数学人教版八年级下册一次函数图像复习专题
最新人教版数学八年级下册第十九章《一次函数复习》优质教学课件

图象过二、三 、四象限
一次函数的增减性
对于一次函数y=k x + b (k ≠ 0),有: ⑴ 当k>0时,y随x的增大而_________。 ⑵ 当k<0时,y随x的增大而_________。
增大
减小
一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到. 当b>0时,向上平移; 当b<0时,向下平移.
七、正比例函数与一次函数图象之间的关系
怎样画一次函数y=kx+b的图象?
1、两点法
y=x+1
2、平移法
八、用待定系数法求函数解析式
先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法, --待定系数法
1、已知直线y=kx+b平行与直线y=-2x,且与y轴交于点(0,-2),则k=___,b=___. 此时,直线y=kx+b可以由直线y=-2x经过怎样平移得到?
解:(1)设购进A种T恤x件,则购进B种T恤(200-x)件, 由题意得: w=(80-50)x+(65-40)(200-x) w=5x+5000
答:w关于x的函数关系式为w=5x+5000;
九、一次函数的应用
九、一次函数的应用
2. 某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图.(1)第20天的总用水量为多少米?(2)求y与x之间的函数关系式. (3)种植时间为多少天时,总用水量达到7000 米3?
注意点:
(1)从函数图象中获取信息
-2
-2
练习:
2、若一次函数y=x+b的图象过点A(1,-1),则b=__________。
人教版初二下册数学第十九章《一次函数复习》(29张PPT)

y2 y1 x1 x2 x
《一次函数》复习
四、一次函数定义与性质
一次函数的定义:一般地,形如 k≠0)的函数叫做一次函数,当 y=kb(k ≠0)也叫正比例函数。 y=kx+b ,(k、b是常数, b=0 时,一次函数
一次函数的性质:①一次函数y=kx+b(k≠0)的图象是 一条直线, 称为 直线 y=kx=b ; b个单位长度 ②直线y=kx+b(k≠0)可以看做直y=kx(k≠0)平移 下 而得到,当b>0时,向 上 平移;当b<0时,向 平移。 如果两条直线互相平行,那么两一次函数的k值相同
《一次函数》复习 一、变量与函数
一般的,在一个变化过程中,如果有两 个x与y,并且对于x的每一个变化值, y都有唯一确定的值与其对应,那么 就称y是x的函数,其中x是自变量,如 果当x=a时,y=b,那么b叫做自变量 的值为a时的函数。
《一次函数》复习
巩固练习
S=πR2 。 1、如果圆用R表示半径,用S表示圆的面积,则S和R满足的关系是_______ 2、汽车邮箱中有汽油50L。如果不再加油,那么邮箱中的油量y(单位:L) 随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km。写出表 y=50—0.1x 0≤x ≤50 。。 示y与x的函数关系式_____________ ,自变量x的取值范围是_________ 3、写出下列函数自变量x的取值范围
人教版初中八年级数学下册第19章《一次函数》复习课(公开课)ppt课件

7.如下图,两摞相同规格的碗整齐地放在桌面上,请根据图中的数据信息,解答 下列问题: (1)求整齐摆放在桌面上的碗的高度y(cm)与碗的个数x(个)之间的函数关系式;
(2)把这两摞碗整齐地摆成一摞时,碗的高度是多少?
11cm
14cm
仅做学习交流,谢谢!
语语文文::初初一一新新生生使使用用的的是是教教育育部部编编写写的的教教材材,,也也称称““部部编编””教教材材。。““部部编编本本””是是指指由由教教育育部部直直接接组组织织编编写写的的教教材材。。““部部编编本本””除除了了语语文文,,还还有有德德育育和和历历史史。。现现有有的的语语文文教教材材,,小小学学有有1122种种版版本本,,初初中中有有88种种版版本本。。这这些些版版本本现现在在也也都都做做了了修修订订,,和和““部部编编本本””一一同同投投入入使使用用。。““部部编编本本””取取代代原原来来人人教教版版,,覆覆盖盖面面比比较较广广,,小小学学约约占占5500%%,,初初中中约约占占6600%%。。今今秋秋,,小小学学一一年年级级新新生生使使用用的的是是语语文文出出版版社社的的修修订订版版教教材材,,还还是是先先学学拼拼音音,,后后学学识识字字。。政政治治::小小学学一一年年级级学学生生使使用用的的教教材材有有两两个个版版本本,,小小学学一一年年级级和和初初一一的的政政治治教教材材不不再再叫叫《《思思想想品品德德》》,,改改名名为为《《道道德德与与法法治治》》。。历历史史::初初一一新新生生使使用用华华师师大大版版教教材材。。历历史史教教材材最最大大的的变变化化是是不不再再按按科科技技、、思思想想、、文文化化等等专专题题进进行行内内容容设设置置,,而而是是以以时时间间为为主主线线,,按按照照历历史史发发展展的的时时间间顺顺序序进进行行设设置置。。关关于于部部编编版版,,你你知知道道多多少少??为为什什么么要要改改版版??跟跟小小编编一一起起来来了了解解下下吧吧!!一一新新教教材材的的五五个个变变化化一一、、入入学学以以后后先先学学一一部部分分常常用用字字,,再再开开始始学学拼拼音音。。汉汉字字是是生生活活中中经经常常碰碰到到的的,,但但拼拼音音作作为为一一个个符符号号,,在在孩孩子子们们的的生生活活中中接接触触、、使使用用都都很很少少,,教教学学顺顺序序换换一一换换,,其其实实是是更更关关注注孩孩子子们们的的需需求求了了。。先先学学一一部部分分常常用用常常见见字字,,就就是是把把孩孩子子的的生生活活、、经经历历融融入入到到学学习习中中。。二二、、第第一一册册识识字字量量减减少少,,由由440000字字减减少少到到330000字字。。第第一一单单元元先先学学4400个个常常用用字字,,比比如如““地地””字字,,对对孩孩子子来来说说并并不不陌陌生生,,在在童童话话书书、、绘绘本本里里可可以以看看到到,,电电视视新新闻闻里里也也有有。。而而在在以以前前,,课课文文选选用用的的一一些些结结构构简简单单的的独独体体字字,,比比如如““叉叉””字字,,结结构构比比较较简简单单,,但但日日常常生生活活中中用用得得不不算算多多。。新新教教材材中中,,增增大大了了常常用用常常见见字字的的比比重重,,减减少少了了一一些些和和孩孩子子生生活活联联系系不不太太紧紧密密的的汉汉字字。。三三、、新新增增““快快乐乐阅阅读读吧吧””栏栏目目,,引引导导学学生生开开展展课课外外阅阅读读。。教教材材第第一一单单元元的的入入学学教教育育中中,,有有一一幅幅图图是是孩孩子子们们一一起起讨讨论论《《西西游游记记》》等等故故事事,,看看得得出出来来,,语语文文学学习习越越来来越越重重视视孩孩子子的的阅阅读读表表达达,,通通过过读读 故故事事、、演演故故事事、、看看故故事事等等,,提提升升阅阅读读能能力力。。入入学学教教育育中中第第一一次次提提出出阅阅读读教教育育,,把把阅阅读读习习惯惯提提升升到到和和识识字字、、写写字字同同等等重重要要的的地地位位。。四四、、新新增增““和和大大人人一一起起读读””栏栏目目,,激激发发学学生生的的阅阅读读兴兴趣趣,,拓拓展展课课外外阅阅读读。。有有家家长长担担心心会会不不会会增增加加家家长长负负担担,,其其实实这这个个““大大人人””包包含含很很多多意意思思,,可可以以是是老老师师、、爸爸妈妈、、爷爷爷爷、、奶奶奶奶、、外外公公、、外外婆婆等等,,也也可可以以是是邻邻居居家家的的小小姐姐姐姐等等。。每每个个人人讲讲述述一一个个故故事事,,表表达达是是不不一一样样的的,,有有人人比比较较精精炼炼,,有有人人比比较较口口语语化化,,儿儿童童听听到到的的故故事事不不同同,,就就会会形形成成不不同同的的语语文文素素养养。。五五、、语语文文园园地地里里,,新新增增一一个个““书书写写提提示示””的的栏栏目目。。写写字字是是有有规规律律的的,,一一部部分分字字有有自自己己的的写写法法,,笔笔顺顺都都有有自自己己的的规规则则,,新新教教材材要要求求写写字字的的时时候候,,就就要要了了解解一一些些字字的的写写法法。。现现在在信信息息技技术术发发展展很很快快,,孩孩子子并并不不是是只只会会打打字字就就可可以以,,写写字字也也不不能能弱弱化化。。二二为为什什么么要要先先识识字字后后学学拼拼音音??一一位位语语文文教教研研员员说说,,孩孩子子学学语语文文是是母母语语教教育育,,他他们们在在生生活活中中已已经经认认了了很很多多字字了了,,一一年年级级的的识识字字课课可可以以和和他他们们之之前前的的生生活活有有机机结结合合起起来来。。原原先先先先拼拼音音后后识识字字,,很很多多孩孩子子觉觉得得枯枯燥燥,,学学的的时时候候感感受受不不到到拼拼音音的的用用处处。。如如果果先先接接触触汉汉字字,,小小朋朋友友在在学学拼拼音音的的过过程程中中会会觉觉得得拼拼音音是是有有用用的的,,学学好好拼拼音音是是为为了了认认识识更更多多的的汉汉字字。。还还有有一一位位小小学学语语文文老老师师说说::““我我刚刚刚刚教教完完一一年年级级语语文文,,先先学学拼拼音音再再识识字字,,刚刚进进校校门门的的孩孩子子上上来来就就学学,,压压力力会会比比较较大大,,很很多多孩孩子子有有挫挫败败感感,,家家长长甚甚至至很很焦焦急急。。现现在在让让一一年年级级的的孩孩子子们们先先认认简简单单的的字字,,可可以以让让刚刚入入学学的的孩孩子子们们感感受受到到学学习习的的快快乐乐,,消消除除他他们们害害怕怕甚甚至至恐恐惧惧心心理理。。我我看看了了一一下下网网上上的的新新教教材材,,字字都都比比较较简简单单,,很很多多小小朋朋友友都都认认识识。。””
人教版八年级下册数学课件:第十九章 一次函数 复习课(共27张PPT)

(2)请设计一个调运方案,使水的调运量尽可能小.(调运量 =调运水的重量×调运的距离,单位:万吨·千米) 分析 (1)根据从A、B两水库调出水的重量均为14万吨,调往甲地 的水为15万吨,调往乙地的水为13万吨填写表格. (2)根据调运量=调运水的重量×调运的距离列出一次函数解 析式,根据自变量x的取值范围确定调运量的最小值.
【例1】若一次函数y=kx+b(k≠0)的函数值y随x的增大而减
小,且图象与y轴的负半轴相交,那么对k和b的符号判断正
确的是( )
(A)k>0,b>0
(B)k>0,b<0
(C)k<0,b>线y=x-1的图象经过的象限是( )
(A)第一、二、三象限
(B)第一、二、四象限
2.一次函数的应用有如下常用题型: (1)根据实际问题中给出的数据列相应的函数解析式,解决 实际问题; (2)利用一次函数对实际问题中的方案进行比较; (3)结合实际问题的函数图象解决实际问题.
【例】今年我省干旱灾情严重,甲地急需抗旱用水15万吨, 乙地13万吨.现有A、B两水库各调出14万吨水支援甲、乙两 地抗旱.从A地到甲地50千米,到乙地30千米; 从B地到甲地60千米,到乙地45千米. (1)设从A水库调往甲地的水量为x万吨,完成下表
4.已知一次函数y=kx+b的图象交y轴于正半轴,且y随x的增 大而减小,请写出符合上述条件的一个解析式_____. 【解析】一次函数y=kx+b的图象交y轴于正半轴,则b>0, y随x的增大而减小,则k<0. 如k=-2,b=3,函数为y=-2x+3. 答案:y=-2x+3(答案不唯一,k<0且b>0即可)
一次函数的面积问题
2020-2021学年八年级数学人教版下册第19章一次函数应用之图像专题 (一)

2021 -2021学年人教版八年级|数学下册第19章一次函数应用之图像专题 (一 )1.小明家所在地的供电公司实行 "峰谷电价〞 ,峰时 (8:00~21:00 )电价为0.5元/度 ,谷时 (21:00~8:00 )电价为0.3元/度.为了解空调制暖的耗能情况 ,小明记录了家里某天0时~24时内空调制暖的用电量 ,其用电量y (度 )与时间x (h )的函数关系如下图.(1 )小明家白天不开空调的时间共h ;(2 )求小明家该天空调制暖所用的电费;(3 )设空调制暖所用电费为w 元 ,请画出该天0时~24时内w 与x 的函数图象. (标注必要数据 )2.如图 ,l 1表示振华商场一天的某型电脑销售额与销售量的关系 ,l 2表示该商场一天的销售本钱与电脑销售量的关系.观察图象 ,解决以下问题:(1 )当销售量x =2时 ,销售额=万元 ,销售本钱=万元;(2 )一天销售台时 ,销售额等于销售本钱;当销售量时 ,该商场实现赢利 (收入大于本钱 );(3 )分别求出l 1和l 2对应的函数表达式;(4 )直接写出利润w 与销售量x 之间的函数表达式 ,并求出当销售量x 是多少时 ,每天的利润到达5万元 ?3.敦煌到格尔木铁路开通后 ,l 1与l 2分别是从敦煌北开往格尔木的动车和从格尔木站开往敦煌北的高铁到敦煌北的距离与行驶时间的图象 ,两车同时出发 ,设动车离敦煌北的距离为y 1 (千米 ) ,高铁离敦煌北的距离为y 2 (千米 ) ,行驶时间为t (小时 ) ,y 1和y 2与t 的函数关系如下图:(1 )高铁的速度为km /h ;(2 )动车的速度为km /h ;(3 )动车出发多少小时与高铁相遇 ?(4 )两车出发经过多长时间相距50千米 ?4.甲、乙两地相距300千米 ,一辆货车和一辆轿车先后从甲地出发向乙地 ,轿车比货车晚出发1.5小时 ,如图 ,线段OA 表示货车离甲地的距离y (千米 )与时间x (小时 )之间的函数关系;折线BCD 表示轿车离甲地的距离y (千米 )与时间x (时 )之间的函数关系 ,请根据图象解答以下问题:(1 )轿车到达乙地时 ,求货车与甲地的距离;(2 )求线段CD对应的函数表达式;(3 )在轿车行进过程 ,轿车行驶多少时间 ,两车相距15千米.5.为落实 "精准扶贫〞精神 ,市农科院专家指导贫困户李大爷种植优质百香果喜获丰收 ,上市20天全部销售完 ,专家对销售情况进行了跟踪记录 ,并将记录情况绘成图象 ,日销售量y (单位:千克 )与上市时间x (单位:天 )的函数关系如下图.(1 )观察图示 ,直接写出日销售量的最|大值为.(2 )根据图示 ,求李大爷家百香果的日销售量y与上市时间x的函数解析式 ,并求出第15天的日销售量.6.如图 ,自行车与摩托车从甲地开往乙地 ,OA与BC分别表示自行车、摩托车与甲地距离s (千米 )和自行车出发时间t (小时 )的关系.根据图象答复:(1 )摩托车每小时行驶千米 ,自行车每小时行驶千米;(2 )自行车出发后小时 ,两车相遇;(3 )求摩托车出发多少小时时 ,两车相距15千米 ?7.甲乙两位老师同住一小区 ,该小区与学校相距2000米.甲从小区步行去学校 ,出发10分钟后乙再出发 ,乙从小区先骑公共自行车 ,骑行假设干米到达还车点后 ,立即步行走到学校.乙骑车的速度为170米/分 ,甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分 ) ,图1中线段OA与折线B﹣C﹣D分别表示甲、乙离小区的路程y(米 )与甲步行时间x(分 )的函数关系的图象;图2表示甲、乙两人之间的距离s(米 )与甲步行时间x (分 )的函数关系的图象 (不完整 ).根据图1和图2中所给的信息 ,解答以下问题:(1 )求甲步行的速度和乙出发时甲离开小区的路程;(2 )求直线BC的解析式;(3 )在图2中 ,画出当20≤x≤25时 ,s关于x的函数的大致图象.8.甲乙两人沿相同的路线同时登山 ,甲、乙两人距地面的高度y(米 )与登山时间x(分钟 )之间的函数图象如下图 ,根据图象所提供的信息解答以下问题:=.(1 )甲距地面的高度y (米 )与登山时间x (分 )之间的函数关系式为:y甲(2 )假设乙提速后 ,乙的速度是甲登山速度的3倍 ,登山多长时间时 ,乙追上了甲 ?此时乙距A地的高度为多少米 ?9.某市端午节期间 ,甲、乙两队举行了赛龙舟比赛 ,两队在比赛时的路程s(米 )与时间t (分钟 )之间的图象如下图 ,请你根据图象 ,答复以下问题:(1 )这次龙舟赛的全程是多少米 ?哪队先到达终点 ?(2 )求甲与乙相遇时甲、乙的速度.10.某种机器工作前先将空油箱加满 ,然后停止加油立即开始工作.当停止工作时 ,油箱中油量为5L ,在整个过程中 ,油箱里的油量y (单位:L )与时间x (单位:min )之间的关系如下图.(1 )机器每分钟加油量为L ,机器工作的过程中每分钟耗油量为L.(2 )求机器工作时y关于x的函数解析式 ,并写出自变量x的取值范围.(3 )直接写出油箱中油量为油箱容积的一半时x的值.11.一辆慢车和一辆快车沿相同的路线由甲地到乙地匀速前进 ,甲、乙两地之间的路程为200km ,他们离甲地的路程y (km )与慢车出发后的时间x (h )的函数图象如下图.(1 )慢车的平均速度是km/h;(2 )分别求出表示快车、慢车所行驶的路程y (km )与时间x (h )的函数关系式; (不要求写出自变量的取值范围 )(3 )求慢车出发后多长时间两车第|一次相遇 ?(4 )快车到达乙地后 ,慢车距乙地还有多远 ?12.书籍是人类进步的台阶.为了鼓励全民阅读 ,某图书馆开展了两种方式的租书业务:一种是使用租书卡 ,另一种是使用会员卡 ,图中l1 ,l2分别表示使用租书卡和会员卡时每本书的租金y (元 )与租书时间x (天 )之间的关系.(1 )直接写出用租书卡和会员卡时每本书的租金y (元 )与租书时间x (天 )之间的函数关系式;(2 )小红准备租某本名著50天 ,选择哪种租书方式比拟合算 ?小明准备花费90元租书 ,选择哪种租书方式比拟合算 ?13.小明来到奥体中|心观看比赛.进场时 ,发现门票还在家里 ,此时离比赛开始还有25分钟 ,于是立即步行回家取票 ,同时 ,他爸爸从家里出发骑自行车以小明3倍的速度给小明送票 ,两人在途中相遇 ,相遇后爸爸立即骑自行车把小明送回奥体中|心.如图 ,线段AB、OB分别表示父子俩送票、取票过程中 ,离奥体中|心的距离S(米 )与所用时间t (分钟 )之间关系的图象 ,结合图象解答以下问题 (假设骑自行车和步行的速度始终保持不变 ):(1 )从图中可知 ,小明家离奥体中|心米 ,爸爸在出发后分钟与小明相遇.(2 )求出父亲与小明相遇时离奥体中|心的距离 ?(3 )小明能否在比赛开始之前赶回奥体中|心 ?请计算说明.14.一条笔直的公路上有甲、乙两地相距2400米 ,|王明步行从甲地到乙地 ,每分钟走96米 ,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地设他们同时出发 ,运动的时间为t (分 ) ,与乙地的距离为s (米 ) ,图中线段EF ,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象(1 )李越骑车的速度为米/分钟;F点的坐标为;(2 )求李越从乙地骑往甲地时 ,s与t之间的函数表达式;(3 )求|王明从甲地到乙地时 ,s与t之间的函数表达式;(4 )求李越与|王明第二次相遇时t的值.15.一列快车从甲地匀速驶往乙地 ,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系 ,根据图象解决以下问题:(1 )甲、乙两地的距离为km;(2 )慢车的速度为km/h ,快车的速度为km/h;(3 )求当x为多少时 ,两车之间的距离为500km ,请通过计算求出x的值.参考答案1.解: (1 )小明家白天不开空调的时间为:18﹣8=10 (h ) ,故答案为:10;(2 )峰时所用电费为:3×3×0.5=4.5 (元 ) ,谷时所用电费为:11×3×0.3=9.9 (元 ) ,所以小明家该天空调制暖所用的电费为:4.5 +9.9=14.4 (元 );(3 )根据题意 ,可得该天0时~24时内w与x的函数图象如下:2.解: (1 )由图象可得 ,当销售量x=2时 ,销售额为2万元 ,销售本钱为3万元 ,故答案为:2 ,3;(2 )由图象可得 ,一天销售4台时 ,销售额等于销售本钱;当销售量大于4台时 ,该商场实现赢利 (收入大于本钱 ) ,故答案为:4 ,大于4台;(3 )设l1的表达式为y1=k1x ,将 (4 ,4 )代入得 ,4k1=4 ,解得k1=1 ,即l1的表达式为y1=x;设l2的表达式为y2=k2x +b ,将 (0 ,2 ) , (4 ,4 )分别代入y2=k2x +b ,得,解得 ,即l2的表达式为y2x +2;(4 )由题意可得 ,利润w与销售量x之间的函数表达式为w=xxx﹣2 ,当wx﹣2 ,解得x=14 ,答:利润w与销售量x之间的函数表达式是wx﹣2 ,当销售量x是14台时 ,每天的利润到达5万元.3.解: (1 )由图象可得 ,高铁的速度为300÷1.5=200 (km/h ) ,故答案为:200;(2 )由图象可得 ,动车的速度为300÷2=150 (km/h ) ,故答案为:150;(3 )设动车出发a小时与高铁相遇 ,200a +150a=300 ,解得a= ,即动车出发小时与高铁相遇;(4 )设两车出发经过b小时相距50千米 ,200a +150a=300﹣50或200a +150a=300 +50 ,解得a =或a =1 ,即两车出发经过小时或1小时相距50千米. 4.解: (1 )由图象可得 ,货车的速度为300÷5=60 (千米/小时 ) ,那么轿车到达乙地时 ,货车与甲地的距离是60×4.5=270 (千米 ) ,即轿车到达乙地时 ,货车与甲地的距离是270千米;(2 )设线段CD 对应的函数表达式是y =kx +b ,∵点C (2.5 ,80 ) ,点D (4.5 ,300 ) ,∴, 解得 ,即线段CD 对应的函数表达式是y =110x ﹣195 (2.5≤x ≤4.5 );(3 )当x =2.5时 ,两车之间的距离为:60×2.5﹣80=70 ,∵70>15 ,∴在轿车行进过程 ,两车相距15千米时间是在2.5~4.5之间 ,由图象可得 ,线段OA 对应的函数解析式为y =60x ,那么|60x ﹣ (110x ﹣195 )|=15 ,解得x 1=3.6 ,x 2=4.2 ,∵轿车比货车晚出发1.5小时 ,3.6﹣1.5=2.1 (小时 ) ,4.2﹣1.5=2.7 (小时 ) , ∴在轿车行进过程 ,轿车行驶2.1小时或2.7小时 ,两车相距15千米 ,答:在轿车行进过程 ,轿车行驶2.1小时或2.7小时 ,两车相距15千米.5.解: (1 )由图象可得 ,日销售量的最|大值为960千克 ,故答案为:960千克;(2 )当0≤x ≤12时 ,设y 与x 的函数关系式为y =kx ,12k =960 ,得k =80 ,即当0≤x ≤12时 ,y 与x 的函数关系式为y =80x ;当12<x ≤20时 ,设y 与x 的函数关系式为y =ax +b ,,得 ,即当12<x≤20时 ,y与x的函数关系式为y=﹣120x +2400 ,由上可得 ,y与x的函数关系式为y=;当x=15时 ,y=﹣120×15 +2400=600 ,答:李大爷家百香果的日销售量y与上市时间x的函数解析式为y=,第15天的日销售量是600千克.6.解: (1 )由图象可得 ,摩托车每小时行驶80÷ (5﹣3 )=40 (千米 ) ,自行车每小时行驶80÷8=10 (千米 ) , 故答案为:40 ,10;(2 )设自行车出发后a小时 ,两车相遇 ,10a=40 (a﹣3 ) ,解得 ,a=4 ,即自行车出发后4小时 ,两车相遇 ,故答案为:4;(3 )设摩托车出发b小时时 ,两车相距15千米 ,10 (b +3 )﹣40b=15或40b﹣10 (b +3 )=15 ,解得 ,bb=1.5 ,即摩托车出发0.5小时或1.5小时时 ,两车相距15千米.7.解: (1 )由图可知 ,甲步行的速度为:2000÷25=80 (米/分 ) ,乙出发时甲离开小区的路程是80×10=800 (米 ) ,答:甲步行的速度是80米/分 ,乙出发时甲离开小区的路程是800米;(2 ) (20﹣10 )×170=1700 (米 ) ,那么点C的坐标为 (20 ,1700 ) ,设直线BC对应的解析式为y=kx +b ,,得 ,即直线BC的解析式为y=170x﹣1700;(3 )∵甲步行的速度比乙步行的速度每分钟快5米 ,甲步行的速度是80米/分 ,∴乙步行的速度为80﹣5=75 (米/分 ) ,那么乙到达学校的时间为:20 + (2000﹣1700 )÷75=24 (分钟 ) ,当乙到达学校时 ,甲离学校的距离是:80× (25﹣24 )=80 (米 ) ,那么当20≤x≤25时 ,s关于x的函数的大致图象如以下图所示:=kx+b, 8.解: (1 )设甲距地面的高度y(米 )与登山时间x(分 )之间的函数关系式为y甲∵点 (0 ,100 ) , (20 ,300 )在函数y=kx +b的图象上 ,甲∴ ,解得 ,=10x +100 , 即甲距地面的高度y (米 )与登山时间x (分 )之间的函数关系式为y甲故答案为:10x +100;(2 )由图象可得 ,甲的速度为: (300﹣100 )÷20=10 (米/分 ) ,∵乙提速后 ,乙的速度是甲登山速度的3倍 ,∴乙提速后的速度为30米/分 ,设乙登山a分钟时追上甲 ,那么15÷1×2 +30× (a﹣2 )=10a +100 ,解得a=6.5 ,当a=6.5时 ,乙距A地的高度为:30× (6.5﹣2 )=135 (米 ) ,即乙提速后 ,乙的速度是甲登山速度的3倍 ,登山6.5分钟时 ,乙追上了甲 ,此时乙距A 地的高度为135米.9.解: (1 )由函数图象可得 ,这次龙舟赛的全程是1000米 ,乙队先到达终点;(2 )由图象可得 ,甲与乙相遇时 ,甲的速度是1000÷4=250 (米/分钟 ) ,乙的速度是: (1000﹣400 )÷(3.8﹣2.2 )=600÷1.6=375 (米/分钟 ) ,即甲与乙相遇时甲、乙的速度分别为250米/分钟、375米/分钟.10.解: (1 )由图象可得 ,机器每分钟加油量为:30÷10=3 (L ) ,机器工作的过程中每分钟耗油量为: (30﹣5 )÷ (60﹣10 )=0.5 (L ) ,故答案为:3 ,0.5;(2 )当10<x≤60时 ,设y关于x的函数解析式为y=ax +b ,,解得 , ,即机器工作时y关于x的函数解析式为yx +35 (10<x≤60 );(3 )当3x=30÷2时 ,得x=5 ,x +35=30÷2时 ,得x=40 ,即油箱中油量为油箱容积的一半时x的值是5或40.11.解: (1 )由图象可得 ,慢车的速度为:200÷5=40 (km/h ) ,故答案为:40;(2 )设慢车所行驶的路程y (km )与时间x (h )的函数关系式是y=kx ,5k=200 ,得k=40 ,即慢车所行驶的路程y (km )与时间x (h )的函数关系式是y=40x;设快车所行驶的路程y (km )与时间x (h )的函数关系式是y=ax +b , ,解得 ,即快车所行驶的路程y (km )与时间x (h )的函数关系式是y=100x﹣200;(3 )令40x=100x﹣200 ,解得x= ,即慢车出发后时两车第|一次相遇;(4 )将x=4代入y=40x ,得y=160 ,200﹣160=40 (km ) ,答:快车到达乙地后 ,慢车距乙地还有40km.12.解: (1 )设直线l对应的函数解析式为y=kx ,1200k=60 ,解得k=0.3 ,对应的函数解析式为yx ,即直线l1对应的函数解析式为y=ax +b ,设直线l2,解得 ,对应的函数解析式为yx +20 ,即直线l2由上可得 ,用租书卡时每本书的租金y(元 )与租书时间x(天 )之间的函数关系式是yx,用会员卡时每本书的租金y (元 )与租书时间x (天 )之间的函数关系式是yx +20;(2 )当x=50时 ,租书卡的租金为0.3×50=15 (元 ) ,会员卡的租金为0.2×50 +20=30 (元 ) ,∵15<30 ,∴小红准备租某本名著50天 ,选择租书卡租书方式比拟合算;当y=90时 ,租书卡可以租用90÷0.3=300 (天 ) ,会员卡可以租用 (90﹣20 )÷0.2=350 (天 ) ,∵300<350 ,∴小明准备花费90元租书 ,选择会员卡租书方式比拟合算.13.解: (1 )有图可知 ,小明家离体育馆3600米 ,父子俩在出发后15分钟相遇.其中小明路程与时间的图象用图中的线段OB表示 ,父亲路程与时间的图象用图中的线段AB表示.故答案为3600 ,15;(2 )设小明的速度为x ,父亲的速度为3x ,根据题意得 ,15 (x +3x )=3600 ,∴x=60米/分钟 ,∴小明与父亲相遇时距离体育馆还有60×15=900m ,答:父亲与小明相遇时离奥体中|心的距离为900m;(3 )由 (2 )知 ,小明的速度为60米/分钟 ,∴父亲的速度为180米/分钟 ,∴900÷180=5分钟 ,∴5 +15=20分钟<25分钟 ,∴小明能在比赛开始之前能赶回体育馆.14.解: (1 )由图象可得 ,李越骑车的速度为:2400÷10=240米/分钟 ,2400÷96=25 ,所以F点的坐标为 (25 ,0 ).故答案为:240; (25 ,0 );公众号:惟微小筑(2 )设李越从乙地骑往甲地时 ,s与t之间的函数表达式为s=kt ,2400=10k ,得k=240 ,即李越从乙地骑往甲地时 ,s与t之间的函数表达式为s=240t ,故答案为:s=240t;(3 )设|王明从甲地到乙地时 ,s与t之间的函数表达式为s=kt +2400 ,根据题意得 ,25k +2400=0 ,解得k=﹣96 ,所以|王明从甲地到乙地时 ,s与t之间的函数表达式为:s=﹣96t +2400;(4 )根据题意得 ,240 (t﹣2 )﹣96t=2400 ,解得t=20.答:李越与|王明第二次相遇时t的值为20.15.解: (1 )甲、乙两地的距离为720km ,故答案为:720;(2 )设慢车的速度为akm/h ,快车的速度为bkm/h ,根据题意 ,得 ,解得 ,故答案为80 ,120;(3 )由题意 ,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前: (80 +120 )x=720﹣500 ,解得x=1.1 ,相遇后:∵点C (6 ,480 ) ,∴慢车行驶20km两车之间的距离为500km ,∵慢车行驶20km需要的时间是=0.25 (h ) ,∴x=6 +0.25=6.25 (h ) ,故x=1.1 h或6.25 h ,两车之间的距离为500km.。
人教版八年级数学下册期末复习课件:一次函数 (共35张PPT)

解:(1)由平移法则,得 C 点坐标为(-3+1,3-2),即(-2,1).设直线 l1 的解析 式为 y=kx+c,则31==--32kk++cc,,解得kc==--32.,∴直线 l1的解析式为 y=-2x-3. (2) 把 B 点坐标代入 y=x+b,得 3=-3+b,解得 b=6.∴直线 l2 的解析式为 y=x+6. 当 x=0 时,y=6,∴点 E 的坐标为(0,6).对于 y=-2x-3,当 x=0 时,y=-3, ∴点 A 坐标为(0,-3),∴AE=6+3=9,∴S△ABE=12×9×|-3|=227.
• ★集训3 一次函数与方程、不等式
• 8.如图,已知一次函数y=kx+b的图象与x 轴、y轴分别交于点(2,0),点(0,3).有下列 结论:①关于x的方程kx+b=0的解为x=2A; ②关于x的方程kx+b=3的解为x=0;③当x >2时,y<0;④当x<0时,y<3.其中正确 的是 ( )
• A.①②③
期末复习
期末复习4 一次函数
高效验收
知识整理 专题集训 达标集训
知识整理
• 1.一般地,在一个变化过程中,如果有两 个变量x与唯y一,并且对于x的每一个确自定变的量值,y 都函数有________确定的值与其对应,那么我们 就唯一说x是__________,y是x的__函_数__值___.对于 自变量的取值范围内的一个确定的值,如当x =a时,y=b,函数有________的值b与之对 应,则这个对应值b叫做x=a时的__________.
1.若正比例函数 y=kx 的图象经过点(1,2),则 k 的值为
A.-12
B.-2
C.12
D.2
(D )
• 2.一次函数y=kx+b(k≠0)的图象如图所示,
人教版 八年级数学下册 第19章 专题练习:《一次函数图像综合:实际应用(行程、收费等)》(二)

人教版八年级数学下册第19章专题:《一次函数图像综合:实际应用(行程、收费等)》(二)1.“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:a=;b=;m=.(2)求线段BC所在直线的解析式.(3)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.2.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,根据图象所提供的信息分析,解决下列问题:(1)甲队的工作速度;(2)分别求出乙队在0≤x≤2和2≤x≤6时段,y与x的函数解析式,并求出甲乙两队所挖河渠长度相等时x的值;(3)当两队所挖的河渠长度之差为5m时x的值.3.疫情过后地摊经济迅速兴起,小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?4.甲、乙两车分别从A,B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地,乙车匀速前往A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(小时),y与x之间的函数图象如图所示.(1)图中,m=,n=;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)在甲车返回到A地的过程中,当x为何值时,甲、乙两车相距190千米?5.如图1所示,在A、B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距千米;货车的速度是千米/时;(2)求三小时后,货车离C站的路程y2与行驶时间x之间的函数表达式;(3)试求客车与货两车何时相距40千米?6.为了减少二氧化碳的排放量,提倡绿色出行,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付(使用的前1小时免费)和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)图中表示会员卡支付的收费方式是(填①或②).(2)在图①中当x≥1时,求y与x的函数关系式.(3)陈老师经常骑行该公司的共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.7.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人距离景点A的路程(米)关于时间t(分)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲第一次相遇?(2)要使甲到达景点C时,乙距离景点C的路程不超过300米,则乙从景点B步行到景点C的速度至少为多少?8.合肥享有“中国淡水龙虾之都”的美称,甲、乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y甲、y乙(单位:元)与人数之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)小王公司想在“龙虾节”期间组织团建,在甲、乙两家店就餐,如何选择甲、乙两家美食店吃小龙虾更省钱?9.如图,l A、l B分别表示A步行与B骑车在同一公路上同时出发,距甲地的路程S(千米)与B出发的时间t(小时)的关系.已知B骑车一段路后,自行车发生故障,进行修理.(1)B出发时与A相距千米,B出发后小时与A相遇;(2)求出A距甲地的路程S A(千米)与时间t(小时)的关系式,并求出B修好车后距甲地的路程S B(千米)与时间t(小时)的关系式.(写出计算过程)(3)请通过计算说明:若B的自行车不发生故障,保持出发时的速度前进,在途中何时与A相遇?10.某食品工厂将一种食品的加工任务平均分给甲、乙两个生产组共同完成.甲、乙两组同时以相同的效率开始工作,中途乙组因升级设备,停工了一段时间.乙组设备升级完毕后,工作效率有所提升,在完成本组任务后,还帮助甲组加工了60千克,最后两组同时停工,完成了此次加工任务.两组各自加工的食品量y(千克)与甲组工作时间x(小时)的关系如图所示.(1)甲组每小时加工食品千克,乙组升级设备停工了小时;(2)设备升级完毕后,乙组每小时可以加工食品多少千克?(3)求a、b的值.参考答案1.解:(1)由图可得,a=1500÷150=10,b=10+5=15,m=(3000﹣1500)÷(22.5﹣15)=1500÷7.5=200,故答案为:10,15,200;(2)设线段BC所在的直线的解析式为y=kx+m,∵点B(15,1500),点C(22.5,3000)在直线y=kx+m上,∴,得即线段BC所在的直线的解析式为y=200x﹣1500;(3)∵小军的速度是120米/分,∴线段OD所在直线的解析式为y=120x,令120x=200x﹣1500,解得,x=18.75∴小军第二次与爸爸相遇时距图书馆的距离是3000﹣120×18.75=750(米),答:小军第二次与爸爸相遇时距图书馆的距离是750米.2.解:(1)甲队的工作速度为:60÷6=10(米/小时);(2)当0≤x≤2时,设y与x的函数解析式为y=kx,可得2k=30,解得k=15,即y=15x;当2≤x≤6时,设y与x的函数解析式为y=nx+m,可得,解得,即y=5x+20,∴;10x=5x+20,解得x=4,即甲乙两队所挖河渠长度相等时x的值为4;(3)当0≤x≤2时,15x﹣10x=5,解得x=1.当2<x≤4时,5x+20﹣10x=5,解得x=3,当4<x≤6时,10x﹣(5x+20)=5,解得x=5.答:当两队所挖的河渠长度之差为5m时,x的值为1h或3h或5h.3.解:(1)设降价后销售额y(元)与销售量x(千克)之间的函数表达式是y=kx+b,∵AB段过点(40,160),(80,260),∴,解得,,即降价后销售额y(元)与销售量x(千克)之间的函数表达式是y=2.5x+60(x>40);(2)设当销售量为a千克时,小李销售此种水果的利润为150元,2.5a+60﹣2a=150,解得,a=180,答:当销售量为180千克时,小李销售此种水果的利润为150元.4.解:(1)m=300÷(180÷1.5)=2.5,n=300÷[(300﹣180)÷1.5]=3.75,故答案为:2.5;3.75;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,根据题意得:,解得,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550(2.5≤x≤5.5);(3)乙车的速度为:(300﹣180)÷1.5=80(千米/时),甲车返回时的速度为:300÷(5.5﹣2.5)=100(千米/时),根据题意得:80x﹣100(x﹣2.5)=190,解得x=3.答:当x=3时,甲、乙两车相距190千米.5.解:(1)由函数图象可得,A,B两地相距:480+120=600(km),货车的速度是:120÷3=40(km/h).故答案为:600;40;(2)y=40(x﹣3)=40x﹣120(x>3);(3)分两种情况:①相遇前:80x+40x=600﹣40解之得x=…(8分)②相遇后:80x+40x=600+40解之得x=综上所述:当行驶时间为小时或小时,两车相遇40千米.6.解:(1)图中表示会员卡支付的收费方式是②.故答案为:②(2)当x≥1时,设手机支付金额y(元)与骑行时间x(时)的函数关系式为y=kx+b (k≠0),将(1,0),(1.5,2)代入y=kx+b,得:,解得:,∴当x≥1时,手机支付金额y(元)与骑行时间x(时)的函数关系式为y=4x﹣4.(3)设会员卡支付对应的函数关系式为y=ax,将(1.5,3)代入y=ax,得:3=1.5a,解得:a=2,∴会员卡支付对应的函数关系式为y=2x.令2x=4x﹣4,解得:x=2.由图象可知,当0<x<2时,陈老师选择手机支付比较合算;当x=2时,陈老师选择两种支付都一样;当x>2时,陈老师选择会员卡支付比较合算.7.解:(1)设S甲=kt,将(90,5400)代入得:5400=90k,解得:k=60,∴S甲=60t;当0≤t≤30,设S乙=at+b,将(20,0),(30,3000)代入得出:,解得:,∴当20≤t≤30,S乙=300t﹣6000.当S甲=S乙,∴60t=300t﹣6000,解得:t=25,∴乙出发后25分钟与甲第一次相遇.(2)由题意可得出;当甲到达C地,乙距离C地300米时,乙需要步行的距离为:5400﹣3000﹣300=2100(米),乙所用的时间为:90﹣60=30(分钟),故乙从景点B步行到景点C的速度至少为:=70(米/分),答:乙从景点B步行到景点C的速度至少为70米/分.8.解:(1)由图象可得,甲店团体票是200元,个人票为(元);乙店人数小于或等于10人时,个人票为(元),乙店人数大于10人而又不超过20人时,价格为600元.∴y甲=25x+200,;(2)当0≤x≤10时,令25x+200=60x,得x=,当10≤x≤20时,令25x+200=600,得x=16,答:当人数不超过5人时,小王公司应该选择在乙店吃小龙虾更省钱;当人数超过5人小于16人时,小王公司应该选择在甲店吃小龙虾更省钱;当人数为16人时到两个店的总费用相同;当人数超过16人时,小王公司应该选择在乙店吃小龙虾更省钱.9.解:(1)由图形可得B出发时与A相距10千米B出发后3小时与A相遇;故答案为:10,3;(2)设S A的解析式为;S A=k2t+b,由题意得:,解得:,则S A的解析式为;S A=t+10,设S B的解析式为S B=mt+n,由题意得:解得:,∴S B的解析式为S B=10t﹣7.5;(3)如图,设B不发生故障时的解析式为:y=k2t,根据题意得:7.5=0.5k2,解得:k2=15,则解析式为y=15t,由,解得:,∴当t=时,与A相遇10.解:(1)由图象可得,甲组每小时加工食品:210÷7=30(千克);乙组升级设备停工了:4﹣2=2(小时),故答案为:30;2;(2)(210﹣30×2)÷(7﹣4)=50(千克/时),答:设备升级完毕后,乙组每小时可以加工食品50千克;(3)根据题意得,50(b﹣4)=30(b﹣2)+60×2,解得b=13,∴a=30×2+50×(13﹣4)=510.。
新人教版八年级下册一次函数的图象和性质知识点和典型例题讲解

一次函数的图象和性质一、知识要点:1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线,(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0)(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、性质:(1)图象的位置:(2)增减性k>0时,y随x增大而增大k<0时,y随x增大而减小4.求一次函数解析式的方法求函数解析式的方法主要有三种(1)由已知函数推导或推证(2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。
(3)用待定系数法求函数解析式。
“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况:①利用一次函数的定义构造方程组。
②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向。
③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。
④利用题目已知条件直接构造方程。
二、例题举例:例1.已知y=,其中=(k≠0的常数),与成正比例,求证y与x也成正比例。
证明:∵与成正比例,设=a(a≠0的常数),∵y=, =(k≠0的常数),∴y=·a=akx,其中ak≠0的常数,∴y与x也成正比例。
例2.已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断=(3-)是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)乙从出发起,经过 h与甲相遇;
A
4)甲的速度为 的速度为
km/h , 乙骑车 km/h
5)甲行走的路程s(千米)与时间t(小时) 之间的函数关系式是
6)如果乙的自行车不出故障,则乙出发后经过
h与甲相
遇,相遇后离乙的出发点
km,并在图中标出其相遇点。
相遇点为A
2. 已知直线y=-2x+6和y=x+3分别与x轴交于点A、 B,且两直线交于点P(如图). (1)求点A、B及点P的坐标;
(1)y与x之间的函数关系式。
(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾 病时是有效的,
那么这个有效时间是多长?
y(微克)
3x,0<x≤2
6
(1)y=
4
3
3 x 27 , x>2
84
02
10 X(小时)
合作探究
观察甲、乙
两图,解答
下列问题
1. 填空:两
图中的
(
)图
比较符合传
y = 2x﹣4 与y 轴交于( 0 , - 4 )
11
o
x
-2 ●(1, ﹣2)
∴ y = 2x﹣4
y = ﹣3x + 1与y 轴交于( 0 , 1)
-4
S△=
5 2
例4、某医药研究所开发了一种新药,在试验药效时发现,如果
成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达 每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时时血液 中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间 x(小时)的变化如图所示,当成人按规定剂量服药后,
浮山中小学八三班 吴晓霞
函数图象能直观、形象地反 映两个变量之间的关系。要善 于捕捉图象中的所有信息,并 能够熟练地转化成数学问题。
例1、已知一次函数的图象如图所示:
(1)求出此一次函数的解析式;y=0.5x+2
(2)观察图象,当x>-4 时,y> 0; 当x =-4 时,y=0;当x <-4 时,y<0;
y A (0,12)
B O
x
3。某供电公司为了鼓励居民用电,采用分段计费的方法
来计算电费,月用电x(度)与相应电费y(元)之间的 函数的 图象如图所示。
(1)填空,月用电量为100度时,应交电费 40 元;
(2)当x≥100时求y与x之间的函数关系式; y=0.2x+20
统寓言故事
《龟免赛跑》
中所描述的
情节。
2. 请你根据另一幅图表,充分发挥你的想象,自编 一则新的“龟免赛跑”的寓言故事,要求如下:
(1)用简洁明快的语言概括大意,不能超过200字; (2)图表中能确定的数值,在故事叙述中不得少于 3个,且要分别涉及时间、路程和速度这三个量。
范例
乌龟和兔子赛跑,同时起跑,兔子5分钟跑到150米 处,回头遥望,乌龟不跑了,赶快回去,问乌龟怎么 回事?乌龟说:“刚才在路边拾到一个重要的东西, 失主不知有多着急,我得等一会。”兔子说:“那我 陪你一起等,”5分钟后,失主来领回了,可是这时时 间晚了,兔子很感动,干脆驮起乌龟跑起来,这样, 经过25分钟一起到终点。
(3)观察图象,当x=2时,y= 3 ,
y
当y=1时x= -2 ;
(4)不解方程,求
3 2
1
1 x+2=0的解;x=-4
-4 -3 -2 -1-1 o 1 2 3 x
(2 5)不解不等式,求
1 2
x+2<0的解。--32
x<-4
例2、 如图,l1反映了某公司产品的销售收入与销售 量的关系,l2反映了该公司产品的销售成本与销售量 的关系,根据图意填空:
课堂目标反馈
1. 能利用图象求一次ቤተ መጻሕፍቲ ባይዱ数的解析式; 2 . 能借助图象解相应的方程和不等式; 3. 通过图象解有关面积问题; 4. 能借助图象解实际应用等综合类问题。
作业 1:如图,l甲、l乙两条直线分别表示甲走路与乙骑 车(在同一条路上)行走的路程S与时间t的关系,根据 此图,回答下列问题:
1)乙出发时,与甲相距 km 2)行走一段时间后,乙的自行车发生 故障停下来修理,修车时间为 h
y/元
6000
5000
l1 l2
4000
3000
2000
1000
O 1 23 4 5 6
x/ 吨
例3 、 已知:函数 y = (m+1) x + 2 m﹣6
(1)若函数图象过(﹣1 ,2),求此函数的解析式。 (2)若函数图象与直线 y = 2 x + 5 平行,求其函数的解析式。 (3)求满足(2)条件的直线与直线 y = ﹣3 x + 1 的交点,并 求这两条直线 与y 轴所围成的三角形面积 .
y/元
6000 5000 4000 3000 2000 1000
l1 l2
O 1 23 4 5 6
x/ 吨
(4)当销售量 大于4吨 时,该公司赢利(收入大于成本); 当销售量 小于4吨时,该公司亏损(收入小于成本);
(5) l1对应的函数表达式是 y=1000x
,
l2对应的函数表达式是 y=500x+2000 。
(2)求△PAB的面积.
解: (1)令y=0,则-2x+6=0
和x+3=0,解得x=3和x=-3 ∴ 点 A(3,0)、 B(-3,0)
由yyx2x36得xy14
y
6
P
3
∴点P的坐标为(1,4)
(2)过点P作PM⊥x轴于M点, B
A
则PM=4,AB=|3-(-3)|=6, -3
解:(1)由题意: 2=﹣(m+1)+2m﹣6
(3) 由题意得
y 2x 4 y 3x 1
y = ﹣3 x + 1
y
y = 2x﹣4
解得 m = 9
∴ y = 10x+12
x1
解得:
y
2
(2) 由题意,m +1= 2 ∴ 这两直线的交点是(1 ,﹣2)
解得 m = 1
SPAB1 2PM •A B1 24612
-1
0M
3
x
3.已知直线y=kx+12和两坐标轴相交所围
成的三角形的面积为24,求k的值 y
解:由图象知,AO=12,根据面积 得到,BO=4即B点坐标为(4,0)
A(0,12)
OB
x
所以k= -3 B的坐标还有可能为(-4,0)
所以k= 3
(1)当销售量为2吨时,销售收入= 2000 元, 销售成本= 3000 元;
y/元
6000
5000
l1 l2
4000
3000
2000
1000
O 1 23 4 5 6
x/ 吨
(2)当销售量为6吨时,销售收入= 6000 元, 销售成本= 5000 元;
(3)当销售量为 4吨时,销售收入等于销售成本;