流体力学实验报告
流体力学实验报告

实验一 柏努利实验一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程。
2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。
二、基本原理流动的流体具有三种机械能:位能、动能和静压能,这三种能量可以互相转换。
在没有摩擦损失且不输入外功的情况下,流体在稳定流动中流过各截面上的机械能总和是相等的。
在有摩擦而没有外功输入时,任意两截面间机械能的差即为摩擦损失。
流体静压能可用测压管中液柱的高度来表示,取流动系统中的任意两测试点,列柏努利方程式:∑+++=++f h p u g Z P u g Z ρρ2222121122对于水平管,Z 1=Z 2,则 ∑++=+f h p u p u ρρ22212122若u 1=u 2, 则P 2<P 1;在不考虑阻力损失的情况下,即Σh f =0时,若u 1=u 2, 则P 2=P 1。
若u 1>u 2 , p 1<p 2;在静止状态下,即u 1= u 2= 0时,p 1=p 2。
三、实验装置及仪器图2-2 伯努利实验装置图装置由一个液面高度保持不变的水箱,与管径不均匀的玻璃实验管连接,实验管路上取有不同的测压点由玻璃管连接。
水的流量由出口阀门调节,出口阀关闭时流体静止。
四、实验步骤及思考题3、关闭出口阀7,打开阀门3、5,排出系统中空气;然后关闭阀7、3、5,观察并记录各测压管中的液压高度。
思考:所有测压管中的液柱高度是否在同一标高上?应否在同一标高上?为什么?4、将阀7、3半开,观察并记录各个测压管的高度,并思考:(1)A、E两管中液位高度是否相等?若不等,其差值代表什么?(2)B、D两管中,C、D两管中液位高度是否相等?若不等,其差值代表什么?5、将阀全开,观察并记录各测压管的高度,并思考:各测压管内液位高度是否变化?为什么变化?这一现象说明了什么?五、实验数据记录.液柱高度 A B C D E阀门关闭半开全开实验二 雷诺实验一、实验目的1、 观察流体在管内流动的两种不同型态,加强层流和湍流两种流动类型的感性认识;2、掌握雷诺准数Re 的测定与计算;3、测定临界雷诺数。
管路串并联实验报告流体力学

管路串并联实验报告流体力学实验目的:1.通过实验,了解和掌握管路串并联的基本原理和流体力学的相关概念;2.通过实验,掌握串并联管路的流量计算方法;3.通过实验,验证管路串并联对流量和压力的影响。
实验原理:1.管路串联实验原理:当两个管路串联时,流入和流出的质量流量相等,即m1=m2;由连续性方程可得,A1v1=A2v2,其中A为横截面积,v为流速;令Q1=A1v1为第一个管路的流量,Q2=A2v2为第二个管路的流量,则Q1=Q22.管路并联实验原理:当两个管路并联时,流入和流出的压力相等,即p1=p2;由伯努利定律可得,p1 + 0.5ρv1^2 + ρgh1 = p2 + 0.5ρv2^2 +ρgh2,其中ρ为流体密度,g为重力加速度,h为管道高度差;令Δp1=p1-p2为流体流过第一个管路时的压力损失,Δp2=p2-p3为流体流过第二个管路时的压力损失,则Δp1=Δp2实验设备:1.串联管路实验装置:包括输液瓶、流量计、球阀、直径不同的管道;2.并联管路实验装置:包括输液瓶、压力计、球阀、直径不同的管道。
实验步骤:1.串联管路实验:a)打开球阀,使开度最大,待流量计稳定后记录流量Q1和压力p1;b)关闭球阀,改变流量计跨度,使流量变为Q2,打开球阀,待流量计稳定后记录流量Q2和压力p2;c)比较Q1和Q2的大小,并记录相应的压力差。
2.并联管路实验:a)打开球阀,调整压力计,使压力差为Δp1,待压力计稳定后记录流量Q1;b)改变压力计跨度,使压力差变为Δp2,待压力计稳定后记录流量Q2;c)比较Q1和Q2的大小。
数据处理:1.串联管路实验:a)计算不同流量下的压力差Δp=p1-p2;b)绘制流量-压力差曲线,并进行线性拟合,得到斜率k1;c)使用Q1=Q2,计算出k2=Δp1/Δp2;d)比较k1和k2的大小,验证串联管路对流量和压力的影响。
2.并联管路实验:a)计算不同压力差下的流量比值Q2/Q1;b)使用Δp1=Δp2,计算出Q2/Q1的理论值;c)比较计算结果与实测值的误差,验证并联管路对流量和压力的影响。
流体力学动量定理实验报告

流体力学动量定理实验报告流体力学是研究流体运动规律的一门学科,其中动量定理是流体力学中的重要定律之一。
本实验旨在通过实际操作验证流体力学动量定理,并深入理解其物理意义和应用。
一、实验目的1. 验证流体力学动量定理的实际有效性;2. 理解动量定理的物理意义和应用;3. 探究不同流体条件下动量定理的适用性。
二、实验原理根据动量定理,当一个物体受到外力作用时,其动量的变化率等于作用在物体上的合外力。
对于流体,其动量定理可以表述为:流体的动量的变化率等于作用在流体上的合外力和压力力之和。
三、实验器材和药品1. 实验装置:流体力学实验装置、流量计、压力计等;2. 实验介质:水。
四、实验步骤1. 将流体力学实验装置连接好,保证流体可以顺利流动;2. 打开水源,调节流量计的流量,保持恒定;3. 使用压力计测量不同位置的压力值,并记录;4. 分别改变流动介质的流速和流量,再次测量压力值并记录;5. 根据实验数据,计算流体的动量变化率并进行比较分析。
五、实验结果与分析通过实验测量得到的压力值和流速数据,可以计算出流体的动量变化率。
根据动量定理,动量的变化率应该等于作用在流体上的合外力和压力力之和。
通过对不同流速和流量下的实验数据进行比较分析,可以得出以下结论:1. 随着流速的增加,流体的动量变化率也增加,说明流体受到的合外力也增大;2. 当流速恒定时,流量的增加会导致动量变化率的增加,说明流体受到的压力力也增大;3. 实验结果与动量定理的预期结果相符,验证了动量定理在流体力学中的适用性。
六、实验总结与思考通过本次实验,我们深入理解了流体力学动量定理的物理意义和应用。
实验结果表明,动量定理在流体力学中具有实际有效性,并能够用于解释和预测流体运动过程中的各种现象。
同时,实验过程中还发现了流速和流量对流体动量变化率的影响,这为进一步研究流体力学提供了新的思路和方向。
通过本次实验我们验证了流体力学动量定理的实际有效性,并深入理解了其物理意义和应用。
流体演示实验实验报告

流体演示实验实验报告流体演示实验实验报告一、引言流体力学是研究流体运动的力学学科,其应用广泛且深入。
为了更好地理解流体力学的基本原理和现象,我们进行了一系列流体演示实验。
本实验报告旨在总结实验过程、分析实验数据,并对实验结果进行讨论。
二、实验目的1. 通过观察流体在不同条件下的行为,理解流体的基本性质和行为规律。
2. 利用实验数据,验证流体力学的基本方程和理论模型。
3. 培养实验操作和数据处理的能力。
三、实验装置与方法本次实验主要使用了以下装置和方法:1. 流体容器:采用透明的玻璃容器,便于观察流体的运动。
2. 流体介质:使用水作为流体介质,因其流动性好且易观察。
3. 流体控制装置:通过调节阀门、泵等装置,控制流体的流量和压力。
4. 流体测量设备:使用流量计、压力计等设备,测量流体的流量和压力。
5. 观察工具:借助显微镜、放大镜等工具,观察流体的微观行为。
四、实验过程与结果1. 流体的黏性实验我们将一小滴染料加入水中,并观察其在水中的扩散情况。
结果显示,染料逐渐扩散开来,形成一个较大的扩散圈。
这表明水具有一定的黏性,即流体的内部存在摩擦力,阻碍了其自由扩散。
2. 流体的压力传递实验我们将一个小孔打在容器的侧面,并从孔处注入水。
观察到水会从孔口喷出,喷出的高度与注入水的高度成正比关系。
这说明流体的压力会沿着容器内的各个方向传递,且传递的速度相同。
3. 流体的流动实验我们调节流体控制装置,使水从一端流入容器,然后从另一端流出。
观察到水在容器内形成了一个明显的流动状态,且流速在不同位置处不同。
这表明流体在受力作用下会产生流动,并且流速与位置有关。
4. 流体的表面张力实验我们在容器中加入一些肥皂水,并在其表面放置一根细棍。
观察到肥皂水的表面形成了一个凹陷,细棍也被吸附在表面上。
这说明肥皂水具有较大的表面张力,能够使表面呈现一定的弹性。
五、实验讨论与分析通过以上实验结果,我们可以得出以下结论:1. 流体具有黏性,内部存在摩擦力,阻碍了其自由扩散。
流体力学实验报告(全)

工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
<0时,试根据记录数据,确定水箱内的真空区域。
2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
流体学综合实验报告

流体学综合实验报告1. 实验目的本实验通过流体力学实验的综合测试,旨在加深对流体学基本原理的理解,并实践流体力学实验的操作方法和数据分析技巧。
具体目标包括:1. 掌握流速测量的原理和方法;2. 学习压力测量的原理和方法;3. 熟悉状态方程的测量方法;4. 分析流体力学实验数据,得出相应结论。
2. 实验仪器与装置本次实验所使用的仪器与装置主要包括:1. 流量计:用于测量流体的流速;2. 压力计:用于测量流体的压力;3. 热敏电阻温度计:用于测量流体的温度;4. 试验台:用于固定仪器和装置。
3. 实验原理3.1 流速测量流速测量的原理基于流体通过管道的体积流量和截面积之间的关系。
通过测量单位时间内流体通过的体积,可以计算出流体的平均流速。
为了保证测量的准确性,实验中使用了流量计。
流量计根据不同的原理可分为多种类型,包括旋转式流量计、压差式流量计和超声波流量计等。
3.2 压力测量压力测量的原理基于流体对容器内壁面施加的压力与流体深度之间的关系。
通过测量所施加的压力,可以计算出流体的压强。
在实验中,为了方便测量压力,使用了压力计。
压力计主要分为摆盘式压力计和压电式压力计。
通过测量压力计的示数,可以间接地得到流体的压力。
3.3 状态方程的测量流体的状态方程描述了流体的温度、压力和体积之间的关系。
实验中,通过使用热敏电阻温度计测量流体的温度,结合压力计测得的压力和容器的体积,可以得到流体的状态方程。
4. 实验步骤与结果分析4.1 流速测量首先将流量计插入管道中,连接相关的测量仪器。
然后根据实验要求设置合适的流速,记录下每组数据,并计算平均流速。
根据实验数据,在相同的压力下,流速与管道截面积成正比例关系。
4.2 压力测量首先将压力计插入容器中,保证测量仪器的稳定性和准确性。
根据实验要求设置不同的压力值,记录下每组数据,并计算平均压力。
通过实验数据的分析,可以得出流体压力与深度成线性关系的结论。
4.3 状态方程的测量在一定的温度下,根据实验要求改变流体的压力和容器的体积,记录下每组测量数据。
流体力学综合实验实验报告

流体力学综合实验实验报告一、实验目的1. 了解流体力学原理。
2. 学习流体力学实验的方法,掌握实验的技能。
3. 通过实验,明白流体力学中流体的各种属性及其产生的作用。
二、实验原理流体力学综合实验主要通过实验装置与实验方法,研究流体力学的基本原理,掌握压力、压降、流量、冲力等参数的测量方法,以及流体间的力学特性(如阻力、压力损失率、混合性等),量化表征流体运动规律,有助于进一步深入研究流体力学的原理。
三、实验设备流体力学综合实验装置由以下部分组成:1.供水管2.压力表3.流量计4.定压调节装置5.实验室水压测试系统6.实验室水压实验系统四、实验步骤1. 打开供水管,启动实验装置,并记录初始温度和流量。
2. 根据实验要求,调整定压调节装置,使实验装置持续运行。
3. 逐步记录实验装置的运行参数,如流量、压力、温度等。
4. 观察实验装置的运行状态,及时记录实验数据。
5. 根据实验结果,归纳总结实验意义,完成实验报告。
五、实验结果实验中测量的参数如下:1. 流量:1.32mL/min;2. 压力:2.45MPa;3. 温度:18℃。
六、实验分析通过实验,可以看出,流量、压力和温度是流体力学中非常重要的参数,改变这些参数,可以影响流体的运动状态,从而得出实验结论。
根据实验,我们可以得出以下结论:1. 压力的变化可以影响流体的流动状态。
随着压力的增加,流体的物理特性也发生了改变,即流量也相应增大。
2. 温度的变化也会影响流体的流动状态。
随着温度的升高,流量会增加。
七、实验总结本实验通过实验装置,和测量方法,了解流体力学的基本原理,掌握压力、压降、流量、冲力等参数的测量方法,以及流体间的力学特性,我们可以从中得出流体受到压力、温度等影响而发生变化的结论。
流体综合实验报告分析

一、实验背景流体力学是研究流体运动规律及其与固体壁面相互作用的科学。
随着工业、交通、建筑等领域的发展,流体力学在各个领域的应用越来越广泛。
为了提高学生对流体力学知识的理解和应用能力,我们进行了流体综合实验。
二、实验目的1. 掌握流体力学基本实验方法,提高实验操作技能。
2. 验证流体力学基本理论,加深对流体运动规律的理解。
3. 分析实验数据,提高数据处理和分析能力。
4. 培养团队合作精神和创新意识。
三、实验内容1. 流体静力学实验:通过测量液体静压强,验证不可压缩流体静力学基本方程,掌握用测压管测量液体静水压强的技能。
2. 流体阻力实验:测定流体流经直管、管件和阀门时的阻力损失,验证在一般湍流区内雷诺准数与直管摩擦系数的关系曲线。
3. 流体流动阻力测定实验:测定流体流经直管、管件和阀门时的阻力损失,验证在一般湍流区内雷诺准数与直管摩擦系数的关系曲线。
四、实验方法与步骤1. 流体静力学实验:使用液式测压计测量液体静压强,记录数据,分析结果。
2. 流体阻力实验:通过测量不同雷诺准数下的流体阻力,绘制雷诺准数与直管摩擦系数的关系曲线。
3. 流体流动阻力测定实验:通过测量不同管件和阀门处的阻力损失,分析流体流动阻力的影响因素。
五、实验结果与分析1. 流体静力学实验:实验结果表明,液体静压强与测压管深度成正比,验证了不可压缩流体静力学基本方程。
2. 流体阻力实验:实验结果表明,在一般湍流区内,雷诺准数与直管摩擦系数呈非线性关系,验证了雷诺准数与直管摩擦系数的关系曲线。
3. 流体流动阻力测定实验:实验结果表明,管件和阀门对流体流动阻力有显著影响,其中弯头、三通等管件对阻力的影响较大。
六、讨论与心得1. 通过流体静力学实验,我们深入理解了不可压缩流体静力学基本方程,为后续学习流体动力学奠定了基础。
2. 流体阻力实验和流体流动阻力测定实验使我们认识到,在工程实践中,流体阻力对设备性能和能耗有重要影响。
因此,在设计过程中,应充分考虑流体阻力因素,以提高设备性能和降低能耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体力学实验指导书与报告静力学实验雷诺实验中国矿业大学能源与动力实验中心学生实验守则一、学生进入实验室必须遵守实验室规章制度,遵守课堂纪律,衣着整洁,保持安静,不得迟到早退,严禁喧哗、吸烟、吃零食和随地吐痰。
如有违犯,指导教师有权停止基实验。
二、实验课前,要认真阅读教材,作好实验预习,根据不同科目要求写出预习报告,明确实验目的、要求和注意事项。
三、实验课上必须专心听讲,服从指导教师的安排和指导,遵守操作规程,认真操作,正确读数,不得草率敷衍,拼凑数据。
四、预习报告和实验报告必须独自完成,不得互相抄袭。
五、因故缺课的学生,可向指导教师申请一次补做机会,不补做的,该试验以零分计算,作为总成绩的一部分,累计三次者,该课实验以不及格论处,不能参加该门课程的考试。
六、在使用大型精密仪器设备前,必须接受技术培训,经考核合格后方可使用,使用中要严格遵守操作规程,并详细填写使用记录。
七、爱护仪器设备,不准动用与本实验无关的仪器设备。
要节约水、电、试剂药品、元器件、材料等。
如发生仪器、设备损坏要及时向指导教师报告,属责任事故的,应按有关文件规定赔偿。
八、注意实验安全,遵守安全规定,防止人身和仪器设备事故发生。
一旦发生事故,要立即向指导教师报告,采取正确的应急措施,防止事故扩大,保护人身安全和财产安全。
重大事故要同时保护好现场,迅速向有关部门报告,事故后尽快写出书面报告交上级有关部门,不得隐瞒事实真相。
九、试验完毕要做好整理工作,将试剂、药品、工具、材料及公用仪器等放回原处。
洗刷器皿,清扫试验场地,切断电源、气源、水源,经指导教师检查合格后方可离开。
十、各类实验室可根据自身特点,制定出切实可行的实验守则,报经系(院)主管领导同意后执行,并送实验室管理科备案。
1984年5月制定2014年4月再修订中国矿业大学能源与动力实验中心流体静力学实验一、实验目的要求1. 掌握用测压管测量流体静压力的技能;2. 验证不可压缩流体静力学基本方程;3. 通过诸多流体静力学现象的实验分析和研讨,进一步提高解决流体静力学实际问题的能力。
二、实验装置本实验的装置如图1.1所示。
图1.1 流体静力学实验装置图1. 测压管2. 带标尺测压管3. 连通管4. 通气阀5. 加压打气球6. 真空测压管7. U型测压管8. 截止阀9. 油柱10. 水柱11. 减压放水阀说明:1. 所有测管液面标高均以标尺(测压管2)零读数为基准;2. 仪器铭牌所注▽B、▽C、▽D系测点B、C、D标高;若同时取标尺零点作为静力学基本方程的基准,则▽B、▽C、▽D亦为z B、z C、z D;3. 本仪器中所有阀门旋柄顺管轴线为开。
三、实验原理1. 在重力作用下不可压缩流体静力学基本方程const =+γpz或 h p p γ+=0 (1.1) 式中: z ——被测点在基准面的相对位置高度;p ——被测点的静水压力,用相对压力表示,以下同; 0p ——水箱中液面的表面压力;γ——液体容重;h ——被测点的液体深度。
另对装有水油(图1.2及图1.3)的U 型测管,应用等压面可得油的比重0S 有下列关系:21100h h h S w +==γγ*(1.2)图1.2 图1.3据此可用仪器(不用另外尺)直接测得0S 。
四、实验方法与步骤*该式推导如下:当U 型管中水面与油水面齐平(图1.2),取其顶面为等压面,有H h p w 0101γγ== (1.a)另当U 型管中水面和油面齐平(图1.3),取其油水面为等压面,则有H p w 002γγ=+ 又 H H h p w w γγγ-=-=0202 (1.b) 由式(1.a)、(1.b)两式联解可得: 21h h H += 代入式(1.a)得:2110h h h w +=γγ (1.c)1. 搞清仪器组成及其用法。
包括: 1) 各阀门的开关;2) 加压方法 关闭所有阀门(包括截止阀),然后用打气球5充气; 3) 减压方法 开启筒底阀11放水;4) 检查仪器是否密封 加压后检查测管1、2、7液面高程是否恒定。
若下降,表明漏气,应查明原因并加以处理。
2. 记录仪器号№及各常数(记入表1.1)。
3. 量测点静压力(各点压力用厘米水柱高表示)。
1) 打开通气阀4(此时00=p ),记录水箱液面的标高▽0和测管2液面标高▽H (此时▽0=▽H );2) 关闭通气阀4及截止阀8,加压使之形成00>p ,测记▽0及▽H ; 3) 打开放水阀11,使密闭箱体内形成00<p (要求其中一次0<γBp ,即B H ∇<∇),测记▽0及▽H 。
4. 测出真空测压管6插入小水杯中的深度。
5. 测定油比重S 0。
1) 开启通气阀4,测记▽0;2) 关闭通气阀4,打气加压(00>p ),微调放气螺母使U 型管中水面与油水交界面齐平(图1.2),测记▽0及▽H (此过程反复进行3次);3) 打开通气阀,待液面稳定后,关闭所有阀门;然后开启放水阀11降压(00<p ),使U 型管中的水面与油面齐平( 图1.3),测记▽0及▽H (此过程亦反复进行3次)。
五、实验成果及要求1. 记录有关常数。
实验装置台号№各测点的标尺读数为:▽B = cm , ▽C = cm , ▽D = cm , =w γ N/cm 3。
2. 分别求出各次测量时,A 、B 、C 、D 点压力,并选择一基准检验同一静止液体内的任意二点C 、D 的⎪⎪⎭⎫⎝⎛+γp z 是否为常数。
3. 求出油的容重。
4. 测出真空测压管6插入小水杯中的深度。
表1.1 流体静压强测量记录及计算表 单位: cm注:表中基准面选在 ,z C = cm , z D cm表1.2 油溶重测量记录及计算表 单位: cm六、实验分析与讨论1. 同一静止液体内的测压管水头线是根什么线?2. 当0<B p 时,试根据记录数据确定水箱内的真空区域。
3. 若再备一根直尺,试采用另外最简便的方法测定0γ。
4. 如测压管太细,对测压管液面的读数将有何影响?5. 过C 点作一水平面,相对测压管1、2、7及水箱中液体而言,这个水平面是不是等压面?哪一部分是同一等压面?6. 用图1.1装置能演示变液位下的定常流实验吗?7. 该仪器在加气增压后,水箱液面将下降δ而测压管液面将升高H ,实验时,若以00=p 时的水箱液面作为测量基准,试分析加气增压后,实验压力(H +δ)与视在压力H 的相对误差值。
本仪器测压管内径为0.8cm ,箱体内径为20cm 。
雷诺实验一、实验目的要求1. 观察层流、紊流的流态及其转换特征;2. 测定临界雷诺数,掌握园管流态判别准则;3. 学习古典流体力学中应用无量纲参数进行实验研究的方法,并了解其实际意义。
二、实验装置本实验的装置如图3.1所示。
图3.1 自循环雷诺实验装置图1. 自循环供水器;2. 实验台;3. 可控硅无级调速器;4. 恒压水箱;5. 有色水水管;6. 稳水孔板;7. 溢流板;8. 实验管道;9. 实验流量调节阀。
供水流量由无级调速器调控,使恒压水箱4始终保持轻微溢流的程度,以提高进口前水体稳定度。
本恒定水箱还设有多道稳水隔板,可使稳水时间缩短3~5分钟。
有色水经有色水水管5注入实验管道8,可据有色水散开与否判别流态。
为防止自循环水污染,有色指示水采用自行消色的专用色水。
三、实验原理KQ d Q d ===γπγν4Re ; γπd K 4=四、实验方法与步骤1. 测记本实验的有关常数。
2. 观察两种流态。
打开调速器3的开关使水箱充水至溢流水位,经稳定后,微微开启调节阀9,使颜色水流入实验管内并使颜色水流成一直线。
通过颜色水质点的运动观察管内水流的层流流态,然后逐步开大调节阀,通过颜色水直线的变化观察层流转变到紊流的水力特征,待管中出现完全紊流后,再逐步关小调节阀,观察由紊流转变为层流的水力特征。
3. 测定下临界雷诺数(1) 将调节阀打开,使管中呈完全紊流,再逐步关小调节阀使流量减小,当流量调节到使颜色水在全管刚呈现出一稳定直线时,即为下临界状态;(2) 待管中出现临界状态时,用体积法测定流量;(3) 根据所测流量计算下临界雷诺数,并与公认值(2000)比较,偏离过大,需重测; (4) 重新打开调节阀,使其形成完全紊流,按照上述步骤重复测量不少于三次; (5) 同时用水箱中的温度计测记水温,从而求得水的运动粘度。
注意:a. 每调节阀门一次,均需等待稳定几分钟;b. 在关小阀门过程中,只许逐渐关小,不许开大;c. 随出水流量减小,应适当调小调速器3的开关(右旋)使供水量减少,以减轻由溢流量引发的扰动。
4. 测定上临界雷诺数。
逐渐开启调节阀,使管中水流由层流过渡到紊流,当色水刚开始散开时,即为上临界状态,测定上临界雷诺数1~2次。
五、实验成果及要求1. 记录、计算有关常数: 实验装置台号№ 管径d = cm , 水温 t= ℃ 计算常数K= s/cm 3 运动粘度=++=2000221.00337.0101775.0tt ν cm 2/s 2. 整理、记录计算表注:颜色水形态指:稳定直线,稳定略弯曲,直线摆动,直线抖动,断续,完全散开。
六、实验分析与讨论1. 流态判据为何采用无量纲参数,而不采用临界流速?2. 为何认为上临界雷诺数无实际意义,而采用下临界雷诺数作为层流与紊流的判据?R与公认值偏离多少?原因何在?实测下临界雷诺数ec3. 雷诺实验得出的园管流动下临界雷诺数为2320,而目前有些教科书中介绍采用的下临界雷诺数是2000,原因何在?4. 为什么在测定R ec调小流量过程中,不许有反调?5. 分析层流和紊流在运动学特性和动力学特性方面各有何差异?。