熟悉流量、压差、温度等化工仪表的使用。

2.实验原理(1)流体在管道内流动时,由于实际流体有黏性,其在管内流动时存在内摩擦力,必然会引起流体的能量损耗,此能量损耗分为直管阻力和局部阻力。

流体在直管内流动时的能量损耗为直管阻力,此直观阻力根据伯努利方程求得。

图2-1 流体在1、2截面间稳定流动Figure 2-1 Fluid flows steadily between sections 1 and 2 以管中心线水平面为基准面,在1-1、2-2界面间列伯努利方程p1ρ+u12+g z1=p2ρ+u22+gz2+h f(2-1)因为u1=u2,z1=z2,故流体在等直径管1-1、2-2两界面间的直管阻力为h f=p1-p2ρ=∆pρ(2-2)∆p由压差变送器测定; u=Q/A, Q用涡轮流量计测定;ρ和μ通过双金属温度计测定流体的温度从而查表确定流体以流速u通过管内径为d、长度为l的一段管道时,其直管阻力为h f=λ∙ld ∙u22(2-3)而雷诺数Re=dμρμ(2-4) 由此可见,摩擦系数与流体流动类型,管壁粗糙度等因素有关。

由因次分析法整理,可以得到摩擦系数的表达式λ=φ(Re,εd)(2-5)流体在管内层流和湍流的摩擦系数和雷诺图的关系可以分别用(2-6)和(2-7)两个公式来表达λ=64Re(2-6)λ=0.1(εd +68Re)0.23(2-7)(2)离心泵的特性:可以用泵在一定条件下,扬程H与流量Q v,轴功率N与Q v,效率η与Q v 之间的关系来表达,将这三条曲线画在同一直角坐标系中,得到三条曲线,则为泵的特性曲线。

流体力学综合实验报告

流体力学综合实验报告

式中:
; ——离心泵出、进口表压(Pa);
——离心泵进、出口管内流速(m/s);
——离心泵进、出口压力表处离基准面的高度(m);
——离心泵扬程( );
——流体密度( )
③轴功率 N:离心泵的轴功率 N(kW)是指泵轴所消耗的电功率,实验采用
功率表测定电机输入功率后,按下式进行计算
式中:N——离心泵轴功率(kW); ——机械传动效率,近似取为; ——电动机的输入有效功率,由功率表测定。
四川大学
化工原理实验报告
学院 化学工程学院 专业 化学工程与工艺 班号
学号
实验日期 年 月 日
姓名 指导老师
一.实验名称
流体力学综合实验
二.实验目的
测定流体在管道内流动时的直管阻力损失,作出 与 Re 的关系曲线。 观察水在管道内的流动类型。 测定在一定转速下离心泵的特性曲线。 标定孔板流量计,绘制 Co 与 Re 的关系曲线。 熟悉流量、压差、温度等化够不够仪表的使用。
, 轴功
率与流量
,效率与流量
三条曲线形式表示。若将扬程
H、轴功率 N 和效率 对流量 之间的关系分别绘制在同一直角坐标上所得的
三条曲线,即为离心泵的特性曲线,如图二所示。
①流量 :离心泵输送的流量 由涡轮流量计测定。
②扬程 H:扬程是指离心泵对单位重量的液体所提供的外加能量。以离心
泵入口管中心线的水平面为基准面,离心泵入口真空压力表处为 1-1 截面,出 口压力表处为 2-2 截面,在 1-1 截面和 2-2 截面之间列出伯努利方程式,确定 流体经离心泵所增加的能量( )此能量称为扬程 H,其计算式为
查得 24 时水的物性参数:
,
入口压力 ,出口压力

化工原理实验报告精选范文

化工原理实验报告精选范文

化工原理实验报告化工原理实验报告精选范文化工原理实验报告一、实验目的1 测定流体在圆直等径管内流动时的摩擦系数λ与雷诺数Re的关系,将测得的λ~Re曲线与由经验公式描出的曲线比较;2 测定流体在不同流量流经全开闸阀时的局部阻力系数ξ3 掌握流体流经直管和阀门时阻力损失的测定方法,通过实验了解流体流动中能量损失的变化规律4 学会倒U形差压计 1151差压传感器 Pt温度传感器和转子流量计的使用方法5 观察组成管路的各种管件阀门,并了解其作用。

6 掌握化工原理实验软件库的使用二、实验装置流程示意图及实验流程简述来自高位水槽的.水从进水阀1首先流经光滑管11上游的均压环,均压环分别与光滑管的倒U形压差计和1151压差传感器15的一端相连,光滑管11下游的均压环也分别与倒U形压差计和1151压差传感器的另一端相连。

当球阀3关闭且球阀2开启时,光滑管的水进入粗糙管12,粗糙管上下游的均压环分别同时与粗糙管的倒U形压差计和1151压差传感器的两端相连。

当球阀5关闭时,从粗糙管下来的水流经铂电阻温度传感器18,然后经流量调节阀6及流量计16后,排入地沟。

当球阀2关闭且球阀3打开时,从光滑管来的水就流入装有闸阀4的不锈钢管13,闸阀两端的均压环分别与一倒U形压差计的两端相连,最后水流经流量计,再排入地沟。

三、简述实验操作步骤及安全注意事项1 操作步骤(1)排管路中的气泡。

打开阀1、2、3、6,排除管路中的气泡,直至流量计中的水不含气泡为至,然后关闭阀6。

(2)1151压差传感器排气及调零。

排除两个1151压差传感器内气泡时,只要打开压差传感器下面的考克7、8、9、10,当软管内水无气泡时,排气结束,此过程可反复多次,直至无气泡为至。

压差传感器排气结束后,用螺丝刀调节压差传感器背后Z旋扭,使相应的仪表数字显示在0左右,压差传感器即可进入实验状态。

(3)U形压差计内及它们连接管内的气泡的排除。

关闭倒U形压差计上方的放空阀,打开U形压差计下方的排水考克,再打开U形压差计下方与软管相连的左右阀,关闭左右阀中间的平衡阀,直到玻璃管中水不出现气泡,然后关闭U形压差计下方与软管相连的左右阀,打开上方的放空阀和下方的排水考克,令玻璃管内水位下降到适当高度,再打开左右阀中间的平衡阀,倒U形压差计两玻璃管内的水位会相平,否则重复上过排汽过程,直至两玻璃管内的水位相平。

流体力学实验报告

流体力学实验报告

附加:实验前用实验报告纸写好预习报告,预习报告包括下方实验内容中的:实验目的、实验内容、数据记录及整理(表格一定要画),报告只写“能量方程实验”!“雷诺实验”暂时不写能量方程实验一、实验目的1.观察流体流经能量方程实验管时的能量转化情况,并对实验中出现的现象进行分析,从而加深对能量方程的理解。

2.掌握一种测量流体流速的方法。

二、实验内容1.测出能量方程实验管的四个断面四组测压管的液柱高度,并利用计量水箱和秒表测定流量。

2.根据测试数据和计算结果,绘出某一流量下的各种水头线,并运用能量方程进行分析,解释各测点各种能头的变化规律。

三、实验设备综合实验台:由下水箱、水泵、阀、上水箱、有机玻璃管路、测压计、计量水箱等组成,如图1所示。

图1 综合实验台示意图四、实验步骤1.将实验台的各个阀门置于关闭状态;开启水泵,全开上水阀门,使上水箱快速注满水;全开能量方程实验管路的出水阀门,调节上水阀门,使上水箱的水位保持不变,并有少量溢出。

2.关闭能量方程实验管路的出水阀门,此时能量方程试验管的四个断面四组测压管的液柱应位于同一高度,此为起始总水头,记入数据表中。

3.调节能量方程实验管路的出水阀门至某一开度(工况1),测定能量方程试验管的四个断面四组测压管的液柱高度,并利用秒表和计量水箱测定流量,记入数据表中。

4.改变能量方程实验管路的出水阀门的开度(工况2),测定能量方程试验管的四个断面四组测压管的液柱高度,并利用秒表和计量水箱测定流量,记入数据表中。

5.整理实验数据。

五、注意事项数据测定必须待流体流动稳定时方可读数。

六、数据记录及整理1.实验数据记录计量水箱底面积A(cm2):表1 流量测定数据记录及整理表2.实验数据整理 (1) 体积流量:()tAh h Q 12-=m 3/s注意:式中h 1、h 2的单位为m ,A 的单位为m 2,t 的单位为s 。

(2) 速度水头h ∆=总压水头-测压管水头能量损失=前后断面总压水头之差(3) 平均流速:24dQU π= m/s轴心流速:h g V ∆=2 m/s注意:式中Q 的单位为m 3/s ,d 的单位为m ,h ∆的单位为m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体在一段水平等管径管内流动时,测出一定流量下流体流经这 段管路所产生的压降,即可算得 hf 。两截面压差由差压传感器测得; 流量由涡轮流量计测得,其值除以管道截面积即可求得流体平均流速 u 。在已知管径 d 和平均流速 u 的情况下,测定流体温度,确定流体 的密度 和黏度 ,则可求出雷诺数 Re ,从而关联出流体流过水平直 管的摩擦系数 与雷诺数 Re 的关系曲线图。
Nt N
而理论功率N t是离心泵对流体所做的 有效功率,即
Nt
qHρg
qHρ 9.81 1000
qHρ 102
三、实验流程图
转子球阀 1 流量球阀 2 计 球阀 3 闸阀 2 闸阀 1
水箱
真空压力表 离心泵
压力表
流体力学实验流程示意 图 四、实验操作步骤
1、求 λ 与 Re 的关系曲线
1) 根据现场实验装置,理清流程,检查设备的完好性,熟悉各仪表 的使用方法。
2) 打开控制柜面上的总电源开关,按下仪表开关,检查无误后按下 水泵开关。
3) 打开球阀 1,调节流量调节闸阀 2 使管内流量约为 m3 / h ,逐步减 小流量,每次约减少 m3 / h ,待数据稳定后,记录流量及压差读数, 待流量减小到约为 4 m3 / h 后停止实验。
4) 打开球阀 2,关闭球阀 1,重复步骤(3)。 5) 打开球阀 2 和最上层钢管的阀,调节转子流量计,使流量为 40 L / h ,
逐步减小流量,每次约减少 4 L / h ,待数据稳定后,记录流量及压 差读数,待流量减小到约为 4 L / h 时停止实验。完成直管阻力损失 测定。
2、求离心泵的特性曲线 1) 根据现场实验装置,理清流程,检查设备的完好性,熟悉各仪表
的使用方法。 2) 打开控制柜面上的总电源开关,按下仪表开关,先关闭出口阀门,
化工原理实验报告
流体力学综合实验
姓名: 学号: 班级号: 实验日期:实验成绩:
流体力学综合实验
一、 实验目的: 1. 测定流体在管道内流动时的直管阻力损失,作出 与 Re 的关系曲
线。
1
2
1
2. 观察水在管道内的流动类型。
3. 测定在一定转速下离心泵的特性曲线。
二、实验原理
1、求 与 Re 的关系曲线
2、求离心泵的特性曲线
离心泵的特性,可用该 泵在一定转速下,扬程 与流量H f1(q)、轴功率与流量 N f2(q)和 效率与流量 f3(q)三种曲线来表示。若将 H、N和对Q间的关系分别标绘在同 一直角坐标系 所得的三条曲线,即为 离心泵的特性曲线。
泵的特性曲线是确定泵 的适宜操作条件和选用 离心泵的重要依据。
检查无误后按下水泵开关。 3) 打开球阀 2,调节流量调节阀 1 使管内流量,先开至最大,再逐
步减小流量,每次约减少 1 m3 / h ,待数据稳定后,记录流量及压 差读数,待流量减小到约为 4 m3 / h 后停止实验,记录 9-10 组数据。 4) 改变频率为 35Hz,重复操作(3),可以测定不同频率下离心泵的 特性曲线。
(1)流量qv(m 3 / h)的测定:通常用泵出 口阀调节离心泵输送的 流量,并由涡轮流量计 测定,
本实验采用涡轮流量计 后面的调节阀来调节流 量。
(2)扬程H(mH 2O )的测定:扬程是指泵每 输送1kg重量流体所提供的外加 能量。若泵输送的介 质是水,则在水箱液面 和离心泵出口压力表之 间根据量守恒定律可 确定水经离心泵所增加
u22 2
gz2 hf
因 u1=u2,z1=z2,故流体在等直径管的 1、2 两截面间的阻力损失为
P hf
流体流经直管时的摩擦系数与阻力损失之间的关系可由范宁公式求
得,其表达式为
hf
l d
u2 2
由上面两式得:
2 图 1 流体在 1、2 截面间稳定
流动
P
d l
2 u2
Re du

由此可见,摩擦系数与流体流动类型、管壁粗糙度等因素有关。 由因此分析法整理可形象地表示为
增加的能量为
H
p真 - p表 g
u
2 2
-
u12
2g
0.2
Hf
式中: H f 0,p 表,p真 — —离心泵出口表压、进 口真空度, Pa;
u 2 — —离心泵出口管内流速 ,m / s; H — —离心泵扬程, mH 2O; — —流体密度, kg / m 3。
(3)离心泵的轴功率 N(kW )的测定:泵轴功率是指 泵轴所消耗的电功率, 也是电
五、实验数据记录
1、设备参数:
层流钢管管长: L1 2.0m;管内径:d1 6mm ;
湍流铜管管长: L2 1.2m;管内径:d 2 31mm ;
湍流钢管管长: L3 1.2m;管内径:d 3 31mm; 离心泵进口管径: D 50mm;出口管径: d 40mm; 孔板孔径: do 12mm . 离心泵Z 0.2m; N N 电 传 (传 0.95); 管内径: d1 31mm .
动机传给泵轴的功率。 本实验采用功率表测定 电机输入功率后,用下 式来计算轴
功率。
N N电 传
式中:N — —离心泵轴功率, kW;
传 — —机械传动效率,近似 值取为0.95;
N电 — —电动机的输入功率, 由功率表测定。
(4)离心泵效率η的 测定:泵的效率是指理 论功率与轴功率的比值 ,即
η
流体在管道内流动时,由于实际流体有粘性,其在管内流动时存 在摩擦阻力,必然会引起流体能量损耗,此损耗能量分为直管阻力损 失和局部阻力损失。流体在水平直管内作稳态流动(如图 1 所示)时 的阻力损失可根据伯努利方程求得。
以管中心线为基准面,在 1、2 截面间列伯努利方程:
P1
u12 2
gz1
p2
的能量(mH 2O ),此能量称为扬程 H。 以水平地面为基准,离 心泵进口真空泵为 1 — 1截面和离心泵出口压力 表处为2 — 2截面,在
此两截面间列出伯努利 方程式:
p1
g
u
2 1
2g
Z1 H
p2 g
u
2 2
2g
Z2
Hf
因p1 p 大气压 - p真,p 2 p 大气压 p 表,Z2 - Z1 0.2,所以水经离心泵所
f (Re, ) d
式中: hf -----------直管阻力损失,J/kg;
------------摩擦阻力系数;
l.d ----------直管长度和管内径,m; P ---------流体流经直管的压降,Pa; -----------流体的密度,kg/m3; -----------流体黏度,; u -----------流体在管内的流速,m/s;
相关文档
最新文档