直线与方程复习课件
合集下载
人教版必修二第三单元直线的方程复习课课件

所以直线方程为y=-x-1.
变式训练1.已知直线l1:y=-ax-2(a∈R).若直线l1的倾斜角为120°,则实数a的 值为_______;若直线l1在x轴上的截距为2,则实数a的值为_______.
【解析】由题意可得tan 120°= -a,解得a= ;3
令y=0,可得x= 2 ,
a
即直线l1在x轴上的截距为
(3)经过点C(0,5)且与x轴平行.
【解析】(1)y+1= 2(x+3). (2)倾斜角为120°,则斜率为- ,3所以该直线方程为y-1=- (x3- ). 2
(3)因为直线与x轴平行,故斜率为0,因此点斜式方程为y-5=0(x-0).
2.过点P(2 3 ,3)且倾斜角为30°的直线方程为( )
【解析】(1)因为两直线y=(a+1)x-2与y=(a-1)x+1互相垂直,
所以(a+1)(a-1)=-1,即a=0.
(2)因为两直线y=-x+4a与y=(a2-2)x+4互相平行.
所以
a
2
2
即a1=,-1.
4a 4,
(四)直线方程的两点式
视察如图所示的直线l,思考下列问题:
1.直线l经过点P1(x1,y1),P2(x2,y2)(其中x1≠x2)两点,那么直线l的点斜
(k2A)D由=-题23 意.故知直,线kBACD=26的方02程为.因32y为+4A=D23-⊥(BxC-1,).所以直线AD的斜率存在,且
变式训练1.已知在△ABC中,A(1,-1),B(2,2),C(3,0),则AB边上的
高线所在直线方程为__________.
【解析】kAB=2 1=3,
【解析】(1)因为A(0,4),C(-8,0),所以直线AC的截距式方程为 x y 1,
高一数学《直线与方程复习课》(课件)

例题精析
1、求直线方程
【例1】
求经过点A( 2, 1), 且到点B( 1, 1)的距离为 3的直线方程.
【例2】
(1) 已知两条平行直线 3 x 2 y 6 0与6 x 4 y 3 0, 求与它们等距离的平行 线的方程.
( 2) 过点P ( 3, 0)有一条直线l , 它夹在两条直线 l1 : 2 x y 2 0与l 2 : x y 3 0之间的线段恰被 点P平分,求直线 l的方程.
2、对称问题与最值问题
【例3】
已知直线l : 3 x y 3 0, 求: (1)点P (4, 5)关于l的对称点 ; (2)直线x y 2 0关于直线l对称的直线方程 .
【例4】
已知点M ( 3, 5), 在直线l : x 2 y 2 0和y轴 上各找一点P和Q , 使MPQ 的周长最小 .
知识结构
从几何直观到代数表示 (建立直线的方程) 点 坐标 倾斜角 斜率 直线 二元一次方程
点斜式 两点式
一般式
从代数表示到几何直观 (通过方程研究几何性质 和度量)
两条直线的 位置关系
平行和垂 直的判定
两点间的距离
距 离
点到直线的距离
两条平行线间 的距离
平行 相交 (无交点) (一个交点)
3、数形结合的应用
【例5】
已知函数f ( x ) x2 2x 2 x2 4x 8,
求f ( x )的最小值, 并求取得最小值时 x的值.
【例6】
已知x , y满足x 4 y 3 0, 1 x 3, 求 y2 的取值范围 . x 1
备用题
求经过点P ( 2, 3)且被两条平行直线 3x 4 y 7 0和3 x 4 y 3 0截得的线段长为 5的 直线方程.
直线的方程-高中数学总复习课件

0),且与以 A (2,1), B (0, 3 )为端点的线段有公共点,则直
线 l 的斜率的取值范围为 (-∞,- 3 ]∪[1,+∞) .
目录
高中总复习·数学
解析:设直线 PA 与 PB 的倾斜角分别为α,β,直线 PA
的斜率是 kPA =1,直线 PB 的斜率是 kPB =- 3 ,当直
线 l 由 PA 变化到与 y 轴平行的位置 PC 时,它的倾斜角
图形,结合正切函数的单调性求解;
(2)函数图象法:根据正切函数图象,由倾斜角范围求斜率范围,
反之亦可.
提醒
π
π
根据斜率求倾斜角的范围时,要分[0, )与( ,π)
2
2
两种情况讨论.
目录
高中总复习·数学
1. 直线 x sin α+ y +2=0的倾斜角的取值范围是(
)
A. [0,π)
解析: 设直线的倾斜角为θ,则有tan θ=- sin α.因为 sin α∈[-
+ 2 = 0,
= − 2,
0,令ቊ
解得 ቊ
1 − = 0,
= 1.
∴无论 k 取何值,直线总经过定点(-2,1).
目录
高中总复习·数学
(2)若直线不经过第四象限,求 k 的取值范围;
D. k 1< k 3< k 2
解析:
因为直线 l 2, l 3的倾斜角为锐角,且直线 l 2的倾斜角大
于直线 l 3的倾斜角,所以0< k 3< k 2.直线 l 1的倾斜角为钝角,斜率 k
1<0,所以 k 1< k 3< k 2.
目录
高中总复习·数学
直线的方程
【例2】 (1)(多选)(2024·临沂模拟)过点(-3,1)且在两
直线与直线方程复习课件

K1=K2且b1≠b2 K1=K2且b1=b2 K1≠K2 K1k2=-1
A1B2 A2 B1 0 BC2 B2C1 0 1 A1B2 A2 B1 0 BC2 B2C1 0 1
A1B2 A2 B1 0 A1 A2 B1B2 0
5.距离公式
(1)两点间的距离公式:
(1)①当横截距、纵截距均为零时,设所求的直线方程
2 为y=kx,将(-5,2)代入得 k 5 ,此时直线方程 y
,即2x+5y=0; ②当横截距、纵截距都不是零时,设所求的直线 1 x y 1,将(-5,2)代入得 a 方程为 2 2a a ,此时直线方程为x+2y+1=0.
2 x 5
综上所述,所求直线方程为2x+5y=0或x+2y+1=0.
直线方程的求法
例3已知点P(2,-1),过P点作直线l.
若原点O到直线l的距离为2,求l的方程; ①当l不与x轴垂直时, 直线方程可设为y+1=k(x-2), y 即kx-y-2k-1=0.
l1
由已知得
o x P(2,-1)
1 2k 1 k2
直线方程的求法 例1. 已知△ABC的三个顶点是 A(3,-4)、B(0,3), C(-6,0),求它的三条边所在的直线方程.
解:②由于B点的坐标为(0,3),故直线AB在 y 轴上的截距为3,利用斜截式, 设直线AB的方程为 y=kx+3 又由顶点 A(3,-4)在直线AB上,
C(-6,0)
y
B(0,3)
| PP2 | ( x2 x1 ) ( y2 y1 ) 1
2 2
(2)点到直线的距离公式:
直线的方程课件-2025届高三数学一轮复习

为
3
2
.
[易错题]已知点 A (3,4),则经过点 A 且在两坐标轴上截距相等的直线方程为
4 x -3 y =0或 x + y -7=0
.
[解析] 设直线在 x 轴、 y 轴上的截距均为 a .(讨论截距是否为0)
①若 a =0,即直线过点(0,0)及(3,4),
2025届高考数学一轮复习讲义
平面解析几何之 直线的方程
一、知识点讲解及规律方法结论总结
1. 直线的倾斜角与斜率
直线的倾斜角
直线的斜率
(1)定义式:把一条直线的倾斜角α的正切值叫做
定义:当直线l与x轴相交时,
这条直线的斜率,斜率通常用小写字母k表示,
我们以x轴为基准,x轴正向
π
k=tan
α
即③
(α≠
D. 8
5−1
=-2,则线段 lAB : y -1=-2( x -4), x ∈[2,4],即
2−4
y =-2 x +9, x ∈[2,4],故2 x - y =2 x -(-2 x +9)=4 x -9, x ∈[2,4].设 h ( x )
1
1
1
1
差为0.1的等差数列,且直线 OA 的斜率为0.725,则 k 3=(
图1
A. 0.75
B. 0.8
D )
图2
C. 0.85
D. 0.9
[解析] 如图,连接 OA ,延长 AA 1与 x 轴交于点 A 2,则 OA 2=4 OD 1.因为 k 1, k 2,
2
k 3成公差为0.1的等差数列,所以 k 1= k 3-0.2, k 2= k 3-0.1,所以tan∠ AOA 2=
3
2
.
[易错题]已知点 A (3,4),则经过点 A 且在两坐标轴上截距相等的直线方程为
4 x -3 y =0或 x + y -7=0
.
[解析] 设直线在 x 轴、 y 轴上的截距均为 a .(讨论截距是否为0)
①若 a =0,即直线过点(0,0)及(3,4),
2025届高考数学一轮复习讲义
平面解析几何之 直线的方程
一、知识点讲解及规律方法结论总结
1. 直线的倾斜角与斜率
直线的倾斜角
直线的斜率
(1)定义式:把一条直线的倾斜角α的正切值叫做
定义:当直线l与x轴相交时,
这条直线的斜率,斜率通常用小写字母k表示,
我们以x轴为基准,x轴正向
π
k=tan
α
即③
(α≠
D. 8
5−1
=-2,则线段 lAB : y -1=-2( x -4), x ∈[2,4],即
2−4
y =-2 x +9, x ∈[2,4],故2 x - y =2 x -(-2 x +9)=4 x -9, x ∈[2,4].设 h ( x )
1
1
1
1
差为0.1的等差数列,且直线 OA 的斜率为0.725,则 k 3=(
图1
A. 0.75
B. 0.8
D )
图2
C. 0.85
D. 0.9
[解析] 如图,连接 OA ,延长 AA 1与 x 轴交于点 A 2,则 OA 2=4 OD 1.因为 k 1, k 2,
2
k 3成公差为0.1的等差数列,所以 k 1= k 3-0.2, k 2= k 3-0.1,所以tan∠ AOA 2=
直线方程复习PPT教学课件

CO2+H2O+CaCO3==Ca(HCO3)2 淀积作用
Ca(HCO3)2==CO2↑+H2O+CaCO3↓
4、喀斯特地貌发育的基本条件
1、岩石的可溶性: 最主要的可溶性岩石是碳酸盐类
岩石,如石灰岩、白云岩 2、岩石的透水性 岩石空隙和裂隙的发育程度
3、水的溶蚀力: 水中所含 的二氧化碳、有机酸和无机 酸的数量(正相关)
y
P(3,4)•
•A(2,6)
即x+y1=0
O
x
B(4,2)•
(4)直线l与x轴负半轴、y轴正半轴围成直角三 角形,且使三角形的面积最小。
解:设直线方程为y4=k(x+3) (k>0) 斜率k存在
直线与x轴交于点A(3 4 ,0), k
直线与y轴交于点B(0,3k 4),
y
1
14
B
SAOB
2
| OA || OB |
问题1 确定一条直线的要素:
1. 定位 2. 定向
直线过定点
方向向量、法向量、另一点、 斜率 (倾斜角不是直角)。
这便是直线的点方向式、点法向式、点斜式 的由来,斜截式是点斜式的特例。
问题2 直线的一般式方程
方程ax+by+c=0(a,b不全为0)叫做直线方程的一 般式,任何一条直线的方程都可以化成一般式。
6
分析:选择适当的直线方程的形式。
y
解:设直线方程为y4=k(x+3), 斜率k存在 B
令x=0,得y=3k+4, B(0,3k+4)
令y=0,得x=
4 k
3,
C(
4 k
3,0)
A•
Ca(HCO3)2==CO2↑+H2O+CaCO3↓
4、喀斯特地貌发育的基本条件
1、岩石的可溶性: 最主要的可溶性岩石是碳酸盐类
岩石,如石灰岩、白云岩 2、岩石的透水性 岩石空隙和裂隙的发育程度
3、水的溶蚀力: 水中所含 的二氧化碳、有机酸和无机 酸的数量(正相关)
y
P(3,4)•
•A(2,6)
即x+y1=0
O
x
B(4,2)•
(4)直线l与x轴负半轴、y轴正半轴围成直角三 角形,且使三角形的面积最小。
解:设直线方程为y4=k(x+3) (k>0) 斜率k存在
直线与x轴交于点A(3 4 ,0), k
直线与y轴交于点B(0,3k 4),
y
1
14
B
SAOB
2
| OA || OB |
问题1 确定一条直线的要素:
1. 定位 2. 定向
直线过定点
方向向量、法向量、另一点、 斜率 (倾斜角不是直角)。
这便是直线的点方向式、点法向式、点斜式 的由来,斜截式是点斜式的特例。
问题2 直线的一般式方程
方程ax+by+c=0(a,b不全为0)叫做直线方程的一 般式,任何一条直线的方程都可以化成一般式。
6
分析:选择适当的直线方程的形式。
y
解:设直线方程为y4=k(x+3), 斜率k存在 B
令x=0,得y=3k+4, B(0,3k+4)
令y=0,得x=
4 k
3,
C(
4 k
3,0)
A•
《直线与方程》复习课件(17张ppt)

方程组:
A1x+B1y+C1=0
A2x+B2y+C2=0的解
一组 无数解
无解
两条直线L1,L2的公共点 一个 无数个 零个
直线L1,L2间的位置关系 相交 重合
平行
5、3种距离
(1).两点距离公式 | AB | (x1 x2)2 ( y1 y2)2
(2)点线距离公式 设点(x0,y0),直线Ax+By+C=0,
a=1或-3
求满足下列条件的直线方程: (1)经过点P(2,-1)且与直线2x+3y+12=0平行;
2x+3y-1=0
(2)经过点Q(-1,3)且与直线x+2y-1=0垂直; 2x-y+5=0
.
(3)经过点R(-2,3)且在两坐标轴上截距相等; x+y-1=0或3x+2y=0
直线的交点个数与直线位置的关系
6
D.
π
6
B
3、直线的5种方程
名 称 已知条件
标准方程 适用范围
点斜式 点P1(x1,y1)和斜率k y y1 k(x x1) 不垂直于x轴的直线
斜截式 斜率k和y轴上的截距 y kx b 不垂直于x轴的直线
两点式 点P1(x1,y1)和点P2(x2,y2) 截距式 在x轴上的截距a
在y轴上的截距b
d | Ax0 By0 C | A2 B2
(3)两平行线距离:l1:Ax+By+C1=0,l2:Ax+By+C2=0 d | C1 C2 | A2 B2
点(1,3)到直线3x 4 y 4 0的距离为
中点坐标公式
x0
y0
《直线与方程》复习课件

求直线的截距
总结词:截距是直线与 y轴或x轴交点的坐标值 ,用于确定直线在坐标
轴上的位置。
01
当直线与y轴相交时, 交点的y坐标称为y截距
。
03
截距可以通过将y或x设 为0并解方程得到。
05
详细描述
02
当直线与x轴相交时, 交点的x坐标称为x截距
。
04
求直线上的点
详细描述
总结词:通过给定的条件和 方程,可以求解直线上的点
斜率的性质
斜率是表示直线倾斜程度的量, 当斜率为正时,直线向上倾斜; 当斜率为负时,直线向下倾斜; 当斜率为0时,直线垂直于x轴。
直线的倾斜角
倾斜角的定义
倾斜角与斜率的关系
直线倾斜角是指直线与x轴正方向之间 的夹角,通常用α表示。
直线的斜率等于直线倾斜角的正切值 。
倾斜角的取值范围
直线倾斜角的取值范围是[0°, 180°), 也可以表示为[0, π)。
忽略斜率不存在的情况
在解题过程中,需要注意直线的斜率 是否存在,避免出现错误的结果。
计算错误
在求解直线方程时,需要注意计算的 准确性和细节,避免因为计算错误导 致答案不正确。
理解题意不准确
在阅读题目时,需要准确理解题目的 要求和已知条件,避免因为理解错误 导致解题方向错误。
没有检验答案
在得到答案后,需要将答案代入原方 程进行检验,确保答案的正确性。
详细描述:截距式方程中的a和b分别是直线与x轴和y 轴的交点的坐标,可以明确直线的位置关系。
02
CATALOGUE
直线的斜率与倾斜角
直线的斜率
斜率的定义
直线斜率是定义为直线倾斜角的 正切值,即直线倾斜角的正切值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.求直线方程的一般方法 (1)直接法:根据已知条件,选择适当的直线方程 形式,直接写出直线的方程的方法; (2)待定系数法:设出直线方程,再根据已知条件 求出待定系数,最后代入求出直线方程的方法. 2.截距与距离的区别 截距可为一切实数,纵截距是指直线与y轴交点的 纵坐标,横截距是直线与x轴交点的横坐标;而距离 却是一个非负数.
3.如果直线ax+2y+2=0与直线3x-y-2=0平行,
则a=( )
A.-3
B.-6
C.
D.
思考 :若将已知条件中“平行”改为“垂直”呢?
4.平行线2x+3y-8=0和6x-by+1=0 的距离是______;
5.求过点P(2,-1),在x轴和y轴上的 截距分别为a、b,且满足a=3b的直线方 程.
1.直线的倾斜角:理解直 线的倾斜角的概念要注 意三点:
(1)直线向上的方向; (2)与x轴的正方向; (3)所成的最小正角,
其范围是[0,π).
2.直线的斜率: (1)定义:倾斜角不是90°的直线它的倾斜角 α的正切值叫做这条直线的斜率,常用k表示,即 k=tanα. α=90°的直线斜率不存在
4.判断两条直线的位置关系
L1:y=k1x+b1 L2:Y=K2x+b2 (K1,k2均存在)
L1:A1X+B1Y+C1=0 L2:A2X+B2Y+C2=0 (A1、B1 , A2 、 B2 均不同时为0)
平行
K1=K2且b1≠b2重合来自K1=K2且b1=b2
相交
K1≠K2
垂直
K1k2=-1
A1B2 A2B1 = 0 B1C2 B2C1 0
两平行直线间的距离公式: d = C1 C2
A2 B2
1.直线 3x-y+1=0的倾斜角等于( B)
2π
π
A.
B.
3
3
C. 5π
π
D.
6
6
2.已知α∈R,直线xsinα-y+1=0的斜率 的取值范围是( )C
A.(-∞,+∞) B.(0,1]
C.[-1,1]
D.(0,+∞)
倾斜角范围呢?
变式 :若将已知直线xsinα-y+1=0改成 xsinα+y+1=0呢?
k
k= tana
O
2
2
a
3
2
(2)经过两点P(x1,y1),Q(x2,y2)的直线 的斜率公式 k = y2 y1(其中x1≠x2).
x2 x1
3.直线方程归纳
名称
已知条件
标准方程
适用范围
点斜式 点P1(x1,y1)和斜率k y y1 = k(x x1) 不垂直于x轴的直线
斜截式 斜率k和y轴上的截距
练习
1、点A(a,6)到直线x+y+1=0的距离为4,求a的值.
2
2、求过点A(-1,2),且与原点的距离等于 2 的直线方程 .
3、求直线2x+11y+16=0关于点P(0,1)对称 的直线方程.
谢谢观看! 2020
y = kx b 不垂直于x轴的直线
两点式 点P1(x1,y1)和点P2 (x2,y2 ) 截距式 在x轴上的截距a
在y轴上的截距b
y y1 = x x1 不垂直于x、y轴的直线 y1 y2 x1 x2
x y =1 ab
不垂直于 x、y轴的直线 不过原点的直线
一般式 两个独立的条件 Ax By C = 0 A、B不同时为零
A1B2 A2B1 = 0 B1C2 B2C1 = 0
A1B2 A2B1 0 A1A2 B1B2 = 0
关于距离的公式
1、两点间的距离公式
| P1P2 |= (x2 x1)2 ( y2 y1)2
2,中点坐标公式
x= x1 x2 2
y= y1 y2 2
3.点到直线的距离公式:
d = | Ax0 By0 C | A2 B2