液压泵液压缸液压马达地型号及全参数以及

合集下载

液压泵的主要性能参数

液压泵的主要性能参数

液压与气压传动
第二章 能源装置及辅件
Part 2.2.2 液压马达的主要性能参数
容积效率v:
v
qt q
qt Vn
转速n:
n
q V
v
理论转矩Tt: 2πnTt pVn
机械效率m:
m
T Tt
Tt
pV 2π
液压与气压传动
第二章 能源装置及辅件
Part 2.2.2 液压马达的主要性能参数
实际转矩T:
吸油:密封容积增大,产生真空 压油:密封容积减小,油液被迫压出
容积式
液压与气压传动
第二章 能源装置及辅件
构成液压泵的基本条件(必要条件)
1)形成密封工作腔; 2)密封工作腔容积大小交替变化; (变大时与吸油口相通,变小时与压油口相通) 3)吸压油腔隔开(配流装置)。
液压泵的基本特点
1)具有一个或若干个周期性变化的密封容积; 2)具有配流装置; 3)油箱内液体的绝对压力必须恒等于或大于大气压力。
m
Tt T
Tt
Tt T
(2-4)
2nTt pqt pVn
Tt
pV 2π
m
pV 2πT
对液压泵而言,驱动泵的转矩总是大于理论上需要的转矩。
液压与气压传动
第二章 能源装置及辅件
总效率η ——液压泵的输出功率与输入功率之比
Po Pi
pq
T
pqTt TpVn
qTt qtT
vm
(2-5)
式(2-5)表明: 液压泵的总效率等于容积效率与机械效率之乘积
液压与气压传动
第二章 能源装置及辅件
Part 2.2.2 液压泵的主要性能参数
1.液压泵的压力 工作压力是指液压泵出口处的实际压力,其大小取决于负载。

各种型号液压产品介绍

各种型号液压产品介绍

目前宁波北仑卓玛液压机械有限公司可成熟替换的产品如下:德国力士乐REXROTH MCR系列液压马达、GFT系列减速机等法国波克兰POCLAIN MS系列柱塞液压马达及车轮式马达斯达弗STAFFA HMB、HMC系列五星液压马达戴纳密克DINAMIC 卷扬机(液压绞车)、减速机丹佛斯DANFOS OMP\OMR\OMS\OMV\OMT等等摆线式液压马达意大利SAI GM系列低速大扭矩液压马达DENISON CALZONI(丹尼逊、卡桑尼) MR、MRE等系列低速大扭矩液压马达(五星马达) PARKER(派克)、WHITE(怀特)、EA TON(伊顿) TG、TE、2K、6K等摆线式液压马达日本川崎Kawasaki重工 SX、HMKB、HMKC等系列液压马达(五星马达)意大利罗西ROSSI减速机 RCE系列等直角轴式减速机意大利布雷维尼(Brevini) 行星减速机、液压绞车等邦飞利(bonfiglioli) 行星减速机等波克兰乳化液马达 SP,HSP乳化液马达/宁波北仑卓玛液压机械有限公司是专业生产低速大扭矩液压马达及减速机、液压绞车的制造商。

主要产品有:QJM系列球塞式液压马达,NHM系列五星液压马达,BM系列摆线式液压马达,GM系列摆缸式液压马达,提升液压绞车,牵引液压绞车,液压绞盘,液压回转(传动)装置,车轮式液压马达,行走马达,MS 柱塞式液压马达,履带底盘,承接全套液压系统的设计与制造。

且成熟替换国外知名品牌低速马达及减速机系列,产品技术成熟,供货时间快,价格实惠。

广泛应用于建筑工程机械,起重运输机械,冶金重型机械,石油勘探设备,煤矿机械,船舶设备,机床,地质勘探设备等各个行业领域。

液压马达可直接驱动履带行走,轨道轮子驱动,各种回转提升,勘探钻孔,带式输送,物料搅拌,路面切割,船舶起锚等等目前可成熟替换的产品如下:德国力士乐REXROTH MCR系列液压马达、GFT系列减速机等法国波克兰POCLAIN MS系列柱塞液压马达及车轮式马达斯达弗STAFFA HMB、HMC系列五星液压马达戴纳密克DINAMIC 卷扬机(液压绞车)、减速机丹佛斯DANFOS OMP\OMR\OMS\OMV\OMT等等摆线式液压马达意大利SAI GM系列低速大扭矩液压马达DENISON CALZONI(丹尼逊、卡桑尼) MR、MRE等系列低速大扭矩液压马达(五星马达) PARKER(派克)、WHITE(怀特)、EATON(伊顿) TG、TE、2K、6K等摆线式液压马达日本川崎Kawasaki重工SX、HMKB、HMKC等系列液压马达(五星马达) 意大利罗西ROSSI减速机RCE系列等直角轴式减速机意大利布雷维尼(Brevini) 行星减速机、液压绞车等邦飞利(bonfiglioli) 行星减速机等波兰乳化液马达SP,HSP乳化液马达主营:液压马达,行星减速机,液压绞车,液压回转装置,液压系统,行走马达摆线液压马达类:专业生产各种类型液压马达和替换进口马达丹佛斯DANFOSS,型号液压马达完全替换(OMP,OH,OMR,DS,OMH,OMEW)(OMS,OMT,OMV) 丹佛斯DANFOSS液压马达1.微型马达(OML,OMM),中型马达(OMP,OH,OMR,DS,OMH,OMEW),大型马达(OMS,OMT,OMV),40系列轴向柱塞马达 ,90系列轴向柱塞马达 ,L型和K型变量马达 ,TM系列轴向柱塞马达,DCM系列径向柱塞马达,轴向柱塞二位LV马达,51及51-1系列斜轴变量马达 ,径向柱塞马达(DCM系列),摆线马达,我们提供 1600 多种不同的液压马达,并按型号、外形及尺寸分类(包括不同规格的输出轴)进行分类。

液压泵的技术参数

液压泵的技术参数

液压泵的技术参数Happy First, written on the morning of August 16, 2022液压泵的主要技术参数1泵的排量mL/r泵每旋转一周、所能排出的液体体积..2泵的理论流量L/min在额定转数时、用计算方法得到的单位时间内泵能排出的最大流量..3泵的额定流量L/min在正常工作条件下;保证泵长时间运转所能输出的最大流量..4泵的额定压力MPa在正常工作条件下;能保证泵能长时间运转的最高压力..5泵的最高压力MPa允许泵在短时间内超过额定压力运转时的最高压力.. 6泵的额定转数r/min在额定压力下;能保证长时间正常运转的最高转数.. 7泵的最高转数r/min在额定压力下;允许泵在短时间内超过额定转速运转时的最高转数..8泵的容积效率%泵的实际输出流量与理论流量的比值..9泵的总效率%泵输出的液压功率与输入的机械功率的比值..10泵的驱动功率kW在正常工作条件下能驱动液压泵的机械功率..2.2 液压泵的常用计算公式见表2表2 液压泵的常用计算公式液压泵功率=60压力转速排量⨯⨯第三章液压泵3.1重点、难点分析本章的重点是容积式泵和液压马达的工作原理;泵和液压马达的性能参数的定义、相互间的关系、量值的计算;常用液压泵和马达的典型结构、工作原理、性能特点及适用场合;外反馈限压式变量叶片泵的特性曲线曲线形状分析、曲线调整方法等内容..学习容积式泵和马达的性能参数及参数计算关系;是为了在使用中能正确选用与合理匹配元件;掌握常用液压泵和马达的工作原理、性能特点及适用场合是为了合理使用与恰当分析泵及马达的故障;也便于分析液压系统的工作状态..本章内容的难点是容积式泵和液压马达的主要性能参数的含义及其相互间的关系;容积式泵和液压马达的工作原理;容积式泵和液压马达的困油、泄漏、流量脉动、定子曲线、叶片倾角等相关问题;..限压式变量泵的原理与变量特性;高压泵的结构特点..1.液压泵与液压马达的性能参数液压泵与液压马达的性能参数主要有:压力、流量、效率、功率、扭矩等..1泵的压力泵的压力包括额定压力、工作压力和最大压力..液压泵马达的额定压力是指泵马达在标准工况下连续运转时所允许达到的最大工作压力;它与泵马达的结构形式与容积效率有关;液压泵马达的工作压力p B p M是指泵马达工作时从泵马达出口实际测量的压力;其大小取决于负载;泵的最大压力是指泵在短时间内所允许超载运行的极限压力;它受泵本身密封性能和零件强度等因素的限制;工作压力小于或等于额定压力;额定压力小于最大压力..2泵的流量泵的流量分为排量、理论流量、实际流量和瞬时流量..泵马达的排量V B V M 是指在不考虑泄漏的情况下;泵马达的轴转过一转所能输出输入油液的体积;泵马达的理论流量q Bt q Mt是指在不考虑泄漏的情况下;单位时间内所能输出输入油液的体积;实际流量q B q M是指泵马达工作时实际输出输入的流量;额定流量q Bn q Mn是指泵马达在额定转速和额定压力下工作时输出输入的流量..泵的瞬时流量q Bin是液压泵在某一瞬间的流量值;一般指泵瞬间的理论几何流量..考虑到泄漏;泵马达的实际流量小于大于或等于额定流量;泵马达的理论流量大于小于实际流量..3液压泵与液压马达的功率与效率液压泵与液压马达的功率与效率主要指输入功率、输出功率、机械效率、容积效率、总效率..对于液压泵;输入的是机械功率P BI;输出的是液压P BT;两功率之比为泵的总效率ηB;泵的输出功率小于输入功率;两者之间的差值为功率损失;包括容积损失和机械损失;这些损失分别用总效率ηB、容积效率ηB v、机械效率ηB m表示..由于存在泄漏损失和摩擦损失;泵的实际流量q B小于理论流量q Bt;理论扭T Bt矩小于实际扭矩T B..与泵有关的计算公式有:对于液压马达;输入的是机械功率PMI;输出的是液压PMT;两功率之比为泵的总效率ηM;马达的输出功率小于输入功率;两者之间的差值为功率损失;功率损失分为容积损失和机械损失;这些损失分别用总效率ηM、容积效率ηMv、机械效率ηMm表示..马达的实际流量q M大于理论流量q Mt;理论扭T Mt矩大于实际扭矩T M..与马达有关的计算主要公式有:2.液压泵的工作原理容积式液压泵的共性工作条件是:有容积可变化的密封工作容积;有与变化相协调的配流机构;工作原理是当容积增大时吸油;当容积减小时排油..不同的液压泵;密封工作容积的构成方式不同;容积变化的过程不同;配流机构的形式不同..外啮合齿轮泵的工作密闭容积由泵体、前后盖板与齿轮组成;啮合线将齿轮分为吸油腔和排油腔两个部分;工作时;轮齿进入啮合的一侧容积减小排油;轮齿脱开啮合的一侧容积增大吸油;啮合线自动形成配流过程;叶片泵是由定子、转子、叶片、配流盘等组成若干个密封密闭工作容积;转子旋转时叶片紧贴在钉子内表面滑动;同时可以在转子的叶片槽内往复移动;当叶片外伸时吸油;叶片内缩时压油;由配流盘上的配流窗完成配流;柱塞泵的密闭工作容积是由柱塞与缸体孔配流盘轴组成;当柱塞在缸体孔内作往复运动时;柱塞向外伸出时柱塞底部容积增大吸油;柱塞向里缩回则柱塞底部容积减小排油;轴向柱塞泵由配流盘上的配流窗完成配流;径向柱塞泵由配流轴完成配流..液压泵的密闭工作容积变化方式是难点之一;需要特别注意..齿轮泵靠轮齿的啮合与脱开实现整体容积变化;叶片泵的叶片外伸依靠叶片根部的液压作用力及作用在叶片上的离心力;内缩依靠定子内表面的约束;单作用叶片泵密闭容积大小变化是因为定子相对于转子存在偏心;叶片外伸完全依靠离心力的作用;内缩也靠定子内表面的约束;柱塞泵的柱塞在缸体孔内作往复运动时;轴向柱塞泵由斜盘与柱塞底部的弹簧或顶部的滑履共同作用实现;径向柱塞泵则是由定子与压环共同作用来完成..3.液压马达的工作原理液压马达的共性工作原理是液压扭矩形成的过程..齿轮马达是靠进油腔的液压油;作用在每一齿轮齿侧的面积差而形成切向力差构成扭矩;叶片马达是靠进油腔每一组工作腔内;液压油作用在叶片相邻测面的液压作用力的差值形成扭矩;轴向柱塞马达是靠作用在进油侧柱塞上斜盘垂直于柱塞轴线反作用分力形成扭矩;径向柱塞马达是靠进油测偏心定子作用在柱塞上的切向反作用分力形成扭矩..液压马达按其结构类型分为齿轮马达、双作用叶片马达、轴向柱塞马达和径向柱塞马达..前三类为高速马达;高速液压马达的结构与同类液压泵大致相同;液压马达要求能够正反转;启动时能形成可靠的密封容积;为此液压马达在结构上具有对称性:进、出油口大小一样、泄漏油单独外引、叶片径向放置等..为保证起动时能形成可靠的密闭容积;双作用叶片马达的叶片根部装有燕式弹簧等..径向柱塞液压马达为低速马达;具有单作用曲柄连杆与多圆心内圆弧定子曲线等特殊结构..4.变量液压泵排量可以改变的液压泵称为变量泵; 按照变量方式不同有手动变量泵含手动伺服变量和自动变量泵两种;自动变量泵又分恒压变量泵、恒流量变量泵、恒功率变量泵、限压式变量泵、差压式变量泵等..轴向柱塞泵通过变量机构改变斜盘倾角可以改变排量;径向柱塞泵和单作用叶片泵是通过改变定子相对转子轴线的偏心距改变排量..限压式变量叶片泵的原理是自动变量的变量泵工作过程的典型范例..其工作过程主要是分析作用在定子两端的液压力与弹簧力相互作用而使定子与转子间偏心得到自动调整的过程;最后达到泵的输出流量随泵出口压力的增加而自动变小的效果..可以通过调整弹簧调整螺钉和最大偏心螺钉来调整泵的限定压力和最大流量;也可以通过调整上述螺钉;分析泵的特性曲线的变化过程..5.泵的困油现象泵的困油现象是容积式液压泵普遍存在的一种现象..产生困油现象的条件是:在吸油与压油腔之间存在一个封闭容积;且容积大小发生变化..为了保证液压泵正常工作;泵的吸、压油腔必须可靠的隔开;而泵的密闭工作容积在吸油终了须向压油腔转移;在转移过程中;当密闭工作容积既不与吸油腔通又不与压油腔相通时;就形成了封油容积;若此封油容积的大小发生变化时;封闭在容积内的液压油受到挤压或扩张;在封油容积内就产生局部的高压或孔穴;于是就产生了困油现象..解决困油现象的方法有:开卸荷槽、开减振槽或减振孔、控制封油区的形成等..在轴向柱塞泵中;由于配流窗口间隔角大于缸体孔分布角;柱塞底部容积在吸、压油转移过程中会产生困油现象..为减少困油现象的危害;可以通过在配流盘的配流窗上采取结构措施来消除:如在配流窗口前端开减振槽或减振孔;使柱塞底部闭死容积大小变化时与压油腔或吸油腔相通;若将配流盘顺着缸体旋转方向偏转一定角度放置;使柱塞底部密闭容积实现预压缩或预膨胀就可以减缓压力突变;对双作用叶片泵;由于定子的圆弧段为泵吸、压油腔的转移位置;设计时只要取圆弧段的圆心角大于吸、压油窗口的间隔角与叶片间的夹角;使封闭容积的大小不会发生变化;困油现象就不会产生;在外啮合齿轮泵中;为了保证齿轮传动的平稳性;要求重合度ε>1;因此会出现两对轮齿同时啮合的情况..此时两对轮齿同时啮合所构成的封闭容积既不与压油腔相通;也不与吸油腔相通;并且该容积大小先由大变小;后由小变大;因此便产生了困油现象;为消除齿轮泵困油现象;通常在泵的前、后盖板或浮动侧板、浮动轴套上开卸荷槽..6.液压泵的流量计算分析液压泵流量计算的目的是了解影响液压泵流量大小的结构参数;从而了解液压泵的设计思路..在设计液压泵时;要求在结构紧凑的前提下得到最大的排量..液压泵流量计算的方法是:通过泵工作时;几何参数的变化量计算泵的排量;再通过排量与转速相乘得到理论流量;然后再乘以容积效率得到泵的实际流量对于齿轮泵排量V =2πzm 2B 在节圆直径D =mz 一定时;增大m 、减小z 可增大排量;为此齿轮泵的齿数都较少..为避免加工出现根切现象;须对齿轮进行正变位修正;对于双作用叶片泵排量 θππcos )(2)(222r R bs r R B V ---=;增大R -r 可以增大排量;但受叶片强度限制;一般取R /r =1.1~1.2;对于轴向柱塞泵排量 V =πd 2Dz tan α/4在柱塞分布圆直径D 一定时;增大柱塞直径d 容易增大泵的排量;但缸体的结构强度限制zd ≤0.75πD ..7.液压泵的泄漏由于液压泵内相对运动件大部分是采取间隙密封的密封方式;液压泵工作时;压油腔的高压油必然经过此间隙流向吸油腔和其他低压处;从而形成了泄漏..这样不仅降低了泵的容积效率;使泵的流量减小;而且限制了液压泵额定压力的提高..因此;控制泄漏、减少泄漏;是保证液压泵正常工作的基本条件之一..液压泵泄漏的条件是存在间隙和压力差;并且其泄漏量与间隙值的三次方成正比、与压力差的一次方成正比..分析泵的泄漏是主要从密封间隙大小、间隙压差高低以及运动是否增加泄漏三个方面入手..柱塞泵的主要的泄漏间隙是柱塞与缸体孔之间的环形间隙;其次为轴向柱塞泵缸体与配流盘之间的端面间隙、滑履与斜盘之间的平面间隙..对于径向柱塞泵除柱塞与缸体孔之间的环形间隙外;还有缸体与配流轴之间的径向间隙、滑履与定子内环之间的间隙..由于柱塞与缸体孔的环形间隙加工精度易于控制;并且其他间隙容易实现补偿;因此柱塞泵的容积效率和额定压力都较高..在叶片泵中主要的泄漏间隙是转子与配流盘之间的端面间隙;其次还有叶片与转子叶片槽之间、叶片顶部与定子内环之间的间隙..中高压双作用叶片泵为减少泄漏;有的将配流盘设计为浮动式配流盘;实现端面间隙自动补偿..对外啮合齿轮泵;其主要的间隙是齿轮端面与前后泵盖或左右侧板之间的端面间隙;其次还有齿顶与泵体内圆之间的径向间隙、两啮合轮齿间的啮合间隙..中高压齿轮泵的端面间隙采用自动浮动补偿机构予以补偿..8.高压泵的特点为提高各类液压泵的额定压力;除采取措施减小泄漏、提高容积效率外;还需要在结构设计时采取措施;减少作用在某些零件上的不平衡力..如:在轴向柱塞泵中;将滑履与斜盘、缸体与配流盘之间设置静压平衡措施;在双作用叶片泵中;采用子母叶片、双叶片、柱销叶片等措施;减小吸油区叶片根部的液压作用力;以减小叶片顶部对定子吸油区段造成的磨损..对于齿轮泵除在泵的端面间隙设置自动浮动补偿机构外;还采用了开径向力平衡槽等措施;补偿作用在齿轮轴上的液压径向不平衡力..3.2典型例题解析例3-1 已知某齿轮泵的额定流量q0=100L/min;额定压力p0=25×105Pa;泵的转速n1=1450r/min;泵的机械效率ηm=0.9;由实验测得:当泵的出口压力p1=0时;其流量q1=106L/min;p2=25×105 Pa时;其流量q2=101L/min..1 求该泵的容积效率ηV;2 如泵的转速降至500r/min;在额定压力下工作时;泵的流量q3为多少容积效率'为多少V3在这两种情况下;泵所需功率为多少解:1认为泵在负载为0的情况下的流量为其理论流量;所以泵的容积效率为:2泵的排量泵在转速为500r/min时的理论流量由于压力不变;可认为泄漏量不变;所以泵在转速为500r/min时的实际流量为;泵在转速为500r/min时的容积效率;3泵在转速为1450r/min时的总效率和驱动功率泵在转速为500r/min时的总效率和驱动功率例3-2 某单作用叶片泵转子外径d=80mm;定子内径D=85mm;叶片宽度B =28mm;调节变量时定子和转子之间最小调整间隙为δ=0.5mm..求:1该泵排量为V1=15mL/r时的偏心量e1;2该泵最大可能的排量V max..解:1eDB V π2=∴ m m 00.1m 1000.1102885210152366=⨯=⨯⨯⨯⨯==---ππDB V e 2 叶片泵变量时最小调整间隙为δ=0.5mm;所以定子与转子最大偏心量;e max =D -d /2-δ=85-80/2-0.5=2mm该泵最大可能的排量V max 为;例3-3 由变量泵和定量马达组成的系统;泵的最大排量V Pmax =0.115mL/r;泵直接由n p =1000r/min 的电机带动;马达的排量V M =0.148 mL/r;回路最大压力p max =83×105Pa;泵和马达的总效率均为0.84;机械效率均为0.9;在不计管阀等的压力损失时;求:1马达最大转速n Mmax 和在该转速下的功率P M ; 2在这些条件下;电动机供给的扭矩T P ; 3泵和马达的泄漏系数k P 、k M ;4整个系统功率损失的百分比..解:1当变量泵排量最大时;马达达到最大转速;即 最大转速时马达的输出功率2电机供给泵的扭矩 3泵的泄漏系数k P 马达的泄漏系数k M4因为不计管阀等的压力损失;所以系统的效率 系统损失功率的百分比%54.292954.07056.011==-=-=ηδ例3-4 有一液压泵;当负载p 1=9MPa 时;输出流量为q 1=85L/min ;而负载p 2=11MPa 时;输出流量为q 2=82L/min ..用此泵带动一排量V M =0.07L/r 的液压马达;当负载转矩T M = 110N ·m 时;液压马达的机械效率ηMm =0.9 ;转速n M = 1000r/min ;求此时液压马达的总效率..解:马达的机械效率 MM MM M M M M M M M M Mm 222V p T n V p T n q p T n πππη===则;10.97MPa Pa 1097.109.007.0110226Mm M M M =⨯=⨯⨯==πηπV T p泵在负载p 2=11MPa 的情况下工作;此时输出流量为q 2=82L/min; 马达的容积效率 马达的总效率 3.3练习题3-1 什么是容积式液压泵 它是怎样工作的 这种泵的工作压力和输出油量的大小各取决于什么3-2 标出图中齿轮泵和齿轮马达的齿轮旋转方向..图3-1 题3-2 图3-2 题3-83-3 什么是液压泵和液压马达的公称压力 其大小由什么来决定3-4 提高齿轮泵的工作压力;所要解决的关键问题是什么 高压齿轮泵有那些结构特点3-5 什么是齿轮泵的困油现象 困油现象有何害处 用什么方法消除困油现象其它类型的液压泵是否有困油现象3-6 试说明齿轮泵的泄漏途经..3-7双作用叶片泵定子过渡曲线有哪几种形式哪一种曲线形式存在着刚性冲击哪一种曲线形式存在着柔性冲击哪一种曲线形式既没有刚性冲击也没有柔性冲击哪一种曲线形式是目前所普遍采用的曲线为什么3-8如图所示凸轮转子泵;其定子内曲线为完整的圆弧;壳体上有两片不旋转但可以伸缩靠弹簧压紧的叶片..转子外形与一般叶片泵的定子曲线相似..试说明泵的工作原理;在图上标出其进、出油口;并指出凸轮转一转泵吸压油几次..3-9限压式变量叶片泵有何特点适用于什么场合用何方法来调节其流量-压力特性3-10试详细分析轴向柱塞泵引起容积效率降低的原因..3-11为什么柱塞式轴向变量泵倾斜盘倾角γ小时容积效率低试分析它的原因..3-12当泵的额定压力和额定流量为已知时;试说明下列各工况下压力表的读数管道压力损失除c为△p外均忽略不计..图3-3 题3-123-13确定图中齿轮泵的吸、压油口..已知三个齿轮节圆直径D=49mm;齿宽b=25mm;齿数Z=14;齿轮转速n P=1450r/min;容积效率ηPV=0.9;求该泵的理论流量q Pt和实际流量q P..图3-4 题3-133-14液压泵的排量V P=25 cm3/r;转速n P=1200r/min;输出压力p P=5Mpa;容积效率ηPV =0.96;总效率ηP=0.84;求泵输出的流量和输入功率各为多大3-15某双作用叶片泵;当压力为p1=7MPa时;流量为q1=54L/min;输入功率为P in=7.6kW;负载为0时;流量为q2=60L/min;求该泵的容积效率和总效率..3-16要求设计输出转矩T M=52.5N m;转速n M=30r/min的液压马达..设马达的排量V M=105cm3/r;求所需要的流量和压力各为多少马达的机械效率、容积效率均为0.93-17一泵排量为V P;泄漏量为q Pl=k l p P k l—常数;p P—工作压力..此泵也可作为液压马达使用..请问当二者的转速相同时;泵和马达的容积效率相同吗为什么提示:分别列出泵和马达的容积效率表达式3-18已知轴向柱塞泵的额定压力为p P=16Mpa;额定流量q P=330L/min;设液压泵的总效率为ηP=0.9;机械效率为ηPm=0.93..求:⑴驱动泵所需的额定功率;⑵计算泵的泄漏流量..3-19 ZB75型轴向柱塞泵有七个柱塞;柱塞直径d=23mm;柱塞中心分布圆直径D=71.5mm..问当斜盘倾斜角γ=200时液压泵的排量V等于多少当转速n=1500r/min时;设已知容积效率ηv=0.93;问液压泵的流量q应等于多少3-20直轴式轴向柱塞泵斜盘倾角γ=200;柱塞直径d=22mm;柱塞分布圆直径D=68mm;柱塞数Z=7;机械效率ηm=0.90;容积效率ηv=0.97;泵转速n=1450r/min;输出压力p P=28 Mpa..试计算:⑴平均理论流量;⑵实际输出的平均流量;⑶泵的输入功率..。

第三讲.液压泵、马达

第三讲.液压泵、马达
m3/s。
qt=V.n· · · · · · · · · · · · · · · · · · · · · · · · (3-1)
3.2.3容积效率、机械效率和总效率
※引入:由于液压泵存在泄漏和各种摩擦,所以泵在能量转换 过程中是有损失的,即输出功率小于输入功率,两者之间 的差值即为功率损失,功率损失表现为容积损失和机械损 失,功率损失可用效率来表示。 (1)容积效率。容积损失是由于泵存在泄漏(泄漏流量为△q) 所造成的,所以泵的实际流量小于理论流量qt。实际流量可 表示为
1)直轴式(斜盘式)轴向柱塞泵
2)斜轴式轴向柱塞泵
5.液压泵的职能符号 液压泵的职能符号如图2-14所示。
表2-1列出了最常用泵的各种性能值
§3.4液压泵与电动机参数的选用
1.液压泵的选用 ※先根据液压泵的性能要求来选定液压泵的类型, 再根据液压泵所应保证的压力和流量来确定它的 具体规格。 ※液压泵的工作压力是根据执行元件的最大工作压 力来确定的,考虑到压力损失,泵的最大工作压 力可按下式计算: P泵≥K压· P缸 式中:P泵表示液压泵所需提供的压力(Pa);K压表示 系统中压力损失系数,一般取1.3—1.5;P缸表示 液压缸中所需的最大工作压力(Pa)。
※液压泵的输出流量取决于系统所需最大流量及泄漏量,即:
Q泵 ≥ K流Q缸 式中:Q泵表示液压泵所需输出的流量(m3/min); K流表示系统的泄漏系数,一般取1.1---1.3;Q缸表示液压缸 所需提供的最大流量(m3/min)。
※在P泵和Q泵求出以后,就可选择液压泵的规格,选择时应
使实际选用泵的额定压力大于所求出的P泵值,通常大于 25%.泵的额定流量一般略大于或等于所求出的Q泵 值。 2.电动机参数的选择
q= qt。- △q· · · · · · · · · · · · · · · · · · · · · · · · · · (3-2) 容积损失可用容积效率ηv来表示,它等于泵的实际流量与理论

第三章液压泵和液压马达_李清伟

第三章液压泵和液压马达_李清伟

摆线齿形内啮合齿轮泵特点
结构紧凑,尺寸小,排量大, 重量轻,运转平稳,噪声小, 流 量脉动小。但齿形复杂,加工困难, 价格昂贵 。
第三节 叶片泵 分类:双作用式定量叶片泵 单作用式变量叶片泵

单联叶片泵

叶片泵
一、定量叶片泵的工作原理 图3-7为工作原理图。泵的组成:定 子、转子、叶片、配油盘、传动轴和泵体。
二、轴向柱塞泵的工作原理 轴向柱塞泵的组成 配油盘、柱塞、缸体、倾斜盘 轴向柱塞泵特征 柱塞轴线平行或倾斜于缸体的轴线 轴向柱塞泵的分类 按配流方式分:端面配流、阀配流 端面配流的轴向柱塞泵分为:斜盘式、斜 轴式



轴向柱塞泵工作原理 V密形成—柱塞和缸体配合而成 右半周,V密增大,吸 油 V密变化,缸体逆转 < 左半周,V密减小,压 油 吸压油口隔开—配油盘上的封油区及缸体 底部的通油孔。
轴向柱塞泵变量原理 γ= 0 q = 0 大小变化,流量大小变化 γ < 方向变化,输油方向变化 ∴ 斜盘式轴向柱塞泵可作双向变量 泵。

SCY14-1B轴向柱塞泵的结构要点
1、滑履结构 A 滑靴和斜盘
B 柱塞和缸体 球形头部—和斜盘接触为点 接触,接触应力大,易磨损。
齿轮泵压油腔的压力油泄漏到吸油腔有三条途 径: 齿侧泄漏— 约占齿轮泵总泄漏量的 5%
径向泄漏—约占齿轮泵总泄漏量的
20%~25%
端面泄漏* —约占齿轮泵总泄漏量的 75%~80% 总之:泵压力愈高,泄漏愈大。因此要 提高齿轮的压力和容积效率,必须对端面间 隙进行自动补偿。
提高外啮合齿轮泵压力措施
第三章 液压泵和液压马达
液压泵
液压马达
目的任务 了解液压泵主要性能参数分类 掌握泵的工作原理、必要条件、排 流量、叶片泵和齿轮泵的结构、工作 原理、叶片泵的调整方法和减小齿轮 泵困油现象的方法。

液压马达第一节液压马达的结构特点和主要技术参数

液压马达第一节液压马达的结构特点和主要技术参数

一 齿轮式马达的工作原理和技术参数
1、工作原理(如图1-4-2)
2、技术参数的计算
(1)排量
qM 2m2 zB
(2)平均输出转速
nM
(3)平均输出扭矩
QM qM
vm
M M PM qM mM
二 叶片式马达的工作原理及结构特点
1、双作用式叶片马达的工作原理(如图1-4-3)
2、技术参数计算
(1)排量 qM
2、流量控制阀:控制和调节系统流量,从而改变 执行机构的运动速度。主要有节流阀,调速阀和分 流阀等。
3、方向控制阀:用于控制和改变系统中工作液体的 流动方向,以实现执行机构运动方向的转换。方向 控制阀可分为二通、三通、四通和多通阀等。操纵 方式有:手动、液压、电液、电磁和机械换向。
1、普通油路连接时
F推
4
D2
p
F拉
(D 2
4
d 2)p
V推 Q
D2
4
V拉 Q
(D2 d 2)
4
2、差动连接时
F d2p
4
V Q d2
4
由此可见,单活塞杆推力油缸在
差动连接时,伸出速度更高,但推力却小得多。
二 、双伸缩液压缸
组成:一级缸、二级缸பைடு நூலகம்活柱、大小导向套、底阀和
大小活塞等组成。如图1-5-4
第四章 液压马达
第一节 液压马达的结构特点和主要技术参数
一、结构特点和分类
液压马达是液压系统的一种执行元件(另一种 是液压缸)。它将液压泵提供的液体压力能转变为 其输出轴的机械能(扭矩和转速)。从能量观点看, 马达和泵是可逆的,即泵可做马达用,反之亦然。 由于用途和工作条件不同,对它们的性能要求也不 一样,所以相同结构类型的泵、马达之间存在差别。

液压泵液压缸液压马达的型及参数以及精选文档

液压泵液压缸液压马达的型及参数以及精选文档

液压泵液压缸液压马达的型及参数以及精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-液压、气动一、液压传动1、理解:液压传动是以流体为工作介质进行能量传递的传动方式。

2、组成原件1、把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵2 、调节、控制压力能的液压控制阀3、把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达)4 、传递压力能和液体本身调整所必需的液压辅件液压系统的形式3、部分元件规格及参数(1)液压泵液压泵是液压系统的动力元件,是靠发动机或电动机驱动,从液压油箱中吸入油液,形成压力油排出,送到执行元件的一种元件。

分类:齿轮泵:体积较小,结构较简单,对油的清洁度要求不严,价格较便宜;但泵轴受不平衡力,磨损严重,泄漏较大。

叶片泵:分为双作用叶片泵和单作用叶片泵。

这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。

柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。

一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。

还有一些其他形式的液压泵,如螺杆泵等,但应用不如上述3种普遍。

适用工况和应用举例【KCB/2CY型齿轮油泵】工作原理:2CY、KCB齿轮式输油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。

A为入吸腔,B为排出腔。

泵运转时主动齿轮带动被动齿轮旋转,当齿化从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。

被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵的排出口排出泵外。

KCB/2Y型齿轮油泵型号参数和安装尺寸如下:【KCB/2CY型齿轮油泵】性能参数:【KCB/2CY型齿轮油泵】安装尺寸图:KCB18.3~83.3与2CY1.1~5安装尺寸图KCB200~960与2CY8~150安装尺寸图双联叶片泵型号参数:双联叶片泵(两个单级泵并联组成,有多种规格)型号识别说明液压泵的主要技术参数和计算公式(2)液压马达:是把液体的压力能转换为机械能的装置分类:1、按照额定转速选择:分为高度和低速两大类,高速液压马达的基本形式有齿轮式、螺杆式、叶片式和轴向柱塞式等,高速液压马达主要具有转速较高,转动惯性小,便于启动和制动,调速和换向的灵敏度高。

液压泵液压马达

液压泵液压马达

第三章液压泵、液压马达液压泵是液压系统的动力元件,它是将输入的机械能转换为液体压力能的能量转换装置。

液压马达是液压系统的执行元件,它是将液体的压力能转换为旋转运动机械能的能量转换装置。

第一节液压泵的概述一、液压泵的工作原理、分类及图形符号1.液压泵的工作原理液压泵由原动机驱动,把输入的机械能转换为油液的压力能,再以压力、流量的形式输入到系统中去,为执行元件提供动力,它是液压传动系统的核心元件,其性能好坏将直接影响到系统是否正常工作。

1—偏心轮2—柱塞3—缸体4—弹簧5、6—单向阀图3-1 液压泵工作原理图液压泵都是依靠密封容积变化的原理来进行工作的,图3-1所示的是一单柱塞液压泵的工作原理图,图中柱塞2装在缸体3中形成一个密封容积a,柱塞在弹簧4的作用下始终压紧在偏心轮1上。

原动机驱动偏心轮1旋转使柱塞2作往复运动,使密封容积a的大小发生周期性的交替变化。

当a由小变大时就形成部分真空,使油箱中油液在大气压作用下,经吸油管顶开单向阀6进入油腔a而实现吸油;反之,当a由大变小时,a腔中吸满的油液将顶开单向阀5流入系统而实现压油。

这样液压泵就将原动机输入的机械能转换成液体的压力能,原动机驱动偏心轮不断旋转,液压泵就不断地吸油和压油。

2.液压泵的特点单柱塞液压泵具有一切容积式液压泵的基本特点:(1)具有若干个密封且又可以周期性变化空间。

液压泵输出流量与此空间的容积变化量和单位时间内的变化次数成正比,与其他因素无关。

这是容积式液压泵的一个重要特性。

(2)油箱内液体的绝对压力必须恒等于或大于大气压力。

这是容积式液压泵能够吸入油液的外部条件。

因此,为保证液压泵正常吸油,油箱必须与大气相通,或采用密闭的充压油箱。

(3)具有相应的配流机构,将吸油腔和排油腔隔开,保证液压泵有规律地、连续地吸、排液体。

液压泵的结构原理不同,其配油机构也不相同。

如图3-1中的单向阀5、6就是配流机构。

容积式液压泵中的油腔处于吸油时称为吸油腔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液压、气动
一、液压传动
1、理解:液压传动是以流体为工作介质进行能量传递的传动方式。

2、组成原件
1、把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵
2 、调节、控制压力能的液压控制阀
3、把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达)
4 、传递压力能和液体本身调整所必需的液压辅件
液压系统的形式
3、部分元件规格及参数
(1)液压泵
液压泵是液压系统的动力元件,是靠发动机或电动机驱动,从液压油箱中吸入油液,形成压力油排出,送到执行元件的一种元件。

分类:齿轮泵:体积较小,结构较简单,对油的清洁度要求不严,价格较便宜;但泵轴受不平衡力,磨损严重,泄漏较大。

叶片泵:分为双作用叶片泵和单作用叶片泵。

这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。

柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。

一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。

还有一些其他形式的液压泵,如螺杆泵等,但应用不如上述3种普遍。

适用工况和应用举例
【KCB/2CY型齿轮油泵】工作原理:
2CY、KCB齿轮式输油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵的整个工作腔分两个独立的部分。

A为入吸腔,B为排出腔。

泵运转时主动齿轮带动被动齿轮旋转,当齿化从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。

被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并
经泵的排出口排出泵外。

KCB/2Y型齿轮油泵型号参数和安装尺寸如下:【KCB/2CY型齿轮油泵】性能参数:
KCB960(2CY-60-6-2)3014509600.654" KCB2000(2CY-120/3-2)3075020000.356" KCB2500(2CY-150/3-2)3775025000.356"
【KCB/2CY型齿轮油泵】安装尺寸图:
KCB18.3~83.3与2CY1.1~5安装尺寸图
型号
电动机
A B C D E G"L 型号功率
KCB18.3-2Y-90L-4 1.5583300230130793/4"230 KCB33.3-2Y-100L1-4 2.2618325285140793/4"250 KCB55-2Y-90L-4 1.558830023013086.51"230 KCB83.3-2Y-100L1-4 2.2658325285140993/2"250 KCB200~960与2CY8~150安装尺寸图
双联叶片泵型号参数:
双联叶片泵(两个单级泵并联组成,有多种规格)型号识别说明
以下为YYB—AA型
YYB—AB型
液压泵的主要技术参数和计算公式
q=V·n·ηn—转速(r/min)
q0—理论流量
(L/min)
q—实际流量
(L/min)
输入功率KW P i=2πTn/600 P i—输入功率
(kW)T—转矩
(N·m)
输出功率KW P0=pq/60 P0—输出功率
(kW)p—输出压
力(MPa)
容积效率% η0——容积效率
(%)
机械效率% ηm——机械效率(%
总效率% η—总效率(%)
(2)液压马达:是把液体的压力能转换为机械能的装置
分类:1、按照额定转速选择:分为高度和低速两大类,高速液压马达的基本形式有齿轮式、螺杆式、叶片式和轴向柱塞式等,高速液压马达主要具有转速较高,转动惯性小,便于启动和制动,调速和换向的灵敏度高。

低速液压马达的基本形式为径向柱塞式,主要具有排量大、体积大、转速低、传动机构较简化。

2、按照结构类型选择:分为叶片式、轴向柱塞式、摆动式等。

叶片马达具有体积小、转动惯性小、动作灵敏、可以实现换向频率高,但泄漏较大,不能低速工作。

轴向柱塞马达具有输出扭矩小。

常用液压马达的主要技术参数
适用工况和应用实例:
1、XHM液压马达型号与参数. 马达结构及外形示意:
技术选型参数:
2、XHS液压马达结构及外形示意:
技术选型:
液压缸
液压缸是将液压能转变为机械能的、做直线往复运动(或摆动运动)的液压执行元件。

它结构简单、工作可靠。

用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。

液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置与排气装置组成。

缓冲装置与排气装置视具体应用场合而定,其他装置则必不可少。


压缸的
类型和特点
类型速度作用力特点
单作用液压缸
双活塞杆
液压缸
U=q/A3 F=p1A1
活塞的两侧都装有
活塞杆,只能向活塞一
侧供给压力油,由外力
使活塞反向运动
单活塞杆
液压缸
U=q/A3F1=p1A1活塞仅单向运动,
返回行程利用自重或负
荷将活塞推回
柱塞式液
压缸
U=q/A3F1=p1A1柱塞仅单向运动,
由外力使柱塞反向运动差动液压

U3=q/A3F3=p1A1可使速度加快,但
作用力相应减小
伸缩液压

--- ---
以短缸获得长行
程;缸由大到小逐节推
出,靠外力由小到大逐
节缩回
注:b—叶片宽度;D—叶片的底端、顶端直径;w—叶片轴的角速度;T-- 理论转矩
液压油缸介绍以及安装尺寸标准HS01·210L 系列拉杆液压缸
◆ SD(基本型)
◆ SD(双出杆基本型)
◆ LA(切向脚架)
二、气动
气动是利用撞击作用或转动作用产生的空气压力使其运动或作功,气动就是以压缩空气为动力源,带动机械完成伸缩或旋转动作。

特点
1、气动装置结构简单、轻便、安装维护简单。

压力等级低、使用安全相对液压系统安全一些。

2、工作介质是取之不尽的空气、空气本身不花钱。

排气处理简单,不污染环境,但电能消耗
较大,能源转换率很低,初期成本较低,但使用成本较高。

3、输出力以及工作速度的调节非常容易。

气缸的动作速度一般为50~500mm/s。

但运行速度稳定性不高。

4、可靠性不太高,使用寿命受气源洁净度和使用频率的影响较大。

优缺点
1) 以空气为工作介质,容易取得;用后的空气排到大气中,处理方便,与液压传动相比不必设置回油装置。

2) 因空气的粘度很小, 流动过程中能量损失也很小,节能、高效,适用于集中供应和远距离输送。

3) 与液压传动相比, 气动动作反应快, 维护简单,工作介质清洁,不存在介质变质及补充等问题。

4) 工作环境适应性好,特别适合在易燃,易爆,多尘埃,强磁,强辐射,振动等恶劣条件下工作,外泄露不污染环境,在食品、轻工、纺织、印刷、精密检测等环境中采用最为适宜。

5)因空气本身无润滑性能, 故在气路中应设置给油润滑装置
气动系统的基本构成
组成的气动回路是为了驱动用于各种不同目的的机械装置,其最重要的三个控制容是:力的大小、力的方向和运动速度。

与生产装置相连接的各种类型的气缸,靠压力控制阀、方向控制阀和流量控制阀分别实现对三个容的控制,即:
压力控制阀——控制气动输出力的大小方向控制阀——控制气缸的运动方向速度控制阀——控制气缸的运动速度一个气动系统通常包括:气源设备:包括空压机、气罐
气源处理元件:包括后冷却器、过滤器、干燥器和排水器
压力控制阀:包括增压阀、减压阀、安全服、顺序阀、压力比例阀、真空发生器
润滑元件:油雾器、集中润滑元件
气动元件
气源装置及辅件
气源装置包括压缩空气的发生装置以及压缩空气的存贮、净化等辅助装置。

它为气动系统
提供合乎质量要求的压缩空气,是气动系统的一个重要组成部分。

气源装置一般由气压发生装置、净化及贮存压缩空气的装置和设备、传输压缩空气的管道系统和气动三大件四部分组成。

旋涡气泵的型号和参数:
气动马达
气动马达也称为风动马达,是指将压缩空气的压力能转换为旋转的机械能的装置。

一般作为更复杂装置或机器的旋转动力源。

气动马达按结构分类为:叶片式气动马达,活塞式气动马达,紧凑叶片式气动马达,紧凑活塞式气动马达。

活塞式气动马达技术参数
型号额定马力(HP) 额定转速(RPM)
额定扭矩(N.
m) 耗气量(L/min) 工作压力(Mpa)
重量
(KG)
TMH010 0.1 1100 0.64 180 0.6 1.8 TMH015A 0.15 1100 0.96 210 0.6 2.4 TMH0200.2900 1.562750.6 2.4 TMH0250.25900 1.953150.6 3.2 TMH025A0.33900 2.73150.6 3.6 TMH0500.5720 4.85800.6 5.3。

相关文档
最新文档